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Machine learning-enabled 
prediction of bone metastasis in 
esophageal cancer
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China

Purpose: Bone metastasis (BM) is a common manifestation of distant spread 
in patients with esophageal cancer. This study aimed to develop a machine 
learning algorithm to predict the risk of bone metastasis in esophageal cancer 
patients, thereby supporting clinical decision-making support.

Methods: Clinical and pathological data of esophageal cancer patients were 
obtained from the SEER database of the U.S. National Institutes of Health from 
2010 to 2020. Six machine learning models were constructed: Support Vector 
Machine, Logistic Regression, Extreme Gradient Boosting, Neural Network, 
Random Forest, and k-Nearest Neighbors. Models performance was evaluated 
using accuracy, precision, recall, F1-score, and the area under the receiver 
operating characteristic curve. The optimal model was further used to interpret 
the associations between clinicopathological features and bone metastasis.

Results: A total of 9,744 patients were included, with 532 (5.47%) had bone 
metastasis and 9,212 (94.53%) without. Multivariate logistic regression analysis 
identified age, T stage, N stage, and histological type as independent risk factors 
for bone metastasis. The XGBoost model demonstrated the best performance, 
achieving an accuracy of 0.80, a recall of 0.99, a precision of 0.72, an F1-score 
of 0.8300, and AUC of 0.92.

Conclusion: The XGBoost model showed excellent predictive performance for 
bone metastasis in esophageal cancer patients, providing valuable insights for 
guiding clinical treatment decisions.
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1 Introduction

Esophageal carcinoma (EC) is the seventh most commonly diagnosed cancer worldwide, 
with an estimated 604,000 new cases reported in 2020. It ranks sixth among all cancers in 
terms of mortality, accounting for approximately 544,000 deaths globally in the same year (1).

The incidence and histological subtypes of EC vary significantly across different geographic 
regions (2). EC primarily comprises two major histological subtypes: esophageal squamous 
cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). These subtypes differ 
markedly in terms of epidemiological patterns and biological behavior, making it essential to 
understand their distinctions for accurate diagnosis and effective treatment strategies (3). In 
the United States, individuals of White, Native American, and Black ethnicity are at a higher 
risk of developing EC compared to those of Hispanic or Asian ethnicity. Black patients are 
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more likely to develop ESCC, whereas white patients are more 
commonly affected by EAC (4). Globally, EC imposes a significant 
disease burden, particularly in East Asia, Africa, and South America. 
ESCC originates from the stratified squamous epithelium of the 
esophagus and is ofen associated with chronic inflammation and 
mucosal injury, commonly occurring in the thoracic segment. 
Tobacco use and alcohol consumption are well-established risk factors 
for the development of invasive ESCC (5). In China, EC is the sixth 
most commonly diagnosed malignancy and the fourth leading cause 
of cancer-related mortality. Notably, approximately 90% of EC cases 
in China are ESCC, making it the predominant histological subtype 
both in China and globally (6). In contrast, esophageal 
adenocarcinoma is characterized by the malignant proliferation of 
glandular epithelial cells in the esophagus. The main risk factors 
include gastroesophageal reflux disease (GERD), Barrett’s esophagus 
(BE), tobacco abuse, obesity, and diets low in fruits and vegetables (7), 
In the United States, the incidence of EAC has been increasing and 
now accounts for over 60% of all esophageal cancer cases (8). Patients 
with EAC often present with more advanced T and N stage at 
diagnosis compared to those with ESCC. Despite the distinct 
etiological and pathological features of ESCC and EAC, their 
treatment approaches remained largely similar until recent 
advancements (9).

The 5-year survival rate for patients with metastatic esophageal 
cancer is extremely low, with only approximately 5% surviving beyond 
five years (10). Among distant metastatic sites, the liver is the most 
frequently involved, followed by the lymph nodes, lungs, bones, and 
brain. Interestingly, squamous cell carcinoma (SCC) tumors exhibit a 
higher rate for lung metastasis compared to adenocarcinoma (AC) 
subtype, whereas the AC subtype has a higher propensity for 
metastasis to the liver, bones, and brain (11). Developing predictive 
models to assess the risk and prognosis of bone metastasis in 
esophageal cancer is essential for guiding clinical management and 
improving patient outcomes.

Recent applications of machine learning in oncology have shown 
great promise in various domains, including medical image analysis, 
treatment planning, patient survival prognosis, and the synthesis of 
drugs at the point of care (12). However, limited research has focused 
on predictive models specifically targeting bone metastasis in 
esophageal cancer. This study aims to develop a machine learning 
algorithm for predicting the risk of bone metastasis in patients with 
esophageal cancer. We anticipate that such a predictive model will 
provide valuable insights to support clinical decision-making and 
ultimately improve patient outcomes.

2 Methods

2.1 Research design

The software tools utilized in this study include Python version 3.8.01 
and SEER*Stat version.2 Patient data were extracted from the SEER 
database using SEER*Stat software. We included patients diagnosed with 

1 https://www.python.org/

2 https://seer.cancer.gov/seerstat/

esophageal cancer (SCC and AC) between 2010 and 2020. The exclusion 
criteria were as follows: (1) patients with unknown brain, liver, or lung 
metastatic status; (2) patients with missing data on race race or histology 
grade; (3) patients with unknown primary tumor site; and (4) patients 
with incomplete T, N, or M stage information. A flowchart illustrating the 
case selection process is shown in Figure 1.

2.2 Data collection and clean

In this study, 8 variables related to patients demographics and 
clinicopathological features were selected for analysis. The 
demographic variables included patient ID, age, sex, race, 
Clinicopathological variables included primary tumor site (site 
recode [ICD-O-3/WHO 2008], behavior code [ICD-O-3], tumor 
grade [grade thru 2017], grade pathological [2018+], tumor 
histology [ICD-O-3 Hist/behave], primary site-labeled, T stage, 
N stage, bone metastasis, all esophageal cancer patients were 
staged according the AJCC 7th and 8th edition guidelines and 
SEER staging information) (Figure 2).

2.3 Analysis of information

Significant variables among EC patients were initially 
identified through univariate logistic regression analysis 
(p  < 0.05). Variables found to be  statistically significant were 
subsequently included in a multivariate logistic regression 
analysis. Those that remained significant (p  < 0.05) in the 
multivariate model were selected for further evaluation using 
machine learning models. Correlation analysis was performed to 
examine relationships among the selected features. Data 
preprocessing steps included label encoding to convert categorical 
text data into numerical format. Given the class imbalance due to 
the low incidence of bone metastasis (5.47%), the Synthetic 
Minority Over-sampling Technique (SMOTE) was applied to 
balance the dataset, resampling the minority class to achieve a 1:1 
ratio (original distribution: 94.53% non-metastatic vs. 5.47% 
metastatic). The final balanced dataset was randomly partitioned 
into training (70%), validation (15%), and test (15%) subsets. The 
training set was used to fit the machine learning models, the 
validation set was employed for hyperparameter tuning and 
model selection, and the final test set was reserved for unbiased 
evaluation of predictive performance. To ensure the robustness 
of our results, model performance metrics such as AUC, 
precision, recall, and F1-score were calculated independently for 
each subset and are reported in the Results section.

2.4 The training set was used to develop six 
machine

Six machine learning models were employed in this study: 
Support Vector Machine (SVM), Logistic Regression (LR), Extreme 
Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), Random 
Forest (RF), and Neural Networks (NN). SVM is a binary classification 
algorithm that classifies data points by constructing an optimal 
hyperplane in a multidimensional space. LR evaluates the relationship 
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FIGURE 1

Research flowchart.

FIGURE 2

Data collection and clean.
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between independent variables and the binary outcome variable, 
estimating the probability of an event based on a logistic function.

Following model implementation, performance was rigorously 
assessed using six metrics: accuracy, precision, recall, F1 score, 
AUC, and Brier score. The AUC, derived from the ROC curve, 
reflects the model’s diagnostic ability to distinguish between classes 
across various decision thresholds. The Brier score assesses the 
accuracy of probabilistic predictions and is particularly valuable in 
scenarios requiring probability-based classification. To further 
improve model performance, five-fold cross-validation and 
hyperparameter tuning were employed. GridSearchCV was utilized 
to systematically search for the optimal hyperparameter tunning, 
ensuring model optimization. Final model performance was 
determined by averaging the results across the cross-
validation iterations.

2.5 Model interpretability

Interpreting machine learning models in an intuitive and 
clinical meaningful manner is essential for ensuring their 
practical applicability. To achieve this, a distribution plot of the 
target variable was generated to illustrate its original distribution 
concerning feature variables. Additionally, Partial Dependence 
Plots (PDPs) were constructed to visualize how individual feature 
variables influence the target variable and to analyze their impact 
on model predictions.

To further enhance model interpretability, SHapley Additive 
exPlanations (SHAP) values were calculated to quantify the 
contribution of each feature to the model’s predictions. A SHAP 
summary plot was generated to rank the feature importance and 
visualize their overall impact across all samples. SHAP 
dependence plots were used to examine the interaction between 
individual features and their corresponding SHAP values, 
providing deeper insights into how specific variables influence 
the model’s decision-making process.

The reliability of the model was evaluated by comparing the 
observed trends of the target variable with the predicted trends across 
different feature variables. This assessment integrated both PDPs and 
SHAP visualizations to ensure comprehensive and interpretable 
insights into model behavior.

3 Results

3.1 Analysis of information on EC patients

A total of 9,744 cases with EC were available, including 9,212 
(94.53%) cases without bone metastasis and. 532 (5.47%) cases with 
bone metastasis, Age sex, histology, primary site, T stage, N stage, 
grade variables were significantly different between the two groups (all 
p < 0.05) Detailed information is summarized in Table 1.

Univariate analysis (Table 2) showed significant differences in the 
risk of bone metastasis across multiple variables, including age, sex, 
race, primary tumor site, T stage, N stages, tumor grade, and histology 
type (p < 0.05). Subsequently, multivariate logistic regression (Table 3) 
confirmed age, sex, T stage, N stage, and histology as independent 
prognostic factors for bone metastasis.

3.2 Spearman’s correlation and feature 
importance

To evaluate the strength of relationships among variables, 
correlation analysis was conducted. Specifically, Spearman’s rank 
correlation analysis was employed to evaluate the correlations 
among the selected features. As shown in Figure 3A, the resulting 
heatmap demonstrated a lack of strong correlations among the 
eight analyzed variables, indicating low multicollinearity. Figure 3B 
presents the feature importance extracted from each machine 
learning algorithm. Variables identified via univariate and 
multivariate logistic analyses all played significant roles in 
predicting the outcomes of the six models. Notably, T stage has 
consistently been the most influential feature in most prediction 
models, emphasizing its critical impact on bone metastasis in 
esophageal cancer. The eight features of the XGBoost model are 
ranked from high to low importance.

3.3 Interpretability of the model

Among all models, XGBoost demonstrates the best performance, 
achieving the highest AUC and sensitivity, along with relatively 
superior values in other evaluation matrics. Therefore, XGBoost was 
identified as the optimal predictive model for the current dataset (see 
Table 4).

The performance of the six prediction models is shown in 
Figures  4A,B, and Table  3. The internal 5-fold cross-validation 
(Figure 4A) reveals that among models, XGBoost model demonstrates 
the best performance, with an average AUC of 0.90. The RF model 
ranks second (AUC = 0.90). The internal test validation results are 
presented in Table 3 and Figure 4B. Notably, the XGBoost model also 
achieves the highest AUC score in the internal test validation 
(AUC = 0.92), with recall and F1 scores of 0.99 and 0.83, respectively. 
The confusion matrices of the XGBoost model on the training and test 
sets (Figure  4C) further highlight its high recall. The probability 
density plot of predictions (Figure 4D) indicates that the AUC reaches 
its maximum value when the prediction score is set at 0.01.

The SHAP analysis results of the XGBoost model are 
presented as follows, Feature importance analysis (Figure 5A) 
showed that among the eight features, Histology (mean SHAP 
value = 0.61), N stage (0.53), and T stage (0.49) were the top three 
contributors in terms of mean absolute SHAP values. These 
findings indicated that Histology type, N stage, and T stage had 
the most substantial influence on model predictions, 
underscoring their critical roles in predicting bone metastasis in 
EC. Individual feature contribution analysis (Figure 5B) revealed 
distinct patterns: features like N stage and T stage demonstrated 
clear trends where higher feature values (represented by red dots) 
positively contributed to the prediction of bone metastasis. In 
contrast, Sex and Race had minimal impacts, as their SHAP 
values clustered near zero, indicating negligible contributions to 
the model’s output. Overall, the SHAP analysis not only 
quantified the relative importance of clinical features but also 
provided intuitive visualizations of how each feature affected 
model predictions, offering a theoretical foundation to support 
clinical decision-making in the context of bone metastasis in 
esophageal cancer.
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4 Discussion

Distant metastasis remains the primary cause of treatment failure 
and mortality in EC (13). Bone metastasis (BM) is the third most 
common site of distant spread in EC and is associated with 
significantly worse survival outcomes. Patients with BM have been 
reported to experience the poorest prognosis among those with 
metastatic (11). In our study, the incidence of BM among EC patients 
was 5.4%, which is consistent with previous reports ranging from 5.2 
and 7.7%. Given the overall poor prognosis of EC, early identification 
of high-risk factors and the development of reliable predictive models 
for BM based on clinical and pathological characteristics are crucial 
for guiding individualized treatment strategies and improving clinical 
decision-making.

In our study, 75% of EC patients were over the age of 60. 
Interestingly, older patients exhibited a lower probability of BM, a 

finding consistent with the study by Yuan et al. and Qin et al., which 
identified a higher BM risk in patients aged 51–60 compared to those 
aged 71–80 (14). This phenomenon may be attributed to capillary 
sclerosis, which could reduce the likelihood of distant metastasis in 
older adults (15).

Our study aligns with the findings of Hayam et al. (16), showing that 
approximately 80% of EC patients are male. In our study, male patients 
demonstrated a significantly higher incidence of BM than females. This 
discrepancy may be attributed to behavioral and hormonal differences; 
men are more likely to smoke and consume alcohol, both of which are 
established EC risk factors (17). Additionally, male sex hormones have 
been implicated in promoting EC cell proliferation and metastasis (18), 
Differences in musculoskeletal health and sex hormone levels may also 
contribute to these variations (19). Our findings also suggest that 
metastatic male EC (MEC) patients have a higher incidence of bone-only 
metastasis compared to metastatic female EC (FEC) patients (17).

TABLE 1 The detailed demographic information and pathological characteristics of the patients with EC.

Variable Category Total No-bone metastasis Bone metastasis p-value

Age

<50 576 523 (90.97%) 53 (9.03%)

<0.0001

50–60 1,870 1,752 (93.58%) 118 (6.42%)

60–70 3,376 3,188 (94.34%) 188 (5.66%)

70–80+ 2,558 2,444 (95.39%) 114 (4.61%)

≥80 1,364 1,311 (96.26%) 53 (3.74%)

Sex
Female 1,975 1,907 (96.56%) 68 (3.44%)

<0.0001
Male 7,769 7,305 (94.03%) 464 (5.97%)

Race

White 8,457 7,994 (94.53%) 463 (5.47%)

0.35
Black 796 749 (94.10%) 47 (5.90%)

Asian or pacific islander 432 415 (96.06%) 17 (3.94%)

American Indian/Alaska native 59 54 (91.53%) 5 (8.47%)

Histology

Adenocarcinoma 6,009 5,641 (93.88%) 368 (6.12%)

<0.0001Squamous cell carcinoma 2,881 2,776 (96.36%) 105 (3.64%)

Other carcinomas 854 795 (93.09%) 59 (6.91%)

Primary 

Site-labeled

Cervical esophagus 227 218 (96.04%) 9 (3.96%)

0.04

Upper third of esophagus 538 520 (96.65%) 18 (3.35%)

Middle third of esophagus 1,609 1,520 (94.47%) 89 (5.53%)

Lower third of esophagus 6,869 6,491 (94.50%) 378 (5.50%)

Abdominal/overlapping esophagus 501 463 (92.42%) 38 (7.58%)

T stage

T1 2,972 2,798 (94.15%) 174 (5.85%)

<0.0001
T2 1,274 1,242 (97.49%) 32 (2.51%)

T3 4,199 4,016 (95.64%) 183 (4.36%)

T4 1,299 1,156 (88.99%) 143 (11.01%)

N stage

N0 4,120 4,002 (97.14%) 118 (2.86%)

<0.0001
N1 4,112 3,810 (92.66%) 302 (7.34%)

N2 1,124 1,057 (94.04%) 67 (5.96%)

N3 388 343 (88.40%) 45 (11.60%)

Grade
I 647 627 (96.91%) 20 (3.09%)

<0.0001
II 4,143 3,983 (96.14%) 160 (3.86%)

Bold p-values indicate statistical significance (p < 0.05).

https://doi.org/10.3389/fmed.2025.1620687
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1620687

Frontiers in Medicine 06 frontiersin.org

Consistent with previous studies, adenocarcinoma (AC) was the 
predominant histological subtype in our cohort. AC demonstrated a 
higher tendency for metastasis to the liver, bones, and brain compared 
to squamous cell carcinoma (SCC) (20). These findings reinforce the 
notion that EC subtypes exhibit distinct metastatic patterns due to 
differences in tumor origin, pathogenesis, and anatomical distribution 

(21). However, in contrast to earlier studies, we  did not observe 
significant differences in lymph node and BM rates between SCC and 
AC. This discrepancy may be  explained by the fact that previous 
studies primarily included stage IV patients, which could limit the 
observation of bone metastases (11). While it is widely recognized that 
advanced T and N stages are associated with an increased risk of bone 

TABLE 2 Univariate analysis of variables related to bone metastasis.

Variable Beta coefficient 95% CI p-value

Age

 <50 years 2.31 (2.03 to 2.60) <0.0001

 50–60 years 0.37 (0.03 to 0.71) 0.03

 60–70 years 0.50 (0.18 to 0.82) 0.0020

 70–80 years 0.7188 (0.38 to 1.06) <0.0001

 ≥80 years 0.94 (0.54 to 1.34) <0.0001

Sex

 Female 3.33 (3.09 to 3.58) <0.0001

 Male −0.58 (−0.84 to −0.32) <0.0001

Race

 White 2.85 (2.76 to 2.94) <0.0001

 Black −0.08 (−0.39 to 0.23) 0.61

 Asian or Pacific Islander 0.35 (−0.15 to 0.84) 0.17

 American Indian/Alaska native −0.47 (−1.39 to 0.45) 0.32

Primary site

 Cervical esophagus 3.19 (2.52 to 3.85) <0.0001

 Upper third of esophagus 0.18 (−0.64 to 0.99) 0.67

 Middle third of esophagus −0.35 (−1.05 to 0.35) 0.33

 Lower third of esophagus −0.34 (−1.02 to 0.33) 0.32

 Combined-abdominal −0.69 (−1.43 to 0.06) 0.07

T stage

 T1 2.78 (2.62 to 2.93) <0.0001

 T2 0.88 (0.50 to 1.26) <0.0001

 T3 0.31 (0.10 to 0.52) 0.0042

 T4 −0.69 (−0.92 to −0.45) <0.0001

N stage

 N0 3.52 (3.34 to 3.7069) <0.0001

 N1 −0.99 (−1.2063 to −0.77) <0.0001

 N2 −0.77 (−1.07 to −0.46) <0.0001

 N3 −1.49 (−1.85 to −1.13) <0.0001

Grade

 Well differentiated; grade I 0.23 (−0.24 to 0.70) 0.34

 Moderately differentiated; grade II 3.21 (3.06 to 3.37) <0.0001

 Poorly differentiated; grade III −0.64 (−0.83 to −0.45) <0.0001

 Undifferentiated; anaplastic; grade IV −0.77 (−1.40 to −0.13) 0.02

Histology

 Adenocarcinoma 2.73 (2.62 to 2.84) <0.0001

 Other carcinomas −0.13 (−0.41 to 0.16) 0.37

 Squamous cell carcinoma 0.55 (0.32 to 0.77) <0.0001
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metastasis, our multivariate analysis unexpectedly revealed that 
patients with N3-stage disease had a lower risk of developing BM. This 
paradoxical finding may be explained by the shorter survival time of 
N3 patients, which may prevent the progression to bone metastasis 
before death.

With the rapid advancements of artificial intelligence, machine 
learning (ML) has shown great promise in biomedical applications, 
including EC diagnosis and prognosis prediction (22–24). Previous 
studies have primarily focused on predicting liver and lung metastases in 
EC. To our knowledge, this study is the first to construct an ML-based 
predictive model for BM in EC using the SEER database, Yuan et al. (14) 
developed a predictive nomogram for BM in EC patients, reporting AUC 
values of 0.77 and 0.75 in the training and validation cohorts, respectively. 
In contrast, our ML model specifically designed for BM prediction and 
utilized a larger sample size (n = 9,744), thereby improving statistical 

power and model robustness. The XGBoost algorithm, which has 
demonstrated high accuracy and ease of use in various studies (25, 26) 
exhibited superior performance in our study. Our XGBoost model 
achieved outstanding predictive accuracy (AUC = 0.92, recall = 0.98), 
surpassing traditional models, same as recent ML-based liver metastasis 
prediction models (AUC = 0.92) (27). The high recall rate (98%) suggests 
that our model effectively identifies high-risk BM patients, minimizing 
the likelihood of missed diagnoses.

Additionally, ML models provide valuable insights into the 
complex relationships among independent prognostic factors-an 
aspect often overlooked in conventional statistical analyses. While 
multivariate logistic regression and Cox regression identified 
certain risk factors, but some of these variables had negligible SHAP 
values in feature importance rankings. This discrepancy highlights 
the advantage of ML, as it eliminates irrelevant features and reduces 

TABLE 3 Multivariate analysis of variables related to bone metastasis.

Variable Coefficient 95% CI p-value

Intercept 3.46 (2.52 to 4.40) <0.001

Sex (female) - - -

Male −0.36 (−0.63 to −0.09) 0.01

Race (white) - - -

Black −0.32 (−0.67 to 0.02) 0.07

Asian or pacific islander 0.31 (−0.20 to 0.82) 0.24

American Indian/Alaska native −0.36 (−1.31 to 0.59) 0.455

Primary site (cervical esophagus) - - -

Upper third 0.04 (−0.79 to 0.87) 0.924

Middle third −0.36 (−1.08 to 0.36) 0.332

Lower third 0.07 (−0.65 to 0.79) 0.853

Combined abdominal −0.19 (−0.97 to 0.59) 0.637

T stage (T1) - - -

T2 1.07 (0.68 to 1.46) <0.001

T3 0.76 (0.52 to 0.99) <0.001

T4 −0.28 (−0.52 to −0.03) 0.03

N stage (N0) - - -

N1 −1.00 (−1.23 to −0.77) <0.001

N2 −0.92 (−1.24 to −0.59) <0.001

N3 −1.36 (−1.75 to −0.97) <0.001

Grade (well differentiated, grade i) - - -

Moderately differentiated, grade ii −0.18 (−0.66 to 0.30) 0.47

Poorly differentiated, grade iii −0.68 (−1.15 to −0.21) 0.004

Undifferentiated, grade IV −0.78 (−1.56 to 0.01) 0.05

Age (<50 years) - - -

50–60 years 0.26 (−0.09 to 0.61) 0.14

60–70 years 0.34 (0.01 to 0.67) 0.04

70–80 years 0.45 (0.10 to 0.80) 0.01

≥80 years 0.62 (0.21 to 1.04) 0.003

Histology (adenocarcinoma) – – –

Squamous cell carcinoma 0.67 (0.38 to 0.97) <0.001

Other carcinomas 0.15 (−0.15 to 0.45) 0.32
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the risk of overfitting, unlike traditional regression models. 
Furthermore, ML continuously improves operational efficiency and 
predictive accuracy through self-learning mechanisms.

Despite the robustness of our findings, several limitations should 
be  acknowledged. Given the ethnic and regional differences in EC 
incidence-particularly the high prevalence in East Asia-future studies 

should include large-scale external validation using datasets from Chinese 
or other East Asian patient populations to enhance the generalizability 
and applicability of the predictive model.

Despite the relatively low incidence of bone metastasis in 
esophageal cancer, its profound prognostic implications and 
association with significant morbidity justify the need for risk 

FIGURE 3

(A) Spearman correlation heatmap displaying the relationships among key clinicopathological variables used in the model, indicating minimal 
multicollinearity. (B) Bar plot showing the relative importance of each feature across the six machine learning models. T stage and N stage were 
consistently among the top contributors to model performance.
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stratification tools. We emphasize that the primary goal of our model 
is not to replace clinical judgment but to provide an adjunctive 
decision-support mechanism. By identifying high-risk individuals 
early-especially in cases with atypical or silent presentations-the 
model has the potential to inform more personalized surveillance 
strategies, improve resource allocation, and ultimately contribute to 
better clinical outcomes.

5 Conclusion

In summary, this study presents the first ML-based predictive model for 
BM in EC using the SEER database, providing a valuable tool for precision 
oncology. Future research should focus on cross-ethnic validation, multi-
modal data integration, and explore translational applications to establish a 
clinically actionable predictive-to-preventive continuum.

FIGURE 4

(A) Receiver Operating Characteristic (ROC) curves of different machine learning models in the internal test set. (B) Five-fold cross-validation results of 
different machine learning models. (C) Probability density plot of the XGBoost model. (D) Confusion matrices of the XGBoost model in the training set 
and the internal test set. TP represents true positive, TN represents true negative, FP represents false positive, and FN represents false negative.
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