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Background: Medullary sponge kidney (MSK) is a rare congenital anomaly 
frequently associated with nephrolithiasis. Accurate preoperative differentiation 
between MSK stones and non-MSK multiple kidney stones remains challenging, 
yet it is essential for effective clinical decision-making. This study aims to 
develop a novel diagnostic model that integrates radiomics and deep learning 
features to improve the differentiation of MSK stones using CT imaging.

Methods: This single-center, retrospective study included patients who 
underwent surgical treatment for multiple kidney stones at Beijing Tsinghua 
Changgung Hospital between 2021 and 2023. All MSK and non-MSK cases 
were confirmed via endoscopic surgery. Radiomics features were extracted 
from manually delineated regions of interest (ROI) on nephrographic-phase 
CT images, while deep learning features were derived from a ResNet101-based 
model. Three diagnostic signatures—Radiomics (Rad), Deep Transfer Learning 
(DTL), and Deep Learning Radiomics (DLR)—were developed. A Combined 
model was constructed by integrating clinical variables with DLR features to 
further enhance diagnostic accuracy. Model performance was evaluated 
using AUC, calibration curves, Net Reclassification Index (NRI), and Integrated 
Discrimination Improvement (IDI) analyses. Additionally, Gradient-weighted 
Class Activation Mapping (Grad-CAM) visualization was employed to identify 
imaging regions critical to classification, improving interpretability.

Results: A total of 73 patients with multiple kidney stones were analyzed, 
comprising 34 MSK cases and 39 non-MSK cases, encompassing 110 kidneys 
in total. The DLR signature demonstrated high diagnostic accuracy, with AUCs 
of 0.96  in both the training and test cohorts. The Combined model further 
enhanced diagnostic performance, achieving AUCs of 0.98 in the training cohort 
and 0.95  in the test cohort. Calibration curves indicated strong agreement 
between predicted probabilities and observed outcomes. Furthermore, NRI 
and IDI analyses highlighted the superior predictive power of both the DLR and 
Combined models compared to other approaches.

Conclusion: This study introduces an innovative approach for MSK stone 
diagnosis by integrating radiomics and deep learning features. The proposed 
model offers high diagnostic accuracy and promising clinical utility.
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Introduction

Medullary sponge kidney (MSK) is a rare congenital renal 
anomaly characterized by cystic dilations of the collecting ducts in the 
renal papilla, resulting in its distinctive “sponge-like” appearance on 
imaging (1). These cystic dilations predispose patients to urinary stasis 
and alterations in the local metabolic microenvironment, often 
leading to clinical associations with nephrolithiasis, nephrocalcinosis, 
and metabolic abnormalities such as hypocitraturia and renal tubular 
acidosis (2, 3). These metabolic disturbances significantly increase the 
risk of recurrent stone formation and chronic kidney disease, with the 
prevalence of nephrolithiasis in MSK patients reported up to 
69.6% (4).

Preoperative differentiation between MSK stones and non-MSK 
multiple kidney stones is critical for optimizing patient management. 
Unlike ordinary stone patients, MSK cases often require tailored 
therapeutic strategies, such as metabolic evaluation and potassium 
citrate treatment, to prevent recurrence and address underlying 
metabolic abnormalities (1). Additionally, the identification of MSK 
stones significantly impacts surgical planning, as the associated 
anatomical and functional anomalies may necessitate modifications 
to surgical techniques (5). Accurate and early diagnosis also helps to 
avoid unnecessary interventions, reducing the risk of kidney damage 
and chronic pain complications (6).

Diagnosing MSK stones presents long-standing challenges due to 
their imaging similar to other kidney stones, particularly in early-stage 
cases graded as Forster 1–2, where differentiation is more difficult (7). 
Traditionally, intravenous urography (IVU) has been considered the 
gold standard for MSK diagnosis, revealing the characteristic 
“bouquet-like” appearance caused by the dilation of the collecting 
ducts (2). However, high radiation exposure and low sensitivity IVU 
for small stones have led to its replacement by non-contrast CT in the 
diagnosis of urolithiasis, which has led to fewer cases of MSK being 
diagnosed. While CT urography (CTU) offers a modern alternative 
by combining anatomical and functional evaluations, its sensitivity 
and specificity for MSK diagnosis remain limited, especially in 
distinguishing MSK stones from non-MSK multiple kidney stones.

Recent advancements in radiomics and deep learning have 
provided new opportunities for imaging diagnostics. These techniques 
extract high-dimensional quantitative features (e.g., texture, shape, 
and intensity) from CT images, enabling the detection of subtle 
differences imperceptible to the human eye (8). Integrating radiomics 
features with deep learning algorithms has significantly extended the 
application values of traditional imaging approaches in various 
diseases, enabling the development of predictive models with 
improved accuracy and robustness (9–11).

This study aims to develop a novel classification model based on 
CTU data by integrating deep learning features with traditional 
radiomics features to improve the preoperative differentiation of MSK 

stones from non-MSK multiple kidney stones. This approach leverages 
the imaging strengths of CTU and optimizes diagnostic performance 
through artificial intelligence, contributing to personalized clinical 
management and the advancement of precision medicine.

Methods

Study design and patient selection

This single-center, retrospective study aimed to develop a 
predictive model based on CTU images utilizing deep learning and 
radiomics features to distinguish MSK stones from non-MSK multiple 
stones. Patients included in the study underwent surgical treatment 
for multiple renal stones at Beijing Tsinghua Changgung Hospital 
between 2021 and 2023, with all MSK cases confirmed during 
endoscopic surgery.

The inclusion criteria were as follows: patients with multiple renal 
stones (≥3 stones) confirmed by CT imaging and treated with 
endoscopic procedures, such as flexible ureteroscopy or percutaneous 
nephrolithotomy; availability of high-quality CTU images; and 
complete clinical data records. Patients were excluded if they had 
other renal anomalies (e.g., polycystic kidney, horseshoe kidney, and 
ectopic kidney) or if their images were of poor quality or data were 
incomplete. Patients were randomly assigned to training and 
validation cohorts in a 7:3 ratio for model development and 
performance evaluation. The flowchart of participant selection and the 
workflow of model development are presented in 
Supplementary Figure S1 and Figure 1, respectively.

Image acquisition and preprocessing

All patients underwent three-phase contrast-enhanced CT scans 
(arterial, nephrographic, and excretory phases) using a Discovery CT 
750 HD scanner (GE, USA). Images were acquired with a tube voltage 
of 100–120 kV, an automatic tube current of 200–350 mA, and a 
rotation time of 0.5 s. The original 5-mm slice thickness was reduced 
to 1.25 mm for further analysis.

Nephrographic phase images were selected for further processing. 
Using the 3D Slicer software (version5.6.2, https://www.slicer.org/) 
(12), the region of interest (ROI), specifically the stone area, was 
manually delineated by two experienced urologists. In cases of 
disagreement, a senior expert acted as the final arbitrator to ensure 
consistency. To evaluate the inter-observer spatial agreement of these 
segmentations, the Dice similarity coefficient was calculated for each 
case. Subsequently, a comprehensive set of radiomics features was 
extracted from each urologist’s segmentations. The consistency of 
these feature values between the two observers was then quantified 
using the Intraclass Correlation Coefficient (ICC, type 2,1).

Radiomics procedure

Radiomics features were extracted from each ROI using the 
PyRadiomics tool (13), encompassing shape-based (2D and 3D) 
features (e.g., volume, surface area, and aspect ratio), first-order 
statistics (e.g., mean gray-level intensity and standard deviation), 

Abbreviations: AUC, Area under the curve; ROC, Receiver operating characteristic; 

Rad, Radiomics; DTL, Deep transfer learning; DLR, Deep learning radiomics; MSK, 

Medullary sponge kidney; Grad-CAM, Gradient-weighted Class Activation Mapping; 

NRI, Net reclassification improvement; IDI, Integrated discrimination improvement; 

PPV, Positive predictive value; NPV, Negative predictive value; DCA, Decision curve 

analysis; CTU, Computed tomography urography; ROI, Region of interest; IVU, 

Intravenous urography; CNN, Convolutional neural networks.
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and texture features derived from the Gray-Level Co-occurrence 
Matrix (GLCM), Gray-Level Run Length Matrix (GLRLM), Gray-
Level Size Zone Matrix (GLSZM), Gray-Level Dependence Matrix 
(GLDM), and Neighboring Gray Tone Difference Matrix (NGTDM). 
Feature selection was performed through a multi-step process: 
Z-score normalization to standardize feature values, a t-test to 
retain features with p-values < 0.05, removal of highly collinear 
features using Pearson correlation coefficients (correlation > 0.9), 
and Lasso regression to identify the most predictive features for 
the model.

Deep learning procedure

Data preparation and model training
For each patient, the slice containing the largest ROI was selected 

as the representative image. To reduce computational complexity and 
minimize background noise, only the minimum bounding rectangle 
enclosing the ROI was retained for further analysis. To standardize the 
intensity distribution across the RGB channels, Z-score normalization 
was applied to the images, which were then used as inputs for the 
model. During the training phase, real-time data augmentation 
strategies, such as random cropping, horizontal flipping, and vertical 
flipping, were employed to improve the robustness of the model. For 
testing images, only normalization was applied to maintain 
consistency in evaluation.

Model training
Transfer learning was implemented to improve the adaptability 

of the model to diverse patient populations. The model was initialized 
with pretrained weights from the ImageNet database, enhancing its 
ability to generalize across different datasets. Learning rate 

adjustment was a critical component of the training process. A 
cosine decay learning rate strategy was adopted to 
optimize convergence:
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Additionally, stochastic gradient descent was used as the 
optimizer, and softmax cross-entropy was selected as the loss function 
to facilitate accurate classification.

Feature extraction
The pretrained ResNet101 model was employed to extract 

2048-dimensional feature vectors from the penultimate layer. To 
further reduce computational demands and preserve essential 
information, principal component analysis (PCA) was applied to the 
extracted features, resulting in a compact and informative feature set 
for downstream analysis.

Signature construction

Radiomics (Rad) signature: Through rigorous feature selection 
using LASSO, radiomics features were utilized to construct risk 
models based on machine learning algorithms, such as Logistic 
Regression (LR), Extreme Gradient Boosting (XGBoost), and Support 
Vector Machines (SVM). The performance of each model was 
comparatively analyzed to identify the optimal radiomics model.

Deep transfer learning (DTL) signature: In our deep learning 
approach, the output probabilities computed by convolutional neural 
networks (CNNs) were defined as deep learning features. Feature 

FIGURE 1

Workflow for developing a model integrating radiomics and deep learning to differentiate MSK stones from non-MSK stones. MSK medullary sponge 
kidney.

https://doi.org/10.3389/fmed.2025.1623850
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1623850

Frontiers in Medicine 04 frontiersin.org

extraction was performed from the penultimate layer of the CNN to 
capture high-level abstract features relevant to stone classification.

Deep learning radiomics (DLR) signature: To develop the DLR 
features, we employed a pre-fusion strategy by integrating radiomics 
and deep learning features. Using a feature concatenation method, 
these features were combined into a comprehensive 
feature set: = ⊕fusion dl radfeature features features .

The integrated feature set was subjected to the same feature selection 
and model-building processes as those applied to radiomics features.

To construct the Combined model, we performed univariable and 
stepwise multivariable analyses on all clinical features to identify 
significant predictors. These selected clinical features were integrated 
with predictions from the DLR model to create a linear Logistic 
Regression (LR) model. This model was effectively visualized using 
a nomogram.

Performance evaluation

The evaluation of the performance for all constructed models was 
conducted through receiver operating characteristic (ROC) analysis. 
Specifically, the area under the ROC curve (AUC) was calculated and 
subsequently compared among various cohorts using the DeLong test. 
Net reclassification index (NRI) and integrated discrimination 
improvement (IDI) were calculated to compare the performance 
between different models. The calibration of the models was assessed 
using calibration curves, with the Hosmer–Lemeshow goodness-of-fit 
test employed to verify their reliability. Furthermore, decision curve 
analysis (DCA) was utilized to evaluate the clinical utility of our 
predictive models, facilitating an understanding of potential benefits 
in clinical settings.

Statistical analysis

The normality of continuous variables distribution was assessed 
by the Shapiro–Wilk test. Depending on their distribution, continuous 
variables were compared using either t-tests or Mann–Whitney U 
tests, while categorical variables were analyzed using chi-square tests. 
Radiomics feature extraction was carried out using PyRadiomics 
(version 3.0.1, https://github.com/AIM-Harvard/pyradiomics). 
Machine learning workflows utilized Scikit-Learn (version 1.0.2, 
https://scikit-learn.org/). The deep learning framework was developed 
with PyTorch (version 1.11.0). All statistical analyses were conducted 
using the OnekeyAI platform (version 4.9.1) with Python (version 
3.7.12, https://www.python.org/).

Results

Patient clinical characteristics

A total of 73 patients were included in this study, consisting of 34 
patients with MSK stones and 39 patients with non-MSK multiple 
renal stones. Due to the rarity of MSK stones, each kidney from 
patients with bilateral kidney stones was treated as an independent 
case. As a result, a total of 110 kidneys were analyzed, comprising 52 
MSK kidneys and 58 non-MSK kidneys.

The mean age of all participants was 48.66 ± 14.43 years, with 36 
women and 37 men. The clinical baseline characteristics of all patients 
are summarized in Table 1. No significant statistical differences were 
observed in the clinical characteristics between the MSK and 
non-MSK stone groups in either the training or test cohorts.

Radiomics and deep learning signature

To evaluate inter-observer consistency in manual ROI 
segmentation, we calculated the Dice similarity coefficient across 20 
randomly selected kidneys. The mean Dice coefficient was 0.91, 
indicating excellent spatial agreement. Furthermore, ICC analysis was 
conducted on radiomics features extracted from the independently 
drawn ROIs. A total of 107 radiomics features were extracted from 
both sets of ROIs. Among them, 82 features (76.6%) had an intraclass 
correlation coefficient (ICC) > 0.75, and 71 features (66.4%) had 
ICC > 0.90, indicating good to excellent reproducibility.

After feature selection, a total of 15 radiomics features were 
included in the construction of the signature 
(Supplementary Figure S2A). Among various machine learning 
algorithms evaluated, SVM was ultimately chosen for signature 
construction and subsequent comparisons. The Rad signature achieved 
an AUC of 0.85 (95% CI: 0.76–0.94) in the training cohort and 0.79 
(95% CI: 0.63–0.95) in the test cohort (Supplementary Figure S2B).

For the deep learning-based signature, 8 deep learning features 
were included (Supplementary Figure S2C). This DLT signature 
outperformed the radiomics signature, achieving an AUC of 0.90 
(95% CI: 0.83–0.97) in the training cohort and 0.82 (95% CI: 0.67–
0.97) in the test cohort (Supplementary Figure S2D).

To explore the recognition capabilities of deep learning models 
across different samples, we employed the Grad-CAM technique for 
visualization. Supplementary Figure S2E illustrates the use of 
Grad-CAM to highlight activations in the final convolutional layer 
relevant to classification. This approach helps identify the specific image 
regions that significantly influence the decision-making process of the 
model, thereby enhancing our understanding of its interpretability.

DLR

After integrating and selecting radiomics features and deep 
learning features, a total of 13 radiomics features and 2 deep learning 
features were included in the construction of the DLR signature. The 
DLR signature was developed using a logistic regression (LR) 
approach. In the training cohort, the DLR signature achieved an AUC 
of 0.96 (95% CI: 0.91–1.00), and in the test cohort, an AUC of 0.96 
(95% CI: 0.91–1.00) (Figure 2A). Figure 2B displays the predicted 
scores for individual samples. This separation reflects the high 
predictive accuracy of the DLR signature and its capability to 
distinguish between MSK stone and non-MSK stone effectively.

Model comparison

Univariate analysis did not identify any clinical features with 
statistically significant differences. However, we  selected the two 
clinical variables that were closest to achieving statistical significance 
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and combined them with the DLR model. The resulting model 
achieved an AUC of 0.98 (95% CI: 0.95–1.000) in the training cohort 
(Figure  3A) and 0.95 (95% CI: 0.88–1.00) in the test cohort 
(Figure 3B). The metrics of all signatures are summarized in Table 2.

The calibration curves demonstrate that the Combined model and 
DLR model achieved the best agreement between predicted 
probabilities and observed outcomes in both the training cohort 
(Figure 3C) and test cohort (Figure 3D). These results highlight the 
superior calibration accuracy of the Combined model and DLR 
model, reinforcing their reliability for clinical risk prediction.

Through the comparison of multiple models, the DLR signature 
and the Combined model demonstrated the best overall performance. 
The DeLong test was used to evaluate the statistical significance of 

differences between the models. Both the DLR model and the 
Combined model showed significant improvements over traditional 
clinical and Rad models in both the training and test cohorts. 
Additionally, the DLR model exhibited significant improvement over 
the DTL model in the training cohort; however, while an improvement 
was observed in the test cohort, it did not reach statistical significance. 
Notably, the improvement of the Combined model over the DLR 
model was not statistically significant (Figures  3E,F), which may 
be  due to the limited incremental information gained from 
incorporating clinical data into the DLR model.

The NRI analysis (Supplementary Figures S3A,B) and IDI analysis 
(Supplementary Figures S3C,D) demonstrate that the DLR model and 
the Combined model, which integrate radiomics and deep learning 

TABLE 1 Clinical characteristics of patients in the training and testing cohorts.

Variables Training cohort (n = 50) Testing cohort (n = 23)

Non-MSK 
patients (n = 28)

MSK patients 
(n = 22)

p Non-MSK 
patients (n = 11)

MSK patients 
(n = 12)

p

Age, Mean ± SD 46.54 ± 16.22 46.00 ± 12.92 0.900 56.91 ± 12.59 50.92 ± 12.43 0.264

BMI, Mean ± SD 24.17 ± 4.43 26.64 ± 9.55 0.230 24.39 ± 2.44 26.15 ± 3.16 0.152

Sex, n (%) 0.802 1.000

 Female 15 (53.57) 11 (50.00) 5 (45.45) 5 (41.67)

 Male 13 (46.43) 11 (50.00) 6 (54.55) 7 (58.33)

Spontaneous Passage 

History, n (%)
0.253 1.000

 No 25 (89.29) 16 (72.73) 7 (63.64) 8 (66.67)

 Yes 3 (10.71) 6 (27.27) 4 (36.36) 4 (33.33)

Surgery History, n (%) 0.278 0.680

 None 13 (48.15) 14 (63.64) 7 (63.64) 6 (50.00)

 Yes 14 (51.85) 8 (36.36) 4 (36.36) 6 (50.00)

Urine Culture, n (%) 0.449 1.000

 Negative 11 (39.29) 11 (50.00) 4 (36.36) 4 (33.33)

 Positive 17 (60.71) 11 (50.00) 7 (63.64) 8 (66.67)

K, Mean ± SD 8.63 ± 24.96 3.89 ± 0.44 0.379 4.01 ± 0.37 3.99 ± 0.21 0.895

Cl, Mean ± SD 106.16 ± 2.93 106.49 ± 2.29 0.669 107.26 ± 1.98 106.47 ± 2.56 0.416

CO2, Mean ± SD 24.77 ± 3.23 24.99 ± 3.38 0.823 25.48 ± 2.80 24.93 ± 2.75 0.636

Scr, Mean ± SD 75.63 ± 23.07 84.42 ± 26.65 0.218 83.02 ± 20.85 75.83 ± 19.17 0.399

Ca, Mean ± SD 2.27 ± 0.11 2.29 ± 0.10 0.489 2.28 ± 0.10 2.23 ± 0.07 0.231

Uric acid, Mean ± SD 333.82 ± 93.03 319.18 ± 84.65 0.568 402.64 ± 112.97 355.11 ± 95.06 0.286

Hb, Mean ± SD 130.79 ± 19.66 138.27 ± 20.03 0.191 129.27 ± 18.43 136.92 ± 17.36 0.317

PTH, M (Q₁, Q₃) 41.49 (29.98, 49.13) 47.09 (33.62, 48.54) 0.475 43.15 (32.75, 48.00) 47.09 (44.87, 48.95) 0.281

24 h Ca, M (Q₁, Q₃) 5.53 (3.66, 5.53) 4.05 (3.59, 6.22) 0.670 3.25 (1.94, 5.53) 4.25 (3.87, 7.47) 0.206

24 h K, M (Q₁, Q₃) 39.05 (36.08, 39.06) 32.37 (24.27, 41.59) 0.090 39.05 (29.23, 39.05) 34.04 (30.21, 37.08) 0.558

24 h Na, M (Q₁, Q₃) 149.18 (128.05, 149.18) 147.81 (127.88, 183.02) 0.627 143.40 (89.56, 149.18) 155.99 (137.27, 226.31) 0.052

24 h UA, M (Q₁, Q₃)
3314.48 (2672.50, 

3314.48)

2953.32 (2255.20, 

3261.10)
0.181

3314.48 (2530.75, 

3314.48)

2988.50 (2650.35, 

3585.27)
0.734

24 h P, M (Q₁, Q₃) 15.54 (14.87, 15.54) 16.18 (13.54, 21.69) 0.482 15.54 (11.05, 15.91) 16.60 (14.33, 19.80) 0.229

24 h Cl, M (Q₁, Q₃) 123.46 (113.97, 123.46) 113.37 (99.65, 149.46) 0.937 123.46 (97.44, 126.43) 128.75 (117.75, 178.73) 0.116

Urine PH, M (Q₁, Q₃) 6.50 (6.00, 6.50) 6.50 (6.00, 6.50) 0.976 6.50 (6.25, 7.00) 6.25 (6.00, 6.62) 0.340

MSK, medullary sponge kidney; BMI, body mass index; Scr, serum creatin; Hb, hemoglobin.
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features, consistently outperformed all other models in both the 
training and test cohorts, highlighting their superior improvement in 
predictive classification accuracy.

Clinical use

As shown in Figure 4, a nomogram was constructed based on 
Surgery History, PTH, and DLR score to predict patient risk 
probabilities (Figure  4A). Decision curve analysis (DCA) 
demonstrated that in both the training cohort (Figure 4B) and the test 
cohort (Figure  4C), the DLR model and the Combined model 
consistently provided higher net benefits across the clinically relevant 
threshold range compared to the clinical model and Radiomics model. 
These findings indicate that the Combined model and DLR model 
offer superior clinical utility in MSK stone prediction, providing 
strong support for clinical decision-making.

Discussion

The preoperative differentiation of MSK stones from non-MSK 
multiple kidney stones is essential for optimizing patient 
management and improving clinical outcomes. MSK is a 
congenital disease characterized by abnormal development of the 
renal medullary collecting ducts and papillary ducts, leading to 
cystic dilations that resemble a sponge-like appearance. First 
reported by Lenarduzzi in 1939 and later detailed by Cacchi and 
Ricci (14, 15), MSK is thought to result from mutations or 
polymorphisms in neurotrophic factor and receptor tyrosine 
kinase genes during embryonic development (16, 17). The dilated 
cystic cavities in the collecting ducts lack effective drainage, 
causing urine retention, secondary infection, and eventual stone 
formation (4). As stones grow, they detach from the collecting 
system, often leading to recurrent stone expulsion. Surgical 
intervention is required for urinary obstruction or recurrent 

infections, yet anatomical challenges make MSK stone 
management particularly difficult.

Imaging diagnostics play a critical role in the preoperative 
evaluation of MSK stones. IVU, traditionally considered the gold 
standard, reveals characteristic features ranging from a faint blush or 
linear striations in mild cases to a “bouquet of flowers” appearance in 
more advanced cases, where cystic dilation of the collecting ducts is 
evident (15). However, IVU has been largely replaced by CTU due to 
its high radiation exposure and low sensitivity for detecting small 
stones. This shift, while improving the overall diagnostic accuracy of 
kidney stones, has inadvertently led to a decrease in the diagnosis of 
MSK (15, 18). CTU provides superior diagnostic accuracy for MSK by 
detecting scattered or clustered hyperdense areas in the renal medulla 
during the non-contrast phase, clearly distinguishing the 
corticomedullary region and collecting systems in the arterial phase, 
and revealing contrast agent accumulation in dilated collecting ducts 
during the excretory phase (19). However, despite these advantages, 
its clinical application value in MSK remains limited (20). In patients 
with early-stage MSK (Forster grade 1 or 2), imaging findings often 
mimic those of conventional multiple kidney stones, making accurate 
diagnosis challenging and increasing the likelihood of misdiagnosis. 
Consequently, the condition is sometimes identified incidentally 
during endoscopic surgery, which can result in treatment failures 
or complications.

Recent advances in artificial intelligence, such as deep learning 
and radiomics, enable the extraction of high-dimensional features 
from imaging data and offer promising solutions to these challenges 
(21, 22). For example, Längkvist et al. (23) developed a convolutional 
neural network-based computer-aided detection system that 
accurately identifies ureteral stones in thin-slice CT volumes, 
achieving high sensitivity while minimizing false positives. Similarly, 
Kim et  al. (24) introduced a novel deep learning-based artificial 
intelligence system for interpreting urolithiasis in CT scans, 
demonstrating its potential to enhance diagnostic accuracy and 
efficiency in clinical practice. De Perrot et al. (25) utilized radiomics 
and machine learning to effectively differentiate kidney stones from 

FIGURE 2

Performance of the DLR signature for differentiating MSK stones from non-MSK stones. (A) The ROC curves of the DLR signature in the training and 
testing cohorts. (B) Predicted scores for individual samples generated by the DLR signature. DLR deep learning radiomics, MSK medullary sponge 
kidney, ROC receiver operating characteristic.
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phleboliths in unenhanced low-dose CT scans. These studies 
underscore the transformative potential of AI-driven technologies in 
improving the detection and management of urinary stones.

In this study, we build upon these advancements by developing 
a novel DLR signature and Combined model, which integrates 
radiomics and deep learning features to improve the diagnostic 

performance of MSK stones. The DLR signature achieved AUCs of 
0.964 and 0.962 in the training and test cohorts, respectively, while 
the Combined model further enhanced these metrics to 0.982 and 
0.951. Calibration curves demonstrated satisfying alignment 
between predicted probabilities and observed outcomes, 
reinforcing the reliability of the model. NRI and IDI analyses both 

FIGURE 3

Performance comparison of different models (clinical, Rad, DTL, DLR, and Combined) in the training and testing cohorts. (A) ROC curves in the training 
cohort. (B) ROC curves in the testing cohort. (C) Calibration curves in the training cohort. (D) Calibration curves in the testing cohort. (E) DeLong test 
results for the training cohort. (F) DeLong test results for the testing cohort. Rad radiomics, DTL deep transfer learning, DLR deep learning radiomics, 
ROC receiver operating characteristic.
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TABLE 2 Metrics of performance of different signatures.

Metric 
parameter

Clinical Rad DTL DLR Combined

Train Test Train Test Train Test Train Test Train Test

Accuracy 0.77 0.70 0.82 0.73 0.84 0.76 0.95 0.91 0.96 0.91

AUC

0.81 0.68 0.85 0.79 0.90 0.82 0.96 0.96 0.98 0.95

(0.71–0.91) (0.49–0.87) (0.76–0.94)
(0.63–

0.95)
(0.83–0.97) (0.67–0.97) (0.91–1.00) (0.90–1.00) (0.95–1.00)

(0.88–

1.00)

Sensitivity 0.61 0.95 0.91 0.58 0.85 0.74 0.91 0.95 0.94 0.95

Specificity 0.89 0.36 0.75 0.93 0.84 0.79 0.98 0.86 0.98 0.86

PPV 0.80 0.67 0.73 0.92 0.80 0.82 0.97 0.90 0.97 0.90

NPV 0.75 0.83 0.92 0.62 0.88 0.69 0.94 0.92 0.96 0.92

Precision 0.80 0.67 0.73 0.92 0.80 0.82 0.97 0.90 0.97 0.90

Recall 0.61 0.95 0.91 0.58 0.85 0.74 0.91 0.95 0.94 0.95

F1 0.69 0.78 0.81 0.71 0.82 0.78 0.94 0.92 0.95 0.92

Rad radiomics; DTL deep transfer learning; DLR deep learning radiomics; PPV positive predictive value; NPV negative predictive value.

FIGURE 4

Nomogram and DCA for the combined model. (A) Nomogram for the combined model. (B) DCA for the training cohort. (C) DCA for the testing 
cohort. DCA decision curve analysis.
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demonstrated the improved predictive power of the model. 
Additionally, Grad-CAM visualization provided interpretability, 
highlighting key imaging regions that influenced 
model predictions.

Our combined model showed an improvement in AUC compared 
to the DLR model in the test set, but the difference was not statistically 
significant. This may be  due to the limited variability of the two 
clinical variables included in the model between the two groups, likely 
caused by the small sample size. As the sample size increases in future 
studies, it may be possible to identify more suitable clinical variables 
to incorporate into the model, thereby enhancing its 
diagnostic performance.

Despite these promising results, several limitations must 
be  acknowledged. First, the overall sample size was limited, 
particularly for MSK cases, due to the rarity of the disease. This 
constraint may affect the statistical power of the analysis and 
limit the generalizability of the findings. Second, the study was 
conducted at a single institution, and imaging was performed 
using a uniform protocol and CT scanner. While this reduces 
intra-institutional variability, it may limit the applicability of our 
model across centers with differing imaging protocols and patient 
demographics. External validation on multi-center datasets with 
varied acquisition settings is needed for further studies to 
confirm model robustness. Third, our model relied on manually 
segmented stone regions and treated each kidney as an 
independent analytical unit. Although inter-observer 
segmentation reproducibility was high in a subset of cases (mean 
Dice coefficient = 0.91), manual delineation remains a potential 
source of variability. Analyzing each kidney separately—
particularly in patients with bilateral stones—may introduce data 
dependency, potentially inflating model performance. Further 
studies should consider semi-automated or fully automated 
segmentation to enhance the reproducibility and reduce labor 
intensity. Patient-level modeling should also 
be further investigated.

The proposed models hold significant clinical implications. By 
seamlessly integrating into clinical workflows, they can enhance the 
accuracy and efficiency of MSK stone diagnosis, facilitating 
personalized treatment strategies. Early identification of MSK enables 
targeted interventions, such as metabolic evaluation and tailored 
surgical planning, ultimately improving patient outcomes.

Conclusion

This study presents an innovative approach for diagnosing MSK 
stones by integrating radiomics and deep learning, achieving high 
diagnostic accuracy with promising clinical utility. Future research 
should focus on improving model robustness, expanding dataset 
diversity, incorporating multi-modal data, and conducting large-
sample, multi-center, prospective studies.
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