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Microplastics (MPs) are plastic particles with a diameter of less than 5 millimeters, 
primarily originating from the degradation of plastic products (11). In recent years, 
increasing attention has also been given to the impact of MPs on the health. 
Important questions have surfaced, including whether MPs can be cleared by the 
kidneys, whether reduced kidney function affects their clearance, and whether 
MP accumulation contributes to the progression of kidney diseases. This review 
explores the effects of MPs on the kidneys and focuses on their accumulation, 
toxic effects, and potential molecular mechanisms.
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Introduction

MPs are organic polymers smaller than 5 millimeters in size with varying shapes, while 
Nps are polymers smaller than 1 micrometer in size (1). Due to the long degradation time of 
plastics and the high volume of daily production, MPs and Nps are ubiquitous in modern 
life (2).

In 1909, Belgian chemist Leo Hendrik Baekeland invented plastic, which has since been in 
use for over a century (3). Plastics are now widely integrated in our daily lives. In medicine, 
plastics are extensively used in items such as test tubes, surgical drapes, catheters, probes, and 
intravenous or arterial access devices (4). However, the widespread presence of plastics has led 
to global pollution and plastic-related waste. For instance, it is estimated that over 250,000 tons 
of plastic-related waste have accumulated in the ocean. Through degradation or mechanical 
processes, plastics break down into small particles known as MPs or nanoplastics (Nps) (1).

In fact, as early as the 1970s, Ed Carpenter had found tiny plastic particles in the ocean 
(5). In 2004, Thompson first proposed the term “microplastic” and clearly defined it as plastic 
fragments smaller than 5 mm (6).

In 2018, microplastics were found in human feces for the first time (7). Subsequently, 
microplastics were detected in the placenta, lungs, blood and even breast milk. This confirms 
that humans are inevitably exposed to a microplastic environment, and has raised concerns 
about the impact of microplastics on human health (8).

In recent years, the environmental impact and health risks of MPs have become a focus of 
research. Studies have shown that MPs can enter the food chain, affect the growth and 
development of organisms, and even alter the structure and function of ecosystems (9). Of 
particular concern is the ability of MPs to enter the circulatory system and penetrate cell 
membranes (10), causing damage to multiple organs, including the kidneys (11). For example, 
exposure to polystyrene microplastics (PS-MPs) has been linked to pulmonary toxicity (12), 
cardiotoxicity (13), reproductive toxicity (14), neurotoxicity (15), hepatotoxicity (16), and 
intestinal toxicity (17). As a crucial excretory and metabolic organ, kidney health is closely 
tied to overall well-being.
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The detection of nanoplastics requires expensive and complex 
instruments such as electron microscope, Raman spectroscopy and 
there is a lack of standardized detection methods. Microplastics are 
more extensive research. This review explores the impact of MPs on 
kidney health, examines their potential toxic mechanisms, and 
discusses the advances and challenges of current research. We conduct 
a comprehensive analysis covering MP sources and types, their 
bioaccumulation, and associated toxic effects. The goal is to provide a 
scientific basis for understanding the environmental risks of MPs and 
to inform in the development of effective prevention and 
control measures.

Common methods for detecting MPs

Currently, there is no single analytical method that can 
qualitatively or quantitatively detect all types of MPs. Different types 
of microscopes, such as stereomicroscopes, electron microscopes, and 
fluorescence microscopes, are used as physical detection tools to 
distinguish MPs from other substances.

Spectroscopic analysis techniques, such as Fourier-transform 
infrared spectroscopy (FTIR) and Raman spectroscopy, can 
differentiate plastics from additives based on their composition. FTIR 
identifies the polymer types by analyzing their infrared absorption 
spectra. This method requires additional sample-preparation steps, 
including air drying and screening. Raman spectroscopy, on the other 
hand, provides spectral information for identifying MP polymers. This 

non-destructive technique has the advantage of directly analyzing 
MPs in complex samples, making it a valuable method for in-situ 
analysis (18, 19).

Mass spectrometry has emerged as a valuable technique for 
detecting and characterizing the molecular composition of MPs. In 
this method, MPs are fragmented and ionized to measure the mass-
to-charge ratio of the generated ions, which are produced using an 
oxidation furnace under oxygen flow. Gas chromatography is another 
technique that involves several sample preparation steps, including 
sampling, digestion, filtration, pressurized liquid extraction, and gas 
chromatographic separation based on compound volatility. This 
method is well-suited for analyzing volatile organic compounds 
associated with MPs, as well as identifying and quantifying organic 
additives and degradation products. When gas chromatography is 
combined with mass spectrometry, researchers can effectively 
separate and characterize MPs and related pollutants (19).

Different sample types require different detection methods. In 
blood samples, MPs are detected using double-pyrolysis gas 
chromatography–mass spectrometry (20); in urine, Raman 
spectroscopy is used (21); and in feces, Fourier-transform infrared 
spectroscopy is applied (22). For tissue samples, such as the liver, 
kidneys, and spleen, detection involves digestion, staining with Nile 
red, and analysis by fluorescence microscopy and Raman 
spectroscopy (23). In patients with carotid artery plaques, MPs and 
nanoparticles are analyzed using a combination of pyrolysis gas 
chromatography–mass spectrometry, stable isotope analysis, and 
electron microscopy (24) (Figure 1).

FIGURE 1

Common methods for detecting MPs.
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Metabolism and effects of MPs in the 
body

Several studies have demonstrated the presence of MPs in the 
kidneys of animal models, and urinary excretion has been identified 
as a potential route of their elimination. Recent research has also 
confirmed the presence of MPs in human urine and kidney tissue 
(21). One study in male mice investigated the single-dose 
administration of fluorescent polystyrene beads (100 nm and 3 μm 
in diameter) via tail-vein injection, gastric perfusion, or lung 
perfusion. The researchers proposed a mechanism to explain how, 
due to their small molecular size, MPs in the blood can freely pass 
through the filtration barrier of the glomerulus, enter the peritubular 
capillaries through the efferent arteriole, be taken up by the epithelial 
cells of the proximal tubule through endocytosis or pinocytosis, and 
then be secreted into the lumen and excreted in urine (25).

In vitro and in  vivo studies have shown that MPs cause 
dysregulation of inflammatory molecules, such as interleukins, tumor 
necrosis factors, chemokines, transcription and growth factors, as 
well as cause oxidative stress. In addition, MPs and nanoplastics can 
carry or encapsulate heavy metals and other organic compounds into 
the human body, functioning as a Trojan horse, thereby increasing 
the risk of cancer (26). Phthalates, such as dibutyl phthalate (DBP), 
and other additives used in plastic manufacturing can contribute to 
the toxicity. Huo et al. found that DBP induces liver damage through 
multiple pathways (27). In general, the toxicity of MPs and 
nanoplastics is also related to the additives used in its production 
process. Another study revealed that a significant amount of 
inorganic pollutant leached from MPs are additive-derived (28).

Studies have confirmed that MPs can accumulate in multiple 
organs. In 2022, scientists detected MPs in human blood for the first 
time and observed their accumulation in blood vessels, posing 

potential risks to the cardiovascular system (9). Research has also 
shown that MPs can disrupt the endocrine system, affecting organs 
such as the thyroid, testes, ovaries, pituitary gland, and adrenal glands 
(29). Therefore, MPs may contribute to the development of chronic 
diseases, including obesity, diabetes, and cancer. In addition, studies 
in mouse models suggest that MPs can impair the self-renewal 
capacity of hematopoietic stem cells (HSC). Jiang et al. established a 
murine model for long-term MP ingestion and found that MPs 
caused severe damage to the hematopoietic system. Fecal microbiota 
transplantation (FMT) from mice orally exposed to MPs significantly 
impaired the self-renewal and reconstitution capacity of 
hematopoietic stem cells (HSCs). Mechanistically, MPs did not 
directly kill HSCs but disrupted intestinal integrity and barrier 
function, ultimately increasing the abundance of Rikenellaceae and 
hypoxanthine in the gut while inactivating the HPRT-Wnt signaling 
pathway in bone marrow HSCs (30) (Figure 2).

Effects of MP exposure on kidney 
structural changes

The kidney is a vital organ responsible for maintaining fluid and 
electrolyte balance through various processes (31). Podocytes in the 
glomerulus are essential for maintaining the integrity and function of 
the glomerular filtration barrier (32). MPs can damage podocytes, 
disrupting their structure and function. For example, studies using 
kidney organoids have shown that MPs induce fusion of podocyte 
processes, thereby damaging the glomerular filtration barrier. This 
damage allows macromolecules, such as proteins, to leak into the 
urine, leading to proteinuria and impaired kidney function (33–35).

MP exposure may also result in mitochondrial cristae rupture or 
vacuolization, nuclear membrane wrinkling, and chromatin 

FIGURE 2

Metabolism and effects of MPs in the body.
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aggregation (36). Mitochondrial damage disrupts cellular energy 
production, thereby affecting critical physiological activities such as 
biosynthesis, transport, and signal transduction. MPs have also been 
shown to cause thickening of the glomerular basement membrane 
and deposition of fibrous tissue in the mesangial area. In kidney 
tubules, MPs induce vacuolar and granular degeneration, atrophy, 
and necrosis, affecting reabsorption and secretion. Changes in cell 
morphology, as well as increased apoptosis and autophagy, may occur 
in epithelial cells of kidney tubules, leading to selective reabsorption 
and excretion of substances and disrupting water-salt balance and 
metabolic waste excretion (37). Chronic MP exposure may lead to 
tubular atrophy, narrowed tubular lumens, reduced epithelial cell 
numbers, elevated numbers of autophagosomes and lysosomes, and 
increased lipid droplet accumulation, interstitial fibrosis, and 
deposition of collagen fibers in the kidney interstitium (38, 39).

Effects of MPs on the glomerulus

In kidney organoids, podocytes may be affected by MP exposure, 
compromising their structure and affecting the function of the 
glomerular filtration barrier. Zhou et al. treated kidney organoids with 
1-μm PS-MPs for 48 h. Transmission electron microscopy revealed 
vacuoles in the cytoplasm, condensation of the cytoplasm, nuclear 
fragmentation, and increased number of autophagolysosomes. They 
also found that reactive oxygen species (ROS) may directly or indirectly 
regulate the expression of the WT-1 gene, resulting in its downregulation 
(40). Under physiological conditions, podocytes form a sieve-like 
structure through complex intercellular connections to selectively filter 
plasma components. PS-MPs disrupt these connections, affecting the 
structural stability of the glomerulus. Wang et  al. confirmed that 
PS-MPa impair glomerular filtration, causing macromolecules, such as 
proteins, to leak into the urine and triggering proteinuria (35).

Tan et  al. demonstrated that PS-NPs induce an inflammatory 
response in the kidneys of mice. Microplastics activate immune cells in 
the glomerulus, such as macrophages and neutrophils, causing them to 
release inflammatory factors such as tumor necrosis factor (TNF) and 
interleukin (IL). These cytokines can stimulate glomerular endothelial 
and mesangial cells, triggering cell proliferation and phenotypic 
changes, and then leading to increased CD34 expression (41), a marker 
of cell proliferation and angiogenesis. Inflammatory factors upregulate 
the expression of CD34 by activating signaling pathways, notably 
nuclear factor NF-κB and mitogen-activated protein kinase (MAPK) 
signaling pathways, either directly or indirectly. For example, NF-κB 
translocates into the nucleus and binds to specific sequences in the 
promoter region of the CD34 gene to promote its transcription. In the 
MP-induced inflammatory environment, these signaling pathways in 
glomerular cells are activated, resulting in increased CD34 expression, 
which may be related to changes in cell proliferation and angiogenesis.

Effects of MPs on kidney tubules

Uptake and accumulation of MPs by 
epithelial cells of kidney tubules

A previous study showed that PS-MPs accumulate both in vitro (in 
HK-2 cells) and in vivo (in mice). The uptake of PS-MPs by HK-2 cells 

at different concentrations associates with higher mitochondrial ROS 
levels and increased expression of the ER stress-related protein Bad (35). 
Recently, Wang et  al. (42) found that HK-2 cells showed a time-
dependent uptake pattern when co-incubated with different 
concentrations (0.4 mg/mL and 0.8 mg/mL) of PS-MPs. Using 
nanoparticle-tracking analysis, they observed that the amount of 
PS-MPs uptaken by cells gradually increased over 24 h. At a 
concentration of 0.8 mg/mL, the number of extracellular vesicles (EVs) 
at 24 h was approximately 4.3 times that of the control group, indicating 
continued accumulation of PS-MPs. At the same time point, uptake was 
significantly higher in the 0.8 mg/mL treatment group compared to the 
0.4 mg/mL treatment group. The above results indicate that the 
accumulation of MPs in the kidney is time-dose dependent.

Effects of MPs on the viability of epithelial 
cells in kidney tubules

Goodman et  al. exposed human embryonic kidney cells to 
PS-MPs and found that they significantly reduced the expression of 
superoxide dismutase (SOD) and catalase (CAT) in kidney cells, 
thereby increasing ROS levels and reducing cell viability (43). Cells 
exposed to 1-μm PS-MPs at a concentration of up to 100 μg/mL 
maintained a viability of at least 94%, as determined by trypan blue 
exclusion. These results indicate that, although PS-MPs induced 
oxidative stress, they retained a certain degree of viability, possibly due 
to intrinsic stress or defense mechanisms that can mitigate PS-MP-
induced cellular damage.

Wang et al. (42) exposed cells to different concentrations (5 μg/
mL, 50 μg/mL, and 100 μg/mL) of PS-MPs and measured ROS levels 
at multiple time points (0, 2, 4, 6, 12, and 24 h). They found that ROS 
levels increased with both PS-MP concentration and exposure 
duration. At 50 μg/mL, a significant increase in ROS levels was 
detected 2 h after treatment, with levels remaining elevated or 
continuing to increase over time. Multiple studies have reported 
dose-and time-dependent increases in mitochondrial ROS levels in 
HK-2 cells after PS-MP exposure.

Mechanisms of the toxic effects of 
microplastics on the kidneys

Oxidative stress induced by MPs on kidney 
cells

Research shows that MPs increase ROS levels in kidney cells, 
thereby activating inflammatory signaling pathways (26). Ahmed et al. 
evaluated the toxic effects of PS-NPs on the kidneys of adult male 
albino rats and found that PS-NPs significantly reduced the expression 
of (GSH) and glutathione peroxidase (GPX), leading to excessive ROS 
production and oxidative stress in the kidneys (44). In addition, Shen 
et al. reported that long-term exposure to environmentally relevant 
concentrations of PS-MPs significantly upregulated the expression of 
mitochondrial-related genes, particularly those involved in 
thermogenesis and oxidative phosphorylation, resulting in kidney 
damage (45). Therefore, MPs can exacerbate nephrotoxicity by 
inducing mitochondrial dysfunction and disrupting oxidative balance 
in the kidneys.
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Activation of inflammatory-response 
pathways induced by MPs

Research indicates that MPs can activate inflammatory signaling 
pathways, such as the NF-κB pathway, leading to an increase in the 
expression of inflammatory factors (46). Wang et al. found that ROS 
activates the ER-stress marker GRP78, increases CHOP expression 
through the IRE1/XBP1s and ATF6 pathways, promotes JNK 
signaling, and further activates NF-κB, exacerbating the inflammatory 
response (34). Studies also show that MPs cause histological damage 
to the kidneys by affecting serum urea nitrogen and creatinine levels, 
and promoting the release of inflammatory mediators such as IL-1β, 
IL-6, and TNF-α. In addition, the activation of the NLRP3 
inflammasome recruits ASC and caspase-1, further activates 
caspase-1, and promotes the secretion of pro-inflammatory factors, 
exacerbating kidney inflammation and fibrosis (47).

Activation of cell apoptosis by MPs

Li et al. reported that MPs can induce oxidative stress in vivo. The 
resulting ROS can cause oxidative damage to the endoplasmic 
reticulum (ER) and its associated membrane proteins, further 
exacerbating ER damage and leading to ER stress (36). Wang et al. 
studied and showed that PSMPs activate the GRP78–IRE1–XBP1s 
and ATF6 pathways, both of which underlie ER stress, by promoting 
the accumulation of ROS and resulting in increased CHOP 
expression. This activation induces apoptosis by activating caspase-
12, caspase-9, and caspase-3. Concurrently, the upregulation of the 
pro-apoptotic protein Bax and the downregulation of the anti-
apoptotic protein Bcl-2 further promote apoptosis (34). In addition, 
Li et  al. found that PS-NPs and lipopolysaccharides, either 
individually or in combination, induce ER stress through oxidative 
stress. This activates the IRE1/XBP1 pathway, leads to ER stress, and 
promotes the expression of caspase-3 and caspase-12, ultimately 
promoting apoptosis (36). Recently, Chen et al. exposed HK-2 cells 
to PS-NPs and found that NR4A1 translocated from the nucleus to 
the mitochondria, which disrupted the mitochondrial membrane 
potential, released cytochrome C, activated Caspase-3, and ultimately 
induced apoptosis (48). In summary, MPs, either alone or in 
combination with other agents, can induce apoptosis through 
multiple pathways.

Activation of renal fibrosis by MPs

Previous studies have shown that inflammation, oxidative stress, 
and apoptosis are drivers of fibrosis in the kidneys. After exposure to 
MPs, the expression level of α-SMA in the kidneys increases 
significantly, leading to collagen fiber deposition and accelerating the 
progression of fibrosis. It was also found that MPs of varying diameters 
can cause different renal pathophysiological conditions by promoting 
oxidative stress, inflammation, and fibrosis through circadian rhythm 
disruption (33). Shen et  al. demonstrated that MP exposure can 
induce DNA damage in the nucleus and mitochondria, resulting in the 
translocation of dsDNA fragments into the cytoplasm. This process 
triggers the DNA-sensing adaptor protein STING, activates the cGAS/

STING pathway, and then activates NF-κB, which translocates into the 
nucleus to upregulate the expression of pro-inflammatory cytokines, 
ultimately promoting fibrosis (49). A study has shown that PS-MPs 
can cause fibrosis in rats by activating the Wnt/β-catenin signaling 
pathway (50). Recently, Pan et al. found that the abnormal expression 
of Klotho, induced by MPs, plays a crucial role in mediating kidney 
fibrosis and tubular senescence. Continuous upregulation of Wnt4 by 
MPs can induce EMT in epithelial cells of senescent tubules, inhibiting 
the proliferation and repair of normal epithelial cells (51). This 
indicates that in the aging kidney model, tubular cells are more 
susceptible to senescence (Figure 3).

Microplastics have a significant impact on the kidneys. 
Structurally, they can damage both the glomeruli and renal tubules, 
leading to podocyte injury and degeneration, and necrosis of renal 
tubular epithelial cells. The mechanisms underlying these effects are 
multifactorial and include oxidative stress, inflammation, apoptosis, 
autophagy, fibrosis, and the generation of extracellular vesicles. 
Oxidative stress can activate inflammatory signaling pathways, with 
the resulting increase in inflammatory factor expression further 
aggravating kidney damage. Apoptosis and autophagy interact to 
jointly regulate cell fate. Fibrosis alters the structure of kidney tissue, 
ultimately affecting kidney function.

Although progress has been made in understanding the impact of 
MPs on the kidneys, several important questions remain.

There is a significant difference in exposure between in vivo and 
in vitro experiments. Under the same exposure dose, cells remain 
active in the in vitro experiments, whereas in vivo experiments 
show kidney glomerular barrier damage and proteinuria. This 
indicates that the toxicity of microplastics (MPs) may not only affect 
kidney cells directly, but also induce organ-level damage and 
pathological changes, such as the activation of reactive oxygen 
species (ROS). This can trigger systemic release of inflammatory 
cytokines like TNF-α and IL-6, which circulate and indirectly 
damage the kidneys. The in  vivo microenvironment, including 
inflammation and cascade amplification effects, may potentiate 
their toxicity. Thus, in  vivo studies may be  closer to the real 
physiological environment, but they might be  restricted by 
experimental conditions and ethics.

Compared with microplastics, nanoplastics are more likely to 
penetrate cell membranes and biological barriers, entering the cell 
nucleus and mitochondria, and directly damage subcellular structures. 
Some NPs can be reabsorbed by the renal tubules and accumulate over 
a long period of time. Due to their large specific surface area, 
nanoparticles are also more likely to adsorb heavy metals and organic 
pollutants, potentially leading to higher combined toxicity. 
Consequently, extensive experimental designs are needed to simulate 
the toxic effects of NPs.

Current research mainly focuses on the changes in kidney cells after 
MP exposure. However, research on the mode of entry of MPs, the 
potential effects of long-term low-dose exposure, and the combined 
toxic effects with other environmental pollutants is limited. Future 
studies should use advanced detection techniques to track MP entry into 
the kidneys, as well as clarify their distribution and targets at cellular and 
subcellular levels. Long-term, low-dose exposure experiments are 
needed to simulate real-world environmental conditions and evaluate 
their chronic toxic effects (including the relationship between exposure 
duration, dosage, and effect). In addition, more research on the 
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combined effects of MPs and other pollutants is needed to more 
comprehensively assess their potential threats to kidney health and 
provide a scientific basis for formulating effective prevention and 
control measures.
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