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Background: Diabetes mellitus (DM) is a chronic metabolic disorder that
poses a significant global health challenge, affecting millions, many of whom
remain undiagnosed in the early stages. If left untreated, diabetes can result in
severe complications such as blindness, stroke, cancer, joint pain, and kidney
failure. Accurate and early prediction is critical for timely intervention. Recent
advancements in machine learning techniques (MLT) have shown promising
potential in enhancing disease prediction due to their robust pattern recognition
and classification capabilities.

Materials and methods: This study presents a comparative analysis of supervised
MLT such as Support Vector Machine (SVM), Naive Bayes (NB), K-Nearest
Neighbors (KNN), and Random Forest (RF) using the Pima Indian Diabetes
dataset (PIDD) from the UCI repository. A 10-fold cross-validation approach was
employed to mitigate class imbalance and ensure generalizability. Performance
was evaluated using standard classification metrics: accuracy, precision, recall,
and Fl-score.

Results: Among the evaluated models, SVM outperformed the others with an
accuracy of 91.5%, followed by RF (90%), KNN (89%), and NB (83%). The study
highlights the effectiveness of SVM in early diabetes prediction and demonstrates
how model performance varies with algorithm selection.

Conclusion: Unlike many prior studies that focus on a single algorithm or
overlook validation robustness, this research offers a comprehensive comparison
of popular classifiers and emphasizes the value of cross-validation in medical
prediction tasks. The proposed framework advances the field by identifying
optimal models for real-world diabetes risk assessment.

KEYWORDS

cross validation, diabetes, diabetes mellitus, K-Nearest Neighbors, machine learning
techniques, Naive Bayes, prediction, supervised

1 Introduction

Diabetes mellitus (DM) is a dangerous chronic disease characterized by elevated blood
glucose levels. It can arise due to genetic factors or environmental triggers (1). The disease
occurs when pancreatic beta cells fail to produce sufficient insulin, impairing the body’s
ability to regulate glucose levels. Uncontrolled diabetes leads to severe complications,
including damage to the kidneys, eyes, blood vessels, nerves, and heart. It also increases
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the risk of hypertension, foot ulcers, pancreatic disorders, and
vision loss (2). Although diabetes affects individuals across
all age groups, it has a pronounced impact on older adults.
Common symptoms include frequent urination, excessive thirst,
and increased hunger (3, 4). If left untreated, the disease can
severely impact quality of life. In many developing countries, access
to laboratory diagnostic tools such as fasting blood sugar tests
and glucose tolerance tests is limited. This lack of early detection
infrastructure contributes significantly to diabetes-related mortality
(5, 6). Recent years have seen increased application of machine
learning techniques (MLT) in disease diagnosis and prediction.
MLTs are especially valuable in analyzing medical datasets and
identifying patterns that support early diagnosis. They have been
effectively applied in predicting diseases such as hepatitis, cancer,
and tumors (7). The ability of MLT to derive meaningful insights
from structured and unstructured healthcare data enables timely
decision-making and personalized care (8).

1.1 Types of diabetes

1.1.1 Type 1 diabetes (T1D)

It is a chronic autoimmune condition in which the body’s
immune system mistakenly attacks and destroys the insulin-
producing beta cells in the pancreas, leading to insufficient
insulin production. Also known as juvenile diabetes, T1D typically
develops in children and young adults under the age of 30, although
it can occur at any age. Individuals with T1D require lifelong
insulin therapy for survival, as their bodies are unable to regulate
blood glucose levels on their own. Key risk factors for T1D include
a family history of the disease, pancreatic disorders, and cardiac
infections (9).

1.1.2 Type 2 diabetes (T2D)

It is the most prevalent form of diabetes, accounting for over
90% of all diagnosed cases. It occurs when the body becomes
resistant to insulin or when insulin is not used effectively, leading
to elevated blood glucose levels. T2D is often referred to as insulin-
resistant diabetes. According to the National Institute of Diabetes
and Digestive and Kidney Diseases, there is a strong association
between the rising incidence of T2D and increasing rates of obesity
in the global population. Excess body weight and a sedentary
lifestyle are among the most common risk factors. The number of
individuals affected by T2D will rise significantly worldwide.

1.1.3 Gestational diabetes (GDM)

Diabetes occurs during pregnancy and poses risks to both
mother and child. Research indicates that around 18% of pregnant
women develop this condition, especially with increasing maternal
age (10, 11).

1.1.4 Motivation for study

The International Diabetes Federation (IDF) reported that 700
million people would have diabetes by the year 2045, compared to
the current global total of 463 million (9.3% of the total population).

Frontiersin Medicine

10.3389/fmed.2025.1620268

Since nearly half of the people with diabetes go undiagnosed,
according to the IDF research, 50% of those individuals do
not know that they have the disease (International Diabetes
Federation). According to estimates, each year, diabetes kills 4.2
million people between the ages of 20 and 79 (38). According
to predictions by the International Diabetes Federation (2017),
India will have the highest number of people with diabetes
(134.3-165.2 million) in 2045. Therefore, there is a critical need
to investigate MLT for early diabetes mellitus prediction to
support healthcare professionals in providing better diagnoses and
treatments for patients.

1.2 Why predictive analytics

In terms of database analysis, predictive analytics is the practice
of making future predictions based on historical and current
data, soft computing, and MLT. It includes directions on how to
retrieve intelligence from huge data sets. Because it is all about
learning from experience (data), predicting behavior, and offering
solutions to various healthcare problems, it has become quite
popular. By leveraging vast amounts of information from various
data sources and implementing a framework based on an machine
learning (ML) framework, it may also be used to increase diabetes
prediction accuracy.

1.3 Machine learning

A subset of Al known as machine learning (ML), is used to
analyze datasets to generate predictions or take actions to improve
certain systems. The primary objective of ML is to train and test the
model, then learn from the dataset without explicit input. Based on
the learning method, some of the types include supervised learning,
semi-supervised learning, exploration of unsupervised learning,

and reinforcement learning.

a) Supervised learning: making use of labeled data sets with the
desired output, the models (e.g., classifications and regression)
are trained and tested.

b) Unsupervised learning: unlabeled data sets without the
anticipated consequence are used to train and test the
algorithms—for instance, neural networks and clustering.

c) Semi-supervised learning: some models are capable of picking
up knowledge from incorrectly labeled data sets. These
methods are used for developing models to lower the cost of
labeling the data sets.

d) Reinforcement learning: that use the
environment, action, and state to learn through trial

algorithms

and error.

1.4 Research context and gap
Despite numerous studies applying MLT for diabetes

prediction, many prior studies have notable limitations, including
the use of a limited set of performance metrics, a lack of
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proper validation techniques such as cross-validation (reducing
generalizability), inadequate preprocessing and feature selection
(leading to reduced model efficiency), and a focus on individual
algorithms without comparative analysis.

This study addresses these limitations by:

e Employing four supervised MLT [Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Naive Bayes (NB), and
Random Forest (RF)] for comparison.

e Using 10-fold cross-validation to improve reliability.

e Applying exploratory data analysis (EDA) and preprocessing,
including normalization and feature selection.

e Implementing the entire pipeline using the Anaconda (2022)
platform and Jupyter Notebook on a Windows OS.

1.5 Study contribution

This research proposes a conceptual framework for the early
prediction of diabetes mellitus using advanced MLTs. Unlike earlier
studies, it emphasizes robust preprocessing, comparative classifier
analysis, and practical implementation strategies. The ultimate goal
is to improve prediction accuracy and facilitate better decision-
making in resource-limited healthcare settings.

The remainder of the study is organized as follows: Section
2 describes the related work on diabetes prediction. Section 3
discusses the methodology for the conceptual framework of MLT.
Section 4 describes the results and analysis of different MLTs.
Section 5 provides the summary and conclusion, and finally, in
Section 6, we outline future research to wrap up the study.

1.6 Novelty

Novelty is highlighted in the manuscript. This research
introduces a comprehensive conceptual framework for the
early prediction of diabetes mellitus using advanced supervised
machine learning techniques (MLTs), applied to the Pima
Indian Diabetes Dataset (PIDD). Unlike prior studies that
primarily focused on single-model performance or basic
classification, this study distinguishes itself through several
key methodological advancements.

Robust data preprocessing: the framework applies systematic
data cleaning, normalization, and handling of missing values,
ensuring the dataset is optimized for learning algorithms and
minimizing bias introduced by noisy data.

Comparative classifier analysis: a detailed evaluation of
multiple models—SVM, RE, KNN, and NB—was conducted using
not only standard performance metrics (accuracy, precision, recall,
and Fl-score) but also statistical significance testing through
McNemar’s test. This adds a layer of rigor that is often missing in
previous studies.

Feature selection: multivariate analysis techniques are used
to identify the most relevant attributes, reducing dimensionality
while preserving prediction power, which enhances model
interpretability and performance.
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Hyperparameter tuning: grid search and cross-validation are
employed to fine-tune model parameters, especially for SVM (e.g.,
kernel type, C value), leading the SVM to achieve 91.5% accuracy.

Practical implementation focus: the framework is designed with
scalability in mind, particularly suited for resource-constrained
healthcare
diagnosis can substantially improve patient outcomes.

environments where automated, accurate early

Generalizability: the study outlines a clear roadmap for
extending the framework to unstructured data and other diseases,
such as cardiovascular conditions, tumors, Parkinson’s disease,

and COVID-19.

2 Related studies

Many scholars around the world have used various approaches
to improve diabetes prediction using MLT. Some of the most
common ways are as follows: a diabetic condition caused by a
spike in blood sugar levels has been explored by Veena Vijay, V.,
and Anjali C. Using decision trees (DT), SVM, Naive Bayes (NB),
and ANN algorithms, various information systems for predicting
and detecting diabetes are described (12). P. Suresh Kumar and
V. Uma Tejaswi have developed methods for identifying diabetes
using MLT, such as SVM, decision trees, and Naive Bayes (13). The
HEABCAKSVM (hybrid improved artificial bee colony advanced
kernel support vector machine) has been utilized to construct a
hybrid predictive model for better diabetes diagnosis (14).

The model’s accuracy is 90.04%, and it was constructed utilizing
machine learning techniques to develop a hybrid model for T2DM
prediction. Jakka and Rani (37) proposed an ingenious solution.
The system is designed to forecast T2DM (15). They compare the
performance of six MLTs using a variety of metrics. Compared to
other classifiers included in the model, Logistic Regression (LR)
has the highest accuracy (77.6%). Tigga and Garg (39) used the
questions to create diabetic predictive models from the Indian
healthcare dataset. To predict diabetes, ML techniques, including
LR, K-nearest neighbor (KNN), SVM, Decision Tree (DT), Naive
Bayes Classifier, and Random Forest (RF), were applied to data
collected by questionnaires and the Pima dataset (16).

To improve the model’s ability to explain and classify diabetes
risk, it is necessary to adjust the MLT settings. Research on
MLT approaches, such as Support Vector Machine, NB, and DT
for special disease prediction, has utilized Principal Component
Analysis. Nawaz Mohamudally and Dost Muhammad predicted
diabetes using the C4.5 decision tree algorithm, a multi-layer
perceptron, the K-means clustering technique, and visualization
methods (17).

According to a related study, each of these researchers
investigated certain techniques and worked to develop methods
to the best of their abilities. Using multiple feature selection
methodologies, the authors hope to construct a model that can
effectively categorize and predict diabetes data at an early stage.
Practitioners and researchers employed a variety of ML algorithms
to analyze medical data and calculate healthcare costs. To analyze
diabetic data, a variety of datasets, including SVM integrated
learning models and the DT technique, have been applied. Data
were initially collected from individuals who had participated in
studies utilizing the SMOTE algorithm, recognized as one of the
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most effective feature selection methods, alongside an unbalanced
approach that considered factors such as age, body mass
index (BMI), and blood glucose levels, while also incorporating
other important characteristics like smoking habits. Processed
characteristics are subsequently evaluated through the previously
mentioned data mining classification, which differentiates between
normal and abnormal features while maintaining error-free results.

With an Receiver operating characteristic (ROC) value of
89% and a 78.65% accuracy rate, the SMOTE-based diabetes
detection method is more accurate and precise than traditional
SVM classifiers (18). Most current diagnostic algorithms are built
to have a knowledge base gathering a data set, and this has alarmed
some academics, including the signs and symptoms of a certain
illness. The performance of the prediction system is significantly
impacted by the accuracy of the data source. To solve this problem,
a basic set-based prediction system was created and implemented.
The suggested method uses 19 people’s symptoms as input to
identify the type of diabetes each one suffers from. The results
show that arranging prediction models has been demonstrated to
be significantly better than existing rule-based prediction models.

To increase the output of challenging optimization problems,
the learning technique variables must be modified. It was also
observed that the optimization approach is gaining popularity as
a solution for resolving complex problems that are challenging to
handle using traditional methods. The performance effectiveness
of machine learning techniques has to be developed in two stages.
Using a correlation-based feature selection method, it is essential to
determine the features that are most relevant in the first stage (19).
In the next stage, hyperglycemia and heart disease are classified
using the RF method. After a results analysis, it was found that the
suggested RF technique significantly increases the accuracy of heart
disease and diabetes prediction (20-22). It was also discussed how
essential it is to diagnose diabetes early on and the many negative
effects of the disease. Early detection of diabetes could potentially
assist individuals in reducing their risk of subsequently developing
additional conditions, including heart disease, neuropathy, or
retinopathy. The difficulties of developing diabetes were examined,
along with the value and need of using advanced technologies to
predict how the disease may develop (23, 24). The LDA method is
used to select more relevant variables that are directly connected to
the diabetes status to improve the precision of diabetic prediction.

Furthermore, it has been indicated that the suggested method
might be used by doctors as a practical tool to increase their
earnings and draw accurate conclusions (25-28). Six MLTs were
utilized to analyze the data set and formulate hypotheses regarding
predictive analytics in healthcare. An evaluation was conducted
to predict diabetes, comparing various ML models (29-32). The
performance of SVM and KNN on the PIDD data set demonstrated
high accuracy.

The models for hyperparameter tuning aimed at achieving
high precision were not considered in this study. In this proposed
work, the implementation of four MLTSs, viz., SVM, KNN,
NB, and RE was performed, and the analytical outcomes were
evaluated in relation to statistical analyses. The implementation
and analysis revealed that SVM has the highest accuracy across
all classifiers of 91.5%. In Table 1, a comparison of earlier
research on performance parameters is shown. The comparative
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TABLE 1 Comparison of related studies.

R o Algorithm Dataset Results
used
1. (20) RE MLP,SVM, | Clinical RF80%, MLP89%,
GB, DT dataset SVMS87%,
GB88%, DT79%
2. (21) SVM, DT PIMA SVM83%, DT72%
3. (22) RE, XGB, DT PIMA RF85.5%,
XGB90.5%,
DT88%
4. (23) MLP, Radial PIMA MLP 78.1%
basis function
5 (24) ID3,DT PIMA D3 80.8

analysis dataset highlights the performance of various machine
learning algorithms applied to diabetes prediction using different
datasets. The proposed study aims to build upon these results by
incorporating optimized feature selection, hyperparameter tuning,
and ensemble learning techniques to improve the accuracy and
reliability of diabetes prediction models. By comparing traditional
and advanced supervised learning approaches, this research seeks
to identify the most effective strategies for early and accurate
diabetes detection (33).

Key observations from the previous research of
other researchers:

Algorithm comparison: Various studies have implemented
classifiers such as Naive Bayes (NB), Random Forest (RF), Decision
Trees (DT), Gradient Boosting (GB), Support Vector Machine
(SVM), and Multi-Layer Perceptron (MLP) to classify diabetic and
non-diabetic patients.

Dataset variability: Most studies have utilized the PIMA dataset,
while some have employed clinical datasets for model training
and validation.

Performance benchmarking: RF models generally perform well,
achieving accuracies between 76 and 85.5%. SVM-based models
yield an accuracy range of 83%—87%. XGBoost (XGB) has shown
superior performance, reaching 90.5% accuracy in one study.

Figures 1a,b show a graphical representation of previous
work. The bar chart and pie chart show the use of MLT in
diabetes prediction research. A bar chart compares the accuracy
of different algorithms across various research papers, providing a
clear visualization of their performance. Meanwhile, the pie chart
represents the distribution of these algorithms, which highlights

their popularity in the referenced studies.

3 Methodology for the conceptual
framework of MLT

The framework presented in Figure 2 demonstrates novelty
through its thoughtful integration of key machine learning steps
tailored for medical diagnosis. It introduces a unique way to split
data, separating training, testing, and correlation datasets, allowing
for targeted feature analysis before modeling. Incorporating k-
fold cross-validation early in the pipeline ensures consistent

frontiersin.org


https://doi.org/10.3389/fmed.2025.1620268
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Ansari et al.

10.3389/fmed.2025.1620268

1gé:omparative Analysis of Different Papers Based on Accuracy | | Distribution of Algorithms Used in Different Papers
Radial Basis Function
XGB
D3
80
g
> 60 [
o
3 SVM
O
< aof ot
4
3]
20
0
[21] [22] [23] [24] [25] RF
Reference Number
(a) (b)
FIGURE 1
(a) Bar chart and (b) pie chart comparing the accuracy of different algorithms used in various research papers.
P £ 5
/ Apply Machine Learning \
|l Technique |
Training |
Dataset | |
| Testing Evaluation |
| Results |
Testin, l
Data Pre- 8 |
: Dataset
Processing | |
Data splitting and Corelation I ]
K-Fold Cross Dataset
Validation N //
B o o P R N SRR SR (1S I T Mo Ry S -
FIGURE 2
Conceptual framework for MLT.

model validation and reduces overfitting risks. Unlike traditional
workflows, the framework emphasizes a layered evaluation
approach, distinguishing between performance scoring and result
analysis. This promotes better interpretability and reliability in
clinical settings. Additionally, its modular structure supports easy
adaptation to other healthcare applications.

3.1 Dataset and data collection

Regarding the observation in Table 2, where all feature values
appear as integers, this is indeed accurate for some features, such
as pregnancies, age, and glucose, which are naturally recorded in
whole numbers. However, features like body mass index (BMI )

Frontiersin Medicine

and Diabetes Pedigree Function are originally float values (i.e.,
decimals) in the PIDD dataset. The reason they may appear as
integers in Table 2 could be due to either a formatting issue
during data presentation or rounding for simplicity in tabular
visualization. It is important to note that during actual processing
and analysis in the Python environment, data retain their original
formats as provided in the CSV file, which include both integer
and floating-point data types. The dataset used consists of 419 rows
and eight columns, as outlined in Table 2. These parameters include
pregnancies, glucose, blood pressure, skin thickness, insulin, BMI,
diabetes pedigree function, and age. Data were sourced in Excel
format and processed using Python’s Pandas library to read a CSV
file. Figure 3 illustrates the data processing flow, outlining stages of
data import, preprocessing, model training, and evaluation.
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3.2 Strategies for accurate prediction of
diabetes mellitus

These features are essential for training supervised learning
models, enabling the development of an accurate and robust
diabetes prediction system. The study likely evaluates different MLT
optimizing feature selection and model performance to improve
diagnostic reliability.

3.2.1 Data visualization

Data visualization enhances awareness by presenting
information in an easily understandable visual format. Figure 4
illustrates how the dataset is represented during this phase.
The analysis shows the percentage of individuals affected by
diabetes and also forecasts the number of future cases. The dataset

is stored in a CSV file, which is imported into the notebook

TABLE 2 Dataset description for analysis.

10.3389/fmed.2025.1620268

using the Python Pandas module. Once data is loaded, various
analytical tasks can be performed. To generate visualizations, we
use Pandas in combination with graph-plotting libraries. Figure 4
explicitly displays the distribution of the target variable, diabetes,
distinguishing between non-diabetic (0) and diabetic (1) cases. The
steps for data visualization and standardization are introduced at a
basic level.

3.2.2 Data preprocessing

Data preprocessing is a critical step in any machine
learning pipeline, as it directly affects model performance
and generalizability. In this study, multiple preprocessing
techniques were carefully employed to enhance data quality and
model effectiveness.

A common concern with the Pima Indian Diabetes Dataset
(PIDD) is its age and potential lack of relevance. While it is a well-
known benchmark dataset, we acknowledge that it may not fully
reflect current population diversity or clinical standards. However,

S.No Parameters Description Values its widespread use allows for reproducibility and valid baseline
comparisons. Future studies will involve validating our framework
1 Pregnancies Number of times pregnant 1,2,3.... . . =
on more recent and real-world datasets to enhance its applicability.
2 Glucose The glucose level of a person | 1,2,3..... The class imbalance in PIDD, where diabetic cases (positive
3 Blood pressure Blood pressure status 1,2,3.... class) are fewer than non-diabetic cases, was indeed considered.
. Skin thickness Skinfold thickness of triceps L2 While this 1mb-ala.nce can bias model perfohrm-ance, espeaally
(mm) toward the majority class, we addressed this issue using 10-
) o fold cross-validation. This technique partitions the dataset into
5 Insulin Whether insulin is needed or 1,2,3.... . .
not balanced folds, ensuring that each model evaluation accounts for
representative samples of both classes. Additionally, model metrics
6 BMI Body mass index of a person 1,2,3.... L. .
such as precision, recall, and F1-score were used alongside accuracy
7 Diabetes pedigree | Family history of diabetes (a | 1,2,3.... to provide a more reliable performance assessment.
function risk factor for diabetes) . . .
A common source of confusion is the simultaneous use
8 Age Age is one of the most L2,3.... of normalization and standardization. These techniques serve
essential components of diffe di iveli h lied selectivel
health care ifferent purposes, and in our pipeline, they were applied selectively
based on algorithmic needs:
7 \\\
8 ‘ - e / | Data Preprocessin |
Data Collection > Data Visualization ——| i 8 :
|
| |
5 E |
: Data Manipulation |
| |
| 4 L |
| P |
I Data Standardization |
, Information gain | |
Te!ﬁlll & Trainin g ¢ Fm |
: Selection :
4 \ /
\
e O T RS S SRS T S //
K-Fold Validation
r" Correlation Test > Stop
FIGURE 3
Flow chart of the complete process.
Frontiersin Medicine 06 frontiersin.org


https://doi.org/10.3389/fmed.2025.1620268
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Ansari et al.

10.3389/fmed.2025.1620268

Diabetes Distribution (Pie Chart)

Count

@

FIGURE 4
(a) Percentages and (b) count of diabetes outcomes.
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e Normalization was applied during exploratory phases,
particularly for distance-based algorithms such as KNN,
where scaling all features to a [0, 1] range improves distance
calculations and convergence behavior.

e Standardization, on the other hand, was used during final
model training, especially for algorithms like SVM and logistic
regression, which assume normally distributed input features.
This transformation, defined as

where x* is the standardized value, x is the original feature, . is
the feature mean, and o is the standard deviation, ensures that
all features contribute equally to the learning process. Exploratory
Data Analysis (EDA) was also conducted to detect outliers,
assess feature distributions, and identify correlated variables, all of
which informed our feature selection and preprocessing strategies.
These steps collectively improve model convergence, accuracy,
and generalization.

3.2.3 Data manipulation

Data manipulation involves transforming raw data into a
structured format suitable for analysis. In the context of this study,
it includes cleaning missing values, removing duplicates, correcting
data types, and integrating multiple features where necessary. These
steps ensure that the dataset is free from inconsistencies and
prepared for further preprocessing stages, such as normalization
and model training. Additionally, exploratory data analysis (EDA)
was performed to detect outliers, class imbalances, and feature
correlations, allowing for informed decisions during feature
selection and transformation.
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3.2.4 Data standardization
Standardization is a crucial preprocessing step in machine
learning that involves rescaling features to have a mean of 0 and
a standard deviation of 1, as shown in the following equation:
»_ x— K

X = >
o

where:

e x is the standardized value
e kis the mean of the training data
e o sigma is the standard deviation of the training data.

This transformation ensures that each feature contributes
equally to the model’s learning process, which is especially
important for algorithms like SVM and KNN that are sensitive to
the scale of input variables. Standardization improves convergence
and model accuracy while maintaining the relationships

between features.

3.2.5 Resampling

Resampling refers to a set of methods used to restore our sample
datasets, which include training and validation sets. In this research,
RF used to improve accuracy in the PIDD set has achieved the
highest accuracy of 91%.

3.2.6 Feature selection

One of the key selection features of the suggested method
is the feature selection process. The process of feature selection
involves reducing the dimension of the data by selecting suitable
features from the raw data feature set based on certain assessment
criteria and removing redundancy from the feature set to reduce
the dataset dimension. Diabetes occurs due to an excess of insulin
or sugar in our blood. Glucose levels remain high whenever the
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blood is unable to convert sufficient insulin. Glucose aids in cellular
digestion, significantly reducing blood glucose levels and providing
energy. This research seeks to develop an MLT using data from the
Kaggle dataset.

3.2.7 Feature selection using information gain

Feature selection plays a crucial role in improving MLT
performance, especially when dealing with high-dimensional
medical datasets. The objective is to select the most informative
features from the original dataset while eliminating redundant or
irrelevant attributes, thereby reducing computational complexity
and enhancing prediction accuracy. In this study, information gain
(IG) is employed as the primary criterion for feature selection.
IG measures the reduction in entropy (or impurity) achieved by
splitting the dataset based on a particular feature. Features that
contribute to the highest reduction in entropy are considered the
most informative and are retained for model training.

Entropy and information gain: entropy quantifies the
impurity or disorder in a dataset and is calculated using the
following equation:

T
E(T) = Zi:l Pi log 2pi,

where

e E(T)E(T) is the entropy of the dataset T
e piis the probability of class i in the dataset.

When data are completely pure (i.e., contain only one class),
entropy is zero. Conversely, higher entropy values indicate more
impurity or uncertainty.

Information Gain (IG) is then computed by comparing the
entropy of the dataset before and after it is split on a particular
feature. The steps involved are

e Calculate the initial entropy of the dataset before any splits.

e Split the dataset on each attribute and compute the entropy of
each resulting subset.

e Calculate the weighted sum of these entropies.

e Subtract this sum from the original entropy to determine the
information gain for that attribute.

IG (T, A) = E(T) — Z values(%)E Tv,

where
e T is the entire dataset,
e A is the attribute being evaluated,
o Tv_ is the subset of T where attribute A has value v.
Attributes are then ranked based on their information gain, and

the top features are selected for model input.
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3.2.8 Relevance to diabetes prediction

Given the imbalanced and noisy nature of medical datasets like
the Pima Indian dataset, effective feature selection is vital. High-
IG features such as glucose, BMI, and age directly correlate with
diabetes diagnosis and help classifiers focus on relevant variables
while discarding noise. This improves both model interpretability
and generalization to unseen data.

3.2.9 Data splitting and K-fold cross-validation
This 10-fold cross-validation method is the most commonly
used to avoid the skewness of datasets and to build the model’s
reliability. The given dataset is split into 10 equal partitions, with
one partition being taken as a validation set and the remaining nine
partitions being used for training. This approach ensures that all
the data points eventually contribute to both training and testing,
thus reducing the cases of overfitting and underfitting. Results from
all iterations are aggregated for analysis, which eliminates data bias
and improves the model’s generalization for realistic outcomes.

3.2.10 Testing and training data

The dataset is divided into training and testing sets to
evaluate its precision. Furthermore, various established methods
for classification in machine learning are employed to train
data to align with the model. Correlation is a commonly used
and essential research technique that aids in the identification
of a continuous relationship between two data samples. This
relationship indicates the nature of the connection between these
factors, whether it is negative or positive. Moreover, this method
produces results even in the absence of any correlation. Figure 5
illustrates the correlation test conducted on this dataset using
Pearson’s correlation coefficient. It is generally feasible to ascertain
the existence of a relationship between two variables when one
variable influences the other.

3.3 Implementation of machine learning
technique

Four classification algorithms were used to build the model,
including SVM, KNN, NB, and RF. In this study, a promising area
of research in diabetes prediction is also discussed, highlighting
how living beings are prone to illness.

3.3.1 Support vector machine classifier (SVM)

It is a supervised learning algorithm that classifies data by
finding an optimal hyperplane that maximizes the margin between
two classes, where the margin is defined by support vectors—
data points closest to the boundary. The SVM decision function is
given by:

f(x) = sign(}_ aiyik(xi,x) +b),
where ai are Lagrange multipliers, yi are class labels, K(xi,xj) is

the kernel function, and b is the bias term. The choice of kernel
function is critical; this study uses both linear and RBF Gaussian
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Correlation test of the dataset.

kernels. The linear kernel is preferred when data exhibits linear
separability, while the RBF kernel is effective for capturing complex,
non-linear relationships. Hyperparameters C (regularization) and
y (gamma) for the RBF kernel were fine-tuned using grid search
and 10-fold cross-validation, ensuring optimal performance for
diabetes prediction on the Pima dataset.

3.3.2 K-nearest neighbor (KNN)

It is a supervised machine learning approach primarily applied
in classification-based projects. The algorithm classifies objects
based on their proximity to other entities in the training data,
obtained using K-nearest neighbors. Before implementing the
algorithm, the positive integer K must be defined. Euclidean
distance is often used to calculate similarity across multiple
dimensions. The FEuclidean distance equation is calculated

k
Euclidean ,/ Ziﬂ (yi — zi)?

Manhattan Zle | i — zi|

as follows:

With the x and y data up to I parameters, the Euclidean and
Manbhattan distances of the KNN classifier are calculated using
equations. It creates a tree structure to define decision and outcome
sequences and applies it for forecasting. This algorithm chooses the
branch with the most information gain at each node of the tree.

Info GainR = Haiabetic — Hdiabetic IR,
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where R stands for the risk factor, Hgjapetic-Hdiabetic |R represents
the conditional entropy, and R represents the base entropy in

Haiabetic =
Y Vaiabetic (diabeticondiaberic) ( P (diabetic) log 2P(diabetic)
Haiabetic = D p () H (diabeticr) = 3 g cp
P(r) X" (diabeticnondiaberic) (P (diabetic|r) log2P(diabetic r)

P (diabetic) represents the probability that the diabetic class has
more data than the total number of samples.

The NB method uses two hypotheses to expand Bayes’ theorem,
as described in the equation.

a) given a class D1, the event of every other factor is considered,
as demonstrated in the equation

b) the term P (R1, R2... Rn) is removed from the equation. As
a result, it can be used to compute the likelihood of Di given the
probabilities of all risk factors, P (Di |R1, R2... Rn).

3.3.3 Random Forest (RF)

The Random Forest is a classifier algorithm in MLTs. The
system consists of various decision trees to address various
elements of the data set. While a single tree may have one or several
query answers wrong, the entire pool of answers is aggregated with
majority voting to improve accuracy. Each node within a decision
tree evaluates a question about the data, thus combining to create
an overall prediction.
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3.3.4 Naive Bayes (NB)

The Bayes theorem, which explains the relationship between
the probabilities of two risk variables and their respective classes, is
the foundation of this approach. The conditional risk that a health
risk C will occur if a person already has a risk factor is given by the
following equation:

P(BND) , (BID) 20)
P(B) P(B)

P(D|B) =

The purpose is to forecast the diabetic/non-diabetic class Di

from a set of risk variables. For a record with a number of risk

variables, use R1, R2,..., Rn. D(D diabetic, D non-diabetic) that

optimizes P(Di |R1, R2,.., Rn) conditional probability. Provides

the overall version of Bayes theorem for assigning diabetic or
non-diabetic to observations with various risk factors.

P (Di|Ri,R2,...,Rn) = P(R1,R2...,Rn|Di) .P(Di)
P(RL,R2...,Rn)

The NB method uses two hypotheses to expand the Bayes
theorem described above

a) given a class Di, each risk factor operates differently from the
other factors, as demonstrated in Equation

b) removing the term P (R1, R2, Rn) from eqn. As a result, it
can be used to compute the likelihood of Di given the probabilities
of all risk factors, P (Di |R1, R2... Rn).

P (R, Ry ... Ry|D;) = P(R{|Dj). P(R|Dy). ..
P(Rq|D; [T ; P(R]|DI)
P (DilR1, R2....Rn) = P (Di). [T/, P(RjDi).

4 Results and discussion

The performance outcomes of each model are detailed in
Table 3, showcasing varied results across different evaluation
metrics. Support Vector Machine (SVM) achieved the highest
accuracy at 91.5%, suggesting its effectiveness in handling the
given dataset. To statistically validate these results, McNemar’s test
was employed to compare the performance differences between
the models. The test results indicated that the performance
improvement of SVM over other classifiers was statistically
significant (p < 0.05), reinforcing its reliability. In clinical contexts,
understanding the balance between precision and recall is crucial.
High precision indicates that most predicted diabetic cases are truly
diabetic, reducing the risk of false positives. Conversely, high recall
ensures that most actual diabetic cases are identified, minimizing
false negatives. In diabetes prediction, high recall is often more
critical, as failing to identify a diabetic patient can delay necessary
treatment. However, excessive false positives (low precision) could
lead to unnecessary anxiety and testing. Thus, an optimal trade-off
must be selected based on clinical priorities.
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TABLE 3 Result comparisons.

Algorithms  Accuracy Precision Recall Fiscore
SVM 915 96 93 94
NB 83 88 88 72
KNN 89 95 89 92
RF 90 83 83 89

4.1 Performance parameter

Many performance measurements of various kinds were used
in this research. Various performance measurements of various
types were used in this research. Many evaluation criteria must be
used to ensure that an ML model functions properly and effectively
(29). Several measures are used to evaluate the comprehensive
experiments in this paper, such as accuracy, precision, recall, and
F1-score, which are computed using the formulas below:

Accuracy: the ratio of successfully diagnosed diabetic patients
to the total number anticipated is the measure of accuracy.

The mathematical description of precision is seen in the
following equation:

TP+ TN
TP+ FP+ TN + FN

Accuracy =

Precision: precision is the proportion of correctly recognized
diabetic individuals to all diabetic patients, as shown in the
following equation:

TP

Precision = ——
TP + FP

Recall: equation is used to compute recall, which is the
proportion of correctly identified diabetic patients relative to the
total population of that class.

TP

Recall = ———
TP + FN

Fl-score: this metric is commonly employed to assess the
effectiveness of machine learning algorithms. The calculation
involves the harmonic average of recall and accuracy. It is shown
in the following equation:

2 *Precision *Recall

FiScore = —
Precision + Recall

In this context, the symbols True Positives (TP), False Negatives
(FN), True Negatives (TN), and False Positives (FP) represent the
equal percentages of true positives, true negatives, false negatives,
and false positives, respectively.

4.2 Performance analysis of different ML
algorithms

This section explains the desired outcomes of the research
that used MLT to predict diabetes mellitus. The Pima diabetes
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dataset, obtained from the UC Irvine ML repository, was used for
this binary classification task to determine whether a prospective
patient has diabetes. The dataset was partitioned in a 70:30
ratio, with 70% allocated for model training and 30% for model
validation. Different data preprocessing steps were performed,
including outlier removal, dataset attribute balancing, and up-
sampling of data samples, to enhance the system’s effectiveness.
Finally, ML-based algorithms were used to predict the development
of diabetes mellitus. The pathogenic dataset consists of 419 records
and eight predictor variables, with one additional parameter
representing the outcome (target variable). Receiver operating
characteristic (ROC) curves for the MLT models are shown in
Figures 6a—d, generated by applying various thresholds to the true
positive rate (TPR) and false positive rate (FPR). These analyses
were used to calculate the area under the curve (AUC) values
(34-36).

On Python 3.7.5,
programming tools.

we performed the
In Jupyter,
notebook application called Anaconda distributes Python.

analyses using

a free and open-source

Python provides techniques for supervised machine learning,
connected to various modules that enable users to combine

Frontiersin Medicine

multiple results from machine learning techniques. This paper
employs classification models, including SVM, KNN, NB, and RF.
The comparison of ML algorithms indicates that Radial SVM has
an accuracy of 91.5%, compared to other ML algorithms, as shown
in Figure 7.

4.3 Comprehensive analysis of figures and
model performance evaluation

This
performance using multiple supervised MLTs, such as SVM,
RE, KNN, and NB, applied to the Pima Indian Diabetes dataset.
Performance was assessed using standard classification metrics:

section presents a detailed evaluation of model

accuracy, precision, recall, and Fl-score. Confusion matrices
were generated for each model to evaluate prediction outcomes
in terms of True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). SVM demonstrated
the lowest FN rate, which is crucial in medical prediction tasks
to avoid missing true diabetic cases. RF and KNN followed
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closely, while NB showed a relatively higher FN count, indicating
less reliability for sensitive diagnoses. Figure7 shows the
accuracy comparison of all four models. SVM achieved the
highest accuracy of 91.5%, followed by RF at 90%, KNN
at 89%, and NB at 83%. However, accuracy alone can be
misleading, especially with class imbalance. Therefore, other
metrics were considered:

e Precision was highest in SVM and RE indicating fewer
false positives.

e Recall, which is critical for detecting all true diabetic cases, was
also highest in SVM.

e Fl-score, a balance between precision and recall, further
confirmed SVM’s superior overall performance.

Frontiersin Medicine

To determine whether the differences in performance were
statistically significant, McNemar’s test was conducted between
model pairs. The test results revealed that SVM’s performance
improvements over NB and KNN were statistically significant (p
< 0.05), validating its robustness. Comparisons between SVM
and RF showed a marginal difference, not statistically significant,
suggesting that both models are competitively strong. In clinical
contexts, high recall is often prioritized to ensure that no diabetic
cases are missed—an essential factor for timely intervention.
High precision, on the other hand, reduces the chance of false
alarms, avoiding unnecessary stress and diagnostic procedures.
Therefore, while both metrics are valuable, the context of use
(e.g., mass screening vs. specialist diagnosis) determines which
takes precedence.
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Confusion matrices and class distributions for applied ML models.

4.3.1 Learning curve analysis

The learning curve illustrates how well models generalize as
the training data increases. Figure 8 provides insights into model
performance across different dataset sizes. The training score
for the Random Forest (RF) model remains consistently high,
indicating potential overfitting (as seen in the learning curve plot
for RF). On the other hand, K-Nearest Neighbors (KNN) and
Support Vector Machine (SVM) demonstrate steady improvement
in cross-validation performance, reflecting their adaptability to
new data. The presence of a narrow gap between training and
validation scores in SVM and KNN highlights their balanced
learning behavior. From the results, the cross-validation score

Frontiersin Medicine

for SVM stabilizes at ~96%, whereas RF has a training score of
nearly 100%, with a cross-validation score fluctuating around 95%,
reinforcing the overfitting hypothesis. This visualization is crucial
for understanding how different models behave with increasing
training samples and highlights potential trade-offs between bias
and variance.

4.3.2 Confusion matrices and predicted vs. actual
plots

The confusion matrices for each classifier provide a breakdown
of true positives, false positives, true negatives, and false negatives.
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Decision boundaries applied to a two-class classification problem.

Figure 9 helps in evaluating classification errors and model
effectiveness. The results indicate that SVM and Naive Bayes (NB)
misclassify fewer samples compared to RF and KNN, suggesting
a balanced trade-off between sensitivity and specificity. From
the confusion matrix results, SVM correctly classifies 87 out of
90 samples, showing only three misclassifications, whereas RF
misclassifies five samples. The predicted vs. actual plots also
confirm that SVM maintains a high level of predictive accuracy, as
its predictions closely align with the actual values.

NB performs well with the fewest false negatives, indicating
higher recall. To ensure a comprehensive evaluation of model
performance, confusion matrices were generated for each machine
learning model applied, including SVM, RE, KNN, and NB. These
matrices provide detailed insights into classification outcomes by
capturing true positives (TP), false positives (FP), true negatives
(IN), and false negatives (FN). Analyzing these values helps
identify how well each model distinguishes diabetic from non-
diabetic cases. For instance, SVM exhibited the lowest number
of false negatives, which is crucial in clinical settings to avoid
missed diagnoses. Additionally, class distribution was monitored
to ensure that imbalanced class frequencies did not skew model
performance. The use of 10-fold cross-validation further mitigated
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this risk by providing balanced training and testing splits across
iterations. These validation strategies confirm that the reported
performance metrics are reliable and reflect the model’s actual
diagnostic capabilities.

4.3.3 Accuracy, precision, recall, and F1 score
comparison

An in-depth examination of classification metrics, including
accuracy, precision, recall, and Fl-score, is crucial for evaluating
model performance. Bar charts demonstrate that SVM consistently
outperforms all models in terms of precision (96%), recall (93%),
and Fl-score (94%), making it the most effective classifier in
this scenario. SVM outperformed other models in this study
primarily due to its suitability for high-dimensional and moderately
imbalanced datasets, such as the Pima Indian Diabetes Dataset.
It contains overlapping class boundaries and features with
varying scales, conditions under which SVM’s ability to construct
optimal hyperplanes becomes advantageous. Its use of kernel
functions, particularly the radial basis function (RBF), allows it
to model complex, non-linear relationships between features such
as glucose, BMI, and insulin. Furthermore, SVM is less prone to
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Feature correlation analysis using scatter plots.

overfitting in smaller datasets due to its regularization capabilities.
In contrast, models like KNN suffer from high variance and
sensitivity to feature scaling, while Naive Bayes relies on strong
independence assumptions that do not hold well in the Pima
dataset. Random Forest, though powerful, may not generalize as
cleanly in cases with subtle class boundaries. Thus, SVM’s robust
decision boundary formation and generalization strength explain
its superior performance.

In contrast, NB exhibits the weakest performance, as
highlighted in the Fl-score chart (72%), where it lags behind
the other models. These metrics from Figure 10 provide a
comprehensive evaluation of each model’s predictive ability
and effectiveness.

4.3.4 Distribution of model performance

A boxplot representing the distribution of classification scores
across models offers a comparative view of model stability. The
visualization from Figure 11a indicates that SVM and KNN exhibit
higher consistency in their classification performance, as reflected
by their smaller interquartile ranges. Conversely, NB shows greater
variation, suggesting that its performance fluctuates more across
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different datasets. As observed in the boxplot, SVM maintains a
median score above 94%, while NB varies widely from 70 to 90%,
confirming its inconsistent performance.

Figure 11b shows a heat map that provides a consolidated view
of all key performance metrics, allowing for quick identification
of model strengths and weaknesses. It visually summarizes the
precision, recall, and F1-score for each classifier, making it easier
to pinpoint the most and least effective models. From the heat map
results, SVM maintains the highest accuracy (92%) and precision
(96%), while NB falls significantly short in F1-score, confirming its
lower predictive stability.

4.3.5 Decision boundaries

The decision boundary plots are shown in Figure 12, which
shows the regions within each classifier that assign labels to new
data points. The figure highlights how SVM and KNN have
smoother decision boundaries, making them more adaptable to
varied patterns in data. In contrast, RF exhibits sharp and irregular
boundaries, reinforcing its tendency to overfit. The decision
boundaries of NB appear curved, showing its probabilistic nature
in classification. As observed in the decision boundary plots, RF’s
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jagged decision regions confirm its tendency to memorize patterns
rather than generalize, while SVM’s smooth boundary suggests
effective generalization with better separation between classes.

4.3.6 Feature correlation analysis using scatter
plots

Figure 13 presents scatter plots of selected key features: glucose
vs. BMI, blood pressure vs. age, and insulin vs. glucose. These plots
offer valuable visual insights into the relationships among features
and their potential roles in predicting diabetes. From the scatter
plot of glucose vs. BMI, a clear positive correlation is observed.
This suggests that individuals with higher glucose levels often have
higher BMI, indicating that these features may jointly contribute
to increased diabetes risk. Similarly, the insulin vs. glucose plot
shows a direct relationship, implying that elevated insulin levels
generally align with higher glucose values, both of which are
clinically relevant for diabetes diagnosis.

4.3.6.1 Significance of ROC

The Receiver Operating Characteristic (ROC) curve is a
vital tool for assessing the performance of classification models,
especially in medical diagnostics like diabetes prediction. It
illustrates the trade-off between the true positive rate (sensitivity)
and the false positive rate across various classification thresholds.
This is particularly important in healthcare, where minimizing
false negatives (i.e., undiagnosed diabetic cases) is often more
critical than minimizing false positives. The ROC curve provides
a threshold-independent measure of model performance, making
it more reliable than accuracy alone. Additionally, the Area Under
the Curve (AUC) offers a single scalar value to quantify a model’s
overall ability to distinguish between classes, with values closer to
1.0 indicating superior performance. In this study, ROC analysis
was used to identify the model that most effectively balances
sensitivity and specificity, thereby supporting clinical decision-
making in early diabetes detection.

4.3.6.2 Fixing ROC

Setting thresholds in ROC analysis involves selecting a specific
probability cutoff that determines how the model classifies an
instance as positive or negative. While the ROC curve itself
shows performance across all possible thresholds, in practice, a
decision threshold must be chosen to strike the right balance
between sensitivity (true positive rate) and specificity (1 - false
positive rate). The optimal threshold is often selected based on the
clinical context. Diabetes prediction, which involves minimizing
false negatives, is crucial to avoid undiagnosed cases, so a threshold
that favors higher recall might be preferred even if it results in
more false positives. Common methods to fix thresholds include
maximizing Youden’s Index (sensitivity + specificity - 1) using a
point on the ROC curve closest to the top-left corner or selecting
a threshold that gives the best Fl-score or cost-based trade-off.
Ultimately, threshold selection should align with the risk tolerance
and priorities of the healthcare application.

4.3.6.3 Clinical implications
The results of this study have significant clinical implications,
particularly for supporting early detection and intervention in
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diabetes mellitus. The superior performance of SVM, with its
high recall and low false-negative rate, is especially important in
a clinical setting where missing diagnoses can lead to delayed
treatment and complications such as neuropathy, retinopathy,
or cardiovascular issues. By accurately identifying high-risk
individuals, these models can aid healthcare providers in
initiating preventive measures and lifestyle interventions at
an earlier stage. Additionally, integrating MLT into clinical
workflows can improve diagnostic consistency, reduce human
error, and optimize resource allocation in resource-limited
healthcare environments. The bias-variance trade-off, which
involves balancing underfitting (high bias) and overfitting (high
variance), is critical for achieving better generalization. SVC, NB,
KNN, and RF were selected for their diverse strengths: SVC
for handling non-linearity, NB for its simplicity, KNN for local
pattern recognition, and RF for its robustness to class imbalance.
Each method offers varying computational complexities suited to
the dataset.

5 Conclusion

This study presents a comprehensive ML-based approach
for predicting diabetes using the Pima Indian Diabetes Dataset
(PIDD). With the increasing volume of healthcare data from
diverse sources such as electronic health records, clinical databases,
and research institutions, the need for effective data-driven
diagnostic tools has become increasingly important. A well-
defined conceptual framework was developed and implemented,
supported by extensive data preprocessing and multivariate
analysis to enhance model accuracy. The novelty of this study
lies in the integration of multiple supervised MLT models
(SVM, RE, KNN, and NB) and the statistical validation of their
performance using metrics such as accuracy, precision, recall,
Fl-score, and McNemar’s test. Among all models, the Support
Vector Machine (SVM) achieved the highest predictive accuracy
of 91.5%, confirming its robustness in handling complex, high-
dimensional medical data. The proposed framework aids in
early diagnosis, enabling timely medical intervention for diabetic
patients, a critical contribution given the chronic and progressive
nature of diabetes mellitus. A key limitation of this study is its
reliance on a well-structured dataset. Future studies will focus on
applying the framework to unstructured or real-world healthcare
data to improve its generalizability. Additionally, the model
will be extended to support prediction tasks in other domains,
including tumor classification, Parkinson’s disease, cardiovascular
conditions, and COVID-19 detection. Future enhancements
will also consider incorporating behavioral and lifestyle
factors such as smoking, alcohol consumption, and physical
activity into the predictive model to better reflect real-world
clinical scenarios.
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