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MicroRNAs (miRs) are a class of non-coding RNA molecules that regulate 

gene expression post-transcriptionally. MiRs, as translational repression and/or 

degradation of target messenger RNAs, are critical regulators of various 

physiological processes, including cell proliferation, differentiation, death, 

and immune responses. Currently, miRs are being investigated as potential 

biomarkers and therapeutic targets for a range of diseases. In recent years, miRs 

have been reported to be implicated in several pathophysiological processes of 

dermatological diseases including psoriasis, skin wound, diabetic skin wound, 

burn, systemic sclerosis, skin tumors (melanoma, squamous cell carcinoma 

and basal cell carcinoma), recessive dystrophic epidermolysis bullosa, and 

systemic lupus erythematosus. Mechanistically, the regulation of oxidative stress, 

inflammation, apoptosis, and angiogenesis may account for the distinct roles 

of miRs in the skin. A deeper understanding of different miRs and their related 

regulatory targets is essential for elucidating the pathophysiology of numerous 

skin diseases. This review briefly summarizes roles and potential applications 

of miRs within the skin. The combination of miRs with novel materials or 

compounds may offer innovative approaches for the treatment of skin diseases. 

However, further research is necessary to facilitate the translation into clinical 

applications for dermatological diseases. 
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1 Introduction 

MicroRNAs (miRs) are key post-transcriptional regulators of gene expression, with 
emerging roles in dermatological pathophysiology (1). Their tissue-specific expression 
patterns are particularly relevant in the skin, where miR dysregulation contributes to 
various dermatological diseases (2–4). 

The skin’s accessibility and unique cellular composition, including keratinocytes and 
fibroblasts, made it an ideal model for studying miR-based therapeutics (5–7). The topical 
and intradermal delivery of miR modulators, such as nanoparticle-encapsulated antimiRs, 
is feasible due to the skin’s permeability, which enables targeted therapy for lesions (8, 9). 
This review focuses on novel insights into miR dysregulation across major dermatological 
conditions, emphasizing mechanisms linked to oxidative stress, inflammation, apoptosis, 
and angiogenesis. 

This review synthesizes recent advances in miR dysregulation across several 
dermatological conditions: psoriasis, skin wound, diabetic skin wound, burn, systemic 
sclerosis (SSc), skin tumors, recessive dystrophic epidermolysis bullosa (RDEB), and 
systemic lupus erythematosus (SLE). We highlight the following: disease-specific miR 

Frontiers in Medicine 01 frontiersin.org 

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1624085
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1624085&domain=pdf&date_stamp=2025-08-11
https://doi.org/10.3389/fmed.2025.1624085
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1624085/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1624085 August 6, 2025 Time: 20:40 # 2

Xu et al. 10.3389/fmed.2025.1624085 

signatures and mechanisms, cross-disease roles of key miRs, and 
the clinical translation of miR-based diagnostics and therapeutics. 

Although recent reviews have extensively covered miRs in 
specific skin diseases, such as the pathogenesis of melanoma 
(10) and psoriasis (11), this review integrated the cross-disease 
mechanisms of miRs in oxidative stress, inflammation, apoptosis 
and angiogenesis, and emphasizes emerging therapeutic strategies, 
such as miR-nanocornists. They still need further research to 
translate these findings into clinical practice. It was worth noting 
that although miRs played a significant role in many other skin 
diseases, such as photoaging (12), alopecia (13), pigmentation 
disorders (chloasma, vitiligo, albinism) (14), acne (15), dermatitis 
(16) and urticaria (17), this review focused on integrating the latest 
and substantial progress in the above-mentioned specific disease 
areas to provide a targeted and in-depth analysis. 

2 Implications of miRs in 
dermatological diseases 

2.1 Psoriasis 

Psoriasis is a chronic inflammatory skin disease characterized 
by abnormal dierentiation and excessive proliferation of 
keratinocytes. Psoriasis primarily occurs in adults to severely aect 
patients’ life quality (18, 19), and is often regarded as an immune-
mediated disease model. Factors such as genetic susceptibility, 
cell cycle regulation, immune response, inflammation, and 
neurotransmitters may contribute to the development of psoriasis 
(20, 21). However, the exact mechanisms underlying psoriasis 
remain to be further elucidated. 

Currently, the regulation of miRs in the treatment of psoriasis 
has garnered significant attention from scientists exploring this 
field. Research has identified a variety of miRs that influence the 
development of psoriatic lesions (22, 23). Specifically, 24 miRs were 
found to be either upregulated or downregulated in keratinocytes 
from patients with psoriasis, highlighting the importance of miRs 
in the etiology of psoriasis (24–26). However, the aforementioned 
study assessed miR levels solely in blood samples rather than in 
skin lesions. Therefore, further research is necessary to determine 
whether miRs can serve as biomarkers for psoriasis prognosis or 
as therapeutic targets for treatment. Additionally, the specificity of 
miRs to dierent type of psoriasis also remains unclear. 

Dual-tyrosine specificity phosphorylation-regulated kinase 1A 
(DYRK1A) is a key stabilizer of the epidermal growth factor 
receptor (EGFR) and plays a crucial role in cytokeratinization, 
hyperproliferation, aberrant dierentiation, and inflammatory 
infiltration during the development of psoriasis. MiR-215-5p is 
expressed at low level in psoriasis. Overexpression of miR-215-
5p inhibited the proliferation of human keratinocytes (HaCaTs) 
cell and diminished psoriasis-like inflammation through DYRK1A-
mediated regulation of the EGFR signaling pathway (27). In 
contrast to miR-215-5p, miR-21 is highly expressed in psoriasis 
(28–30). In HaCaTs, normal human epidermal keratinocytes 
(NHEKs), and psoriatic skin samples, maternally expressed gene 3 
(MEG3) was all dramatically downregulated. Interestingly, MEG3 
suppressed proliferation and accelerated apoptosis in activated 
HaCaT and NHEK cells via miR-21. In detail, miR-21 and 

MEG3 regulated the expression of caspase-8, cleaved caspase-
8, and apoptotic protease activating factor-1 (apaf-1) proteins 
downstream. These findings demonstrate that the MEG3/miR-
21 axis regulates caspase-8 expression, which may contribute to 
the proliferation and apoptosis of psoriatic keratinocytes (31). 
In addition, a team investigated the association between the 
miR-21 binding site single nucleotide polymorphism (SNP) and 
psoriasis susceptibility in women. They found that SNP rs 4597342 
in the 3’ non-coding region of the Integrin Subunit Alpha M 
(ITGAM) gene aected miR-21 binding, potentially serving as a 
risk factor for the development of psoriasis. Upregulation of miR-
21 expression decreased the production of cluster of dierentiation 
(CD) 11b to disturb macrophage-1 antigen (Mac-1) function, 
leading to abnormality in innate immune cells, and excess cytokine 
secretion in the pathogenesis of psoriasis (32). Additionally, miR-
21 also mediated angiogenesis, immune response, and apoptosis 
in psoriasis (33). These findings suggest that miR-21 is a key 
factor in the etiology of psoriasis and may represent an eective 
target for treatment. 

Similar to miR-21, the up-regulation of miR-744-3p in psoriasis 
regulates the proliferation and dierentiation of keratinocytes by 
targeting killin (KLLN) (34). Another study found that miR-
146b and miR-10b bind directly to the 3’non-coding region (3’-
UTR) of the atypical chemokine receptor 2 (ACKR2), suppressing 
ACKR2 transcription and protein expression in keratinocytes and 
lymphoid endothelium cells, respectively. When cells are injured, 
their expression of ACKR2 is further reduced, which serves as a 
key trigger for the formation of new plaques in many psoriasis 
patients, a phenomenon known as the Koebner phenomenon (35). 
These miRs could be valuable targets for therapeutic development 
in the fight against psoriasis. To identify potential treatment targets, 
further in-depth studies are needed to enhance our understanding 
of the role of miRs in the pathogenesis of psoriasis. 

Acitretin is the first-line drug for the treatment of psoriasis 
vulgaris in clinical practice. Previous studies have shown that 
acitretin can inhibit the mitogen-activated protein kinase (MAPK), 
Janus kinase (JAK), signal transducer of activator of transcription 
(STAT) and nuclear factor kappa B (NF-κB) signaling pathways 
by reducing the expression of specific miRs, thereby alleviating 
inflammatory responses and keratinocyte proliferation. Acitretin 
has been found to attenuate the development of psoriasis vulgaris 
by reducing the levels of miR-146a-5p, miR-21-5p and miR-122-
5p (36). MiR-31 is a highly conserved miR, however, there have 
been few in vivo mechanistic studies examining its activity in 
psoriasis. A research team developed a miR-31 overexpression 
mouse that exhibited with psoriasis-like skin lesions. It was found 
that miR-31overexpression significantly led to the upregulation 
of STAT3 and enhancement of p53, resulting in keratinocytes 
hyperproliferation. The discovery of the miR-31/STAT3/p53 
pathway may provide new approaches for the treatment of 
psoriasis (37). Additionally, recent studies have demonstrated 
that miR-17-3p promotes keratinocyte proliferation and pro-
inflammatory cytokine secretion by targeting Cln 3-requiring 
9 (CTR9), suggesting that miR-17-3p could serve as a novel 
therapeutic target for psoriasis (38). However, due to the challenges 
associated with sampling the lesion-free skin from patients with 
psoriasis, further validation of these findings is necessary. 

In recent years, miRs have garnered significant attention as 
promising targets for the treatment of psoriasis. Given that psoriasis 
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FIGURE 1 

Possible involvement of microRNAs (miRs) in psoriasis. A variety of miRs are involved in regulating the development of psoriasis. Overexpression of 
miR-215-5p can reduce the proliferation of human keratinocytes (HaCaTs) and alleviate inflammation by inhibiting the epidermal growth factor 
receptor (EGFR) signaling pathway. MiR-21 promoted the proliferation of keratinocytes and inhibited apoptosis by regulating caspase-8 and 
apoptotic protease activating factor-1 (apaf-1). It can also interfere with the function of macrophages by affecting the expression of cluster of 
differentiation (CD) 11b, leading to congenital immune abnormalities. MiR-744-3p targeted killin (KLLN) to promote the proliferation of keratinocytes 
and inhibit differentiation. MiR-146b and miR-10b, respectively inhibited the transcription and protein expression of atypical chemokine receptor 2 
(ACKR2) in keratinocytes and lymphoendothelial cells, thereby reducing the formation of new plaques in patients with psoriasis. Reducing the 
expression of miR-146a-5p, miR-21-5p and miR-122-5p can inhibit the mitogen-activated protein kinase (MAPK), Janus kinase (JAK), activated signal 
transducer (STAT) and nuclear factor κB (NF-κB) signaling pathways, thereby alleviating the inflammatory response and keratinocyte proliferation. 
MiR-31 drived excessive proliferation of keratinocytes by activating STAT3 and enhancing p53 signaling. MiR-17-3p inhibited Cln 3-requiring 9 
(CTR9) to promote the proliferation of keratinocytes and the secretion of pro-inflammatory cytokines. Anti-miR-210 can inhibit the differentiation of 
Th1/Th17 cells and reduce the expressions of interleukin (IL)-17A and interferon-γ (INF-γ), thereby reducing inflammation. In conclusion, multiple 
miRs were involved in the occurrence and development of psoriasis by targeting the corresponding target genes. 

results from complex interactions between immune cells and 
keratinocytes, miR-based therapies have been developed to address 
this condition. Additionally, the skin is the most permeable organ, 
allowing for eective delivery of therapeutic agents through various 
administration routes. Consequently, miRs can be eectively 
delivered into the skin through local administration. One research 
group successfully designed a biomimetic recombinant high-
density lipoprotein (rHDL) nanocarrier gel containing miR-
210 antisense (NG-anti-miR-210) to significantly reduce miR-
210 expression in skin lesions and splenic CD4 T cells of 
imiquimod (IMQ)-induced psoriasiform mouse models through 
topical administration. This innovative material ameliorated 
erythematous dermatitis, attenuated scaling and acanthosis, and 
inhibited skin inflammatory cell infiltration in IMQ-induced 
mice. Furthermore, the administration of NG-anti-miR-210 also 
decreased the proportion of Th1 and Th17 cells, as well as lowered 
interleukin (IL)-17A and interferon-γ (INF-γ) mRNA levels in 
cutaneous tissues and splenocytes of the mice (39). Therefore, 
the local inhibition of miR-210 by rHDL nanocarriers eectively 
alleviated psoriasis-like inflammation in mice, suggesting that 

“combination therapy” targeting the miR-210 pathway may be a 
potential treatment strategy for psoriasis. In sum, several miRs 
with varying expression levels, target molecules, and eects are 
implicated in psoriasis (Figure 1). Although great progress has been 
made in identifying potential miRs involved in psoriasis, further 
studies are necessary to apply miRs for diagnosis, treatment, and 
prognosis evaluation in psoriasis. 

2.2 Skin wound 

Skin wound healing is a complex physiological process that 
involves hemostasis, inflammation, angiogenesis, remodeling, and 
scarring (40, 41). MiRs play a crucial role in the process of 
cutaneous wound healing. Alterations in the expression of specific 
miR at dierent stages may be associated with abnormal wound 
healing (42–44). For instance, miR-132 has been shown to be 
substantially expressed in dermal fibroblasts after isolation from 
human skin wound tissue (45). 
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The cellular and molecular mechanisms that contribute to 
the delay in age-related cutaneous wound healing delaying 
remains unclear. Intradermal injection of the miR-21 plasmid 
around skin wounds improved healing and alleviated age-related 
skin wound defects. Up-regulation of miR-21 expression also 
accelerated wound healing in aged mice, suggesting that miR-
21 may serve as a novel target during wound repair in aged 
mice (46). Phosphatase and tensin homolog (PTEN) is a known 
downstream target of miR-21 in various tumors. On one hand, 
the inhibition of PTEN promotes the wound healing process 
(47). On the other hand, miR-21 accelerates wound healing 
by increasing dendritic cells (DCs) through PTEN inhibition 
via the protein kinase B (Akt)/phosphatidylinositol-3 kinase 
(PI3K) signaling pathway (48). Recently, microvesicles (MVs) 
have emerged as an important medium for cell communication, 
capable of delivering genetic material to target cells. MV-derived 
miR-21 has been shown to regulate α-smooth muscle actin (α-
SMA) and N-cadherin, facilitating the dierentiation of fibroblasts 
into myofibroblasts and promoting fibroblast migration. MV-
derived miR-21 upregulates the expression and secretion of IL-
6 and IL-8, mediating inflammatory responses and enhancing 
immune responses. In addition, MV miR-21 downregulates PTEN 
and reversion-inducing cysteine-rich protein with Kazal motifs 
(RECK) protein expression, activates the MAPK/extracellular 
signal-regulated kinase (ERK) signaling pathway, and promotes the 
migration and dierentiation of fibroblasts (40). This provides a 
foundation for the role of MV miR-21 in wound healing. PTEN 
has also been previously proven to promote cell proliferation and 
migration. However, whether PTEN is essential for MV miR-21-
mediated fibrotic gene expression requires further investigation. 
Notably, miR-21 expressed in adipose-derived stem cells exosomes 
(AD-exos) has been demonstrated to play a role in wound 
healing, as well as in the proliferation and migration of 
keratinocytes. Overexpression of miR-21 suppresses the expression 
of transforming growth factor (TGF)-β1, while excess TGF-β1 
exerts negative feedback on miR-21 (49). Thus, miR-21 is regulated 
by multiple upstream and downstream targets to accelerate skin 
wound healing. This oers a new perspective on the role of miR-
21 in tissue repair, suggesting it could be a viable target for wound 
healing therapies. 

Although the relationship between miR-19b and TGF-β1 
remains unclear, it has been established that miR-19b derived 
from human adipose-derived mesenchymal stem cells (ADMSCs) 
improves cutaneous wound healing by targeting C-C motif 
chemokine ligand 1 (CCL1) via the TGF-β pathway (50). 
Additionally, the knockdown of apoptotic signal-regulating kinase 
1 (ASK1) has been shown to reduce the expression of inflammatory 
factors in vitro. Specifically, miR-23b mediates ASK1 to inhibit 
inflammation, thereby promoting wound healing. These findings 
indicate that miR-23b serves as an eective therapeutic agent 
for wound healing by facilitating wound re-epithelialization, 
shortening the inflammatory response time, and accelerating 
keratinocyte migration (42). MiR-23b also negatively regulates 
tissue inhibitor of metalloproteinase-3 (TIMP-3). One study 
demonstrated after TGF-β1 stimulation in HaCaT cells, the 
abundance of miR-23b was positively correlated with both 
the concentration and duration of TGF-β1. Moreover, miR-
23b promotes keratinocyte migration by downregulating TIMP-3 
(51). Extracellular vesicles (EV)-encapsulated miR-106b exhibits 

inhibitory eects on the adhesion and viability of fibroblasts 
and keratinocytes. Conversely, the expression of two important 
mediators of angiogenesis, namely vascular endothelial growth 
factor (VEGF) and TGF-β1, was decreased following treatment 
with EV-encapsulated miR-106b, further suggesting that miR-
106b may impede wound healing by inhibiting the angiogenesis 
process. Notably, there were no corresponding alterations in pro-
inflammatory cytokine, indicating that inflammation itself may not 
be influenced by EV-encapsulated miR-106b in this skin wound 
healing model. These findings demonstrate that EV-encapsulated 
miR-106b could represent a promising strategy for regulating skin 
wound healing (52). Collectively, the varying eects on multiple 
miR expressions and the healing process mediated by TGF-β 
warrant further investigation. 

In chronic wounds, biofilms can infect host tissues for 
extended periods. A research group has identified the underlying 
mechanisms by which biofilm-induced miR-146a and miR-106b 
aect host skin at the wound edge tissue. Zona occludens 
(ZO) proteins are ubiquitous scaolding proteins that assemble 
multiprotein complexes on the cytoplasmic surface of the plasma 
membrane, linking transmembrane proteins to the filamentous 
cytoskeleton. MiR-146a and miR-106b silence ZO-1 and ZO-2, 
impairing tight junction function and resulting in compromised 
skin integrity. The 3’UTR regions of ZO-1 and ZO-2 are direct 
targets of miR-146a, while miR-106b targets either the exon or 
the 5’UTR region of the mRNA to inhibit gene expression. The 
findings demonstrate that topical delivery of miR-146a and miR-
106b inhibitors to skin impaired by biofilm-infected wounds has 
the potential to restore barrier function and promote eective 
wound closure. This study reveals that biofilms may induce host 
skin miRs to impair skin function. It also lays the groundwork for 
intervention strategies aimed at inhibiting these miRs to restore 
skin barrier function (53). 

Additionally, miR-212 knockdown alleviated beneficial eects 
of resveratrol on keratinocyte proliferation and migration, thereby 
inhibiting skin wound healing (54). Similarly, circular RNA 
protein kinase, DNA-activated, catalytic subunit (circ_PRKDC) 
impeded wound healing in diabetes by regulating keratinocyte 
proliferation and migration, which are crucial for skin wound 
healing. MiR-31 was identified as a target of circ_PRKDC, 
and the inhibition of miR-31 reversed the promoting eect 
on human epidermal keratinocyte (HEKa) migration following 
circ_PRKDC knockdown. In addition, miR-31 overexpression 
accelerated HEKa migration through fibrillin-1 (FBN1), suggesting 
that the knockdown of circ_PRKDC may accelerate wound healing 
by promoting keratinocyte migration through the miR-31/FBN1 
axis (55). Research has confirmed that zinc finger E-box binding 
homeobox 1 (ZEB1) promotes skin wound healing. Moreover, 
the upregulation of ZEB1 resulted in the downregulation of 
miR-206 due to impaired binding to the miR-206 promoter. 
Overexpression of miR-206 or depletion of VEGFA counteracted 
ZEB1-induced proliferation, migration, and angiogenesis in human 
dermal microvascular endothelial cells (HDMEC), thereby delaying 
skin wound healing. In conclusion, ZEB1 enhances angiogenesis 
to promote skin wound healing by inhibiting miR-206 and 
increasing VEGFA expression (56). One study demonstrated that 
miR-21-5p and miR-125b-5p derived from umbilical cord blood 
mesenchymal stem cells (UCB-MSC)-derived exosomes inhibited 
TGF-β receptor type II (TGFBR2) and TGFBR1, respectively, 
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thereby aecting the TGF-β1 signaling pathway and hindering 
myofibroblast dierentiation. UCB-MSC-exosomes may represent 
a novel strategy to prevent scarring during wound healing in 
clinical settings (57). These findings deepen the understanding of 
the pathogenesis of cutaneous wound healing and provide potential 
therapeutic targets for enhancing skin wound healing. 

Excessive collagen production and improper collagen 
deposition during wound healing can lead to cause skin scarring. 
MiRs are recognized as endogenous regulators in the formation 
of skin scars (58). A study demonstrated that the local injection 
of miR-29b lentiviral particles suppressed the expression of 
heat shock protein 47 (HSP47), blocked collagen synthesis, and 
inhibited angiogenesis, thereby alleviating scar formation. This 
study suggests that targeting the miR-29b/HSP47 pathway may 
provide an alternative approach to prevent or attenuate scar 
formation (59). In addition, miR-21-5p regulates cell migration via 
the PTEN/AKT signaling pathway. Electron beam (EB) irradiation 
inhibited autophagy in keloid fibroblasts by decreasing miR-21-5p 
levels. These findings indicate that EB irradiation modulates 
miR-21-5p, aecting autophagy, migration, and apoptosis in keloid 
fibroblasts, ultimately preventing local invasion and recurrence 
(60). Taken together, miR-21-5p has the potential to serve as a 
novel therapeutic target for keloid instead of EB irradiation. 

2.3 Diabetic skin wound 

Diabetes mellitus (DM) is a chronic metabolic disorder 
characterized by elevated blood glucose levels due to insulin 
imbalance or resistance. Clinical cutaneous symptoms often 
present as the earliest manifestations in patients with diabetes, 
increasing the risk of infections, hyperpigmentation, dermal 
thickening, spontaneous blister formation, and potentially life-
threatening foot ulcers (61). A comprehensive investigation into 
the underlying molecular mechanisms that diabetic skin wound 
healing delaying may aid in mitigating complications associated 
with diabetic skin. 

2.3.1 Inflammation 
The primary reasons for delayed wound healing in diabetes 

include a persistent inflammatory response, reduced expression 
of growth factor, and aggravated endothelial dysfunction (62, 
63). Compared to streptozotocin (STZ)-induced diabetes of wild-
type (WT) mice, corneal and skin wound healing was delayed, 
while neutrophil infiltration was increased around the skin wound 
in diabetic miR-146a knockout (KO) mice. This suggests that 
miR-146a deficiency impairs wound healing by increasing the 
inflammatory response in diabetic mice (64). These findings 
indicate that miR-146a could be a promising target for improving 
skin wound healing (65). Curcumin has been shown to promote 
diabetic wound healing despite of low bioavailability. One study 
has found that its synthetic analog, (2 E, 6 E) -2,6-bis (2-
(trifluoromethyl) benzylidene) cyclohexanone (C66), increased 
miR-146a levels, downregulated the levels of phosphorylated NF-
κB p65 subunit (p-p65) and interleukin-1 receptor-related kinase 
1 (IRAK1), and inhibited the expression of inflammation-related 
cytokines in wounds of STZ-induced diabetic mice. C66 also 
counteracted high-glucose (HG)-induced NF-κB activation in 

HUVECs by upregulating miR-146a expression (66). In addition, 
miR-497 was found to reduce the expression of pro-inflammatory 
factors such as IL-1β, IL-6, and tumor necrosis factor-α (TNF-
α) both in vivo and in vitro. The expression of miR-497 was 
significantly lower in hyperglycemic human dermal fibroblasts and 
WI-38 cells (67). These studies indicate that miR-146a and miR-
497 are not only eective inflammatory markers but also potential 
targets for the treatment of diabetic skin wounds. However, 
earlier studies showed that miR-497 was downregulated in type 
1 diabetes while upregulated in type 2 diabetes, respectively (68). 
These inconsistent results regarding miR-497 in diabetes may be 
attributed to dierence in sample sources and the conditions of 
diabetic models. 

2.3.2 Angiogenesis 
It has been reported that approximately 25% of diabetic patients 

suer from diabetic foot ulcers (DFU), which are among the 
most common complications in patients with diabetic peripheral 
neuropathy, vascular disease, and foot deformities. The delayed 
healing of DFU is primarily attributed to impaired cellular 
activity, persistent inflammation, and enhanced oxidative stress 
associated with hyperglycemia (69). There is growing evidence 
that miRs play a crucial role in regulating angiogenesis, called 
“AngiomiRs” (70, 71). Delayed wound healing has been linked 
to abnormal production of stromal-derived factor-1α (SDF-1α), 
chronic inflammation, and reduced angiogenesis. MiR-23c has 
been found to be negatively associated with SDF-1α, exerting an 
inhibitory eect on angiogenesis by targeting this factor (72). 
Similarly, miR-92a-3p has also been identified as an eective miR 
that inhibits angiogenesis. MRG-110, a novel nucleic acid-modified 
inhibitor of miR-92a, upregulates the expression of integrin α5, 
a target gene of miR-92a with pro-angiogenic activity, thereby 
increasing angiogenesis and promoting epithelialization, which 
facilitates wound closure (73). In addition, local inhibition of miR-
155 reduced macrophage and T-cell infiltration in wounds and 
suppressed tissue inflammation. Inhibition of miR-155 improved 
re-epithelialization and accelerated wound closure in diabetic 
wound tissue by increasing the expression of fibroblast growth 
factor 7 (FGF-7). These findings suggest that local inhibition 
of miR-155 reduces excessive inflammation and enhances tissue 
re-epithelialization and remodeling, which is beneficial for the 
healing of chronic DFU (74). A research team analyzed the 
expression of lncRNA cancer susceptibility candidate 2 (CASC2) 
in ulcer tissue from both human patients and mice. The results 
indicated that lncRNA CASC2 directly targeted miR-155, while 
hypoxia-inducible factor 1-alpha (HIF-1α) acted as a target gene 
of miR-155. Overexpression of miR-155 abolished the function 
of lncRNA CASC2, whereas inhibition of HIF-1α reversed the 
downregulation eects of miR-155 on fibroblasts. This study 
showed that overexpression of lncRNA CASC2 promoted wound 
healing through the miR-155/HIF-1α pathway in DFU (75). The 
research suggested that miR-155 is involved in the diabetic wound 
healing process in both animals and humans. Additionally, miR-
15b-5p regulates several cellular processes, including DNA repair 
and inflammatory responses, by inhibiting downstream targets. 
Scientists constructed a human wound model to demonstrate 
that S. aureus-triggered miR-15b-5p suppress inflammation and 
DNA repair-related genes, resulting in the accumulation of DNA 
double-strand breaks (DSB) that subsequently facilitate a persistent, 
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FIGURE 2 

Possible involvement of microRNAs (miRs) in human diabetic skin wounds. There is growing evidence that miRs play a crucial role in regulating 
angiogenesis, called “AngiomiRs” including miR-23c and miR-155. MiR-23c negatively targeted stromal-derived factor-1α (SDF-1α) to exert an 
inhibitory effect on angiogenesis in diabetes. MiR-155 inhibited hypoxia-inducible factor 1-alpha (HIF-1α) expression to delay wound closure in 
diabetic wound tissue. In addition, miR-15b-5p suppressed DNA repair and inflammation in diabetic foot ulcers. And miR-193b-3p Cell migration 
and epithelialization acted as an inhibitor of cell migration and epithelialization in diabetic foot ulcers. Taken together, miR-23c, miR-155, 
miR-15b-5p and miR-193b-3p were involved in the impaired human diabetic wound healing by targeting respective target genes. 

unresolved inflammatory state in DFU. That is to say, miR-15b-
5p may serve as a master regulator and a potential therapeutic 
target and/or a biomarker in DFU (76). It was also noted that 
plasma levels of miR-193b-3p were elevated in patients with 
diabetes, although its specific role in DFU remained unknown 
(77). Notably, recent studies have demonstrated that miR-193b-
3p is highly expressed and inhibits wound closure in human 
organotypic wound models, while knockdown of miR-193b-3p 
accelerates wound reepithelialization. Mechanistically, miR-193b-
3p mediates anti-migratory activity by disrupting stress fiber 
formation and reducing the activity of GTPase RhoA. It suggested 
that miR-193b-3p acted as an inhibitor of cell migration and 
epithelialization in DFU (78). In summary, miR-23c, miR-155, 
miR-15b-5p and miR-193b-3p are implicated in the impaired 
diabetic wound healing by targeting specific target genes in human 
(Figure 2). The aforementioned studies on miRs indicated that 
specific miR inhibitors may be beneficial in promoting diabetic 
skin wound healing by exerting anti-inflammatory eects and 
promoting angiogenesis. 

2.4 Burn 

Slow wound healing, along with susceptibility to infection 
and excessive scar formation, remains a significant challenge in 
burn treatment. Burn wound healing is a multi-step process that 
involves various cells and biochemical factors (79). Insights into 
local tissue changes in the skin during the early stages of burns 
can help identify additional biomarkers for burn treatment (80). 
Similar to the critical role of AngiomiRs in diabetic skin wound 
healing, as above mentioned, AngiomiRs are also important in 
the process of burn wound healing. MiR-126 is an endothelial-
specific miR associated with angiogenesis and vascular integrity. 
Expression levels of miR-126 were found to be elevated, while 
HOX transcript antisense intergenic RNA (HOTAIR) and Sciellin 

(SCEL) were downregulated in burn tissue and heat stress-exposed 
HUVECs. Further research demonstrated that miR-126 promoted 
endothelial cell migration, proliferation, and angiogenesis while 
inhibited apoptosis. In contrast, both HOTAIR and SCEL exhibited 
eects opposite to those of miR-126 in HUVECs. Studies 
in vivo showed that miR-126 also promoted burn wound healing 
by mediating angiogenesis (81). In addition, burns trigger a 
systemic response characterized by increased vascular permeability. 
A group of researchers observed that miR-451 expression was 
elevated in endothelial cells within a rat model, which inhibited 
angiogenesis and increased endothelial cells permeability (82). 
Although validation from experiments in vivo is still needed, several 
miRs may emerge as novel targets for burn therapy. 

In human dermal fibroblasts and keratinocytes, miR-486 and 
miR-663 directly target Bcl-2-like protein 14 (BCL2L14), acting as 
an apoptotic activator. The overexpression of miR-486 or miR-663 
increases keratinocyte proliferation while inhibiting human skin 
fibroblast apoptosis. Notably, lidocaine is currently widely used in 
clinical settings for pain relief. Studies have shown that lidocaine 
promotes post-burn skin healing by upregulating the expression 
of miR-486 and miR-663, which may provide a new theoretical 
basis for its use in post-burn skin treatment (83). Another research 
team investigated the eects of iPSCs-derived microvesicles (iPSCs-
MVs) on deep second-degree burn wounds of a mouse model. 
They found that iPSCs-MVs activated the p38/MAPK pathway 
and promoted keratinocyte migration by targeting desmoglein 3 
(Dsg3) via miR-16-5p. Moreover, the topical application of miR-
16-5p facilitated keratinocyte migration, thereby promoting re-
epithelialization of burn wounds (84). MiR-16-5p could represent 
a promising new therapeutic option for deep second-degree burn 
wounds. However, miRs have multiple target genes, and miR-16-
5p can regulate keratinocyte migration through various pathways. 
While the current study has only clarified the role of Dsg3 in this 
process, other underlying mechanisms remain to be elucidated. 
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Recently, miR-135-5p has been linked to prognosis following 
skin transplantation in burn patients. The proviral integration 
site of murine 2 (PIM2) has been identified as a common 
target in anti-apoptotic pathways that increase the survival of 
skin grafts in individuals with severe burns. PIM2 has also been 
recognized as a virtual target of miR-135-5p, which exhibits a 
negative regulatory relationship with miR-135-5p. In summary, 
miR-135-5p negatively impacts with cell viability and apoptosis 
(85). In addition, miR-506-3p has been characterized as either 
a tumor suppressor or an oncogene in fibroblasts derived from 
various tumors. A study revealed that miR-506-3p regulates 
autophagy and proliferation in post-burn skin fibroblasts through 
post-transcriptionally suppressing Beclin-1 expression (58). This 
study provides a promising approach for skin healing treatments 
following burn. However, the safety and bioavailability of applying 
these techniques in clinical applications still remain to be explored. 

2.5 Systemic sclerosis 

Systemic sclerosis is a chronic autoimmune disease 
characterized by immune disorders, vascular lesions, and fibrosis 
of the skin and internal organs (86). It is well-known that skin 
fibrosis serves as an important indicator of various diseases, 
profoundly aecting the patient’s physical condition and life 
quality (87). Numerous studies have confirmed that miRs are 
potential regulators of disrupted signaling pathways involved in 
fibrosis (88). Many newly miRs are now associated with both 
organ-specific and systemic fibrosis. Recently, the targets of these 
altered miRs have been validated, and new biochemical pathways 
have been defined (89). It is worth mentioning that miRs have been 
implicated in vascular injury, immune activation, and fibroblast 
activation. Therefore, miRs may serve as potential biomarkers 
in the progression of SSc (90, 91). One study identified 21 miRs 
and 2698 miRs that were dierentially expressed in SSc (92, 93). 
Detailly, 17 miRs and 33 target miRs (55 miR-mRNA pairs) were 
involved in Wnt signaling, Toll-like receptor and TGF-β pathways. 
MiR-21, miR-31, miR-130b, miR-146b, and miR-34a expression 
were elevated, while miR-145 expression was suppressed in SSc 
skin tissues, fibroblasts, and endothelial cells stimulated with serum 
from SSc patients (94). Although further investigation into the 
underlying mechanisms is still required, this study more or less 
illustrated that miRs play a crucial role in SSc. 

Recently, a research team found that miR-125b was 
downregulated in skin tissues, particularly in human dermal 
fibroblasts from SSc patients. Mechanistically, the downregulation 
of miR-125b increased apoptosis, promoted dermal fibroblast 
proliferation, and increased α-SMA expression, suggesting a 
protective eect against the progression of skin fibrosis in SSc. 
This finding may provide a novel strategy for the treatment (87). 
Dickkopf-1 (DKK-1) serves as a negative regulator in SSc fibrosis, 
and is found to be decreased in SSc skin tissue and fibroblasts, 
rather that in blood. DKK-1 has been identified as a direct target 
of miR-33a-3p, which epigenetically downregulates the expression 
of DKK-1 in tissues and cells from SSc. Consequently, restoring 
DKK-1 levels through epigenetic modulation of miR-33a-3p may 
represent a promising approach for SSc treatment (95). A variety 
of miRs post-transcriptionally regulate gene expression by binding 

to the 3’UTR of their target genes, which can result in multiple 
disorders in SSc. For instance, exogenous miR-5196 has been shown 
to bind to the 3’UTR of the fos-related antigen 2 (fra2) gene and 
reverse monocyte fibrosis. The application of 3-Deazaneplanocin A 
(DZNep) and toll-like receptor 8 agonists promoted the production 
of profibrotic factors, including reactive oxygen species (ROS), 
TIMP-1 and IL-8 in monocytes from patients with SSc. These 
findings may be attributed to the downregulation of miR-5196 in 
monocytes from SSc patients. In addition, the expression of Fra2 
and TIMP-1 was reduced following the exogenous transfection of 
miR-5196, indicating its potential as a target for fibrogenesis in SSc 
(91). In sum, miRs provided new insights for the diagnosis and 
treatment of early-stage SSc. 

Some researchers have examined various miRs in skin biopsies 
from patients with SSc and healthy controls. They confirmed 
that miR-21 and miR-29a regulate collagen production in 
opposing manners. The TGF-β-induced fibrotic response in dermal 
fibroblasts can be attenuated by enhancing miR-29a expression 
or reducing miR-21 activity. Therefore, maintaining the balance 
between miR-21 and miR-29a presents a promising strategy for 
treating SSc and other fibrotic diseases characterized by abnormal 
collagen expression (88). However, the underlying molecular 
mechanisms require further exploration in the future. In a 
bleomycin-induced mouse model, the local injection of chemokines 
(C-X-C motif) ligand (CXCL) 17 significantly attenuated skin 
fibrosis in mice. In the skin tissue of patients with SSc, CXCL17 
expression was detected to be considerably lower than that in 
healthy controls, while CXCL17 expression were elevated in the 
serum of patients with SSc. The low expression of CXCL17 in 
the skin tissue of SSc patients influenced the accumulation of 
type I collagen. Notably, CXCLs have been identified as playing a 
role in the progression of SSc. The proposed mechanism suggests 
that CXCL17 post-transcriptionally regulates the expression of 
type I collagen through miR-29 and matrix metalloproteinase 1 
(MMP1) (96). Therefore, an in-depth investigation of the detailed 
mechanism of miR-29-mediated regulation of collagen expression 
may provide a novel strategy for the treatment of SSc. 

2.6 Skin tumors 

2.6.1 Melanoma 
Melanoma is a malignant skin cancer characterized by a 

high mortality rate, and current treatment outcomes are often 
suboptimal. In 2006, a study first reported the presence of miRs 
existed in melanoma cells. Since then, an increasing number of 
researchers have investigated miR profiles in melanoma to identify 
novel biomarkers (97, 98). Recent studies have revealed that miRs 
play essential roles as regulators in the angiogenesis of melanoma 
(99–101). Specific miR characteristics have demonstrated 
significant diagnostic, prognostic, and predictive value, with 
line-specific and immune-related miRs frequently identified as 
important markers. Currently, the potential of circulating miRs 
as biomarkers for melanoma has been explored in the literature, 
highlighting the necessary advancements to translate miR research 
into therapeutic applications (102). Several melanoma-associated 
miRs have been identified as functioning either upstream or 
downstream of known melanoma oncogenes. MiR-23b was found 
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to be downregulated in melanoma tissue and correlated with 
reduced patient survival. Consequently, the upregulation of 
miR-23b eectively impaired cell viability and colony formation, 
inhibited angiogenesis, and accelerated apoptosis in SK-MEL-28 
cells (103). This suggests that miR-23b may serve as a potential 
preventive factor in melanoma. 

In recent years, several research has uncovered the molecular 
mechanisms underlying malignant melanoma and identified 
various potential therapeutic targets (104–106). MiR-214 analogs 
have been shown to promote survival and migration of melanoma 
cell. Notably, the expression of cell adhesion molecule 1 (CADM1) 
was decreased in melanoma cells. However, miR-214 expression 
was considerably enhanced during the progression of melanoma. 
Specifically, miR-214 promoted epithelial-mesenchymal transition 
(EMT) by downregulating CADM1, while miR-214 inhibitor 
eectively blocked the EMT process (107). In addition, some 
studies have reported that miR-182 expression in malignant 
melanoma tissues is much higher than that in surrounding tissues. 
The downregulation of miR-182 expression prevented malignant 
melanoma cells from proliferating, whereas overexpression of 
miR-182 promoted their growth. In human malignant melanoma 
tissues, the reversion-inducing cysteine-rich protein with Kazal 
motifs (RECK) was downregulated. Moreover, low levels of 
miR-182 promoted RECK expression in malignant melanoma 
cells. MiR-182 regulated RECK expression and inhibited the 
proliferation of malignant melanoma cells, thereby providing 
a novel target for molecular therapy in the treatment of 
malignant melanoma (108). In addition to miR-214/CADM1 
and miR-182/RECK, recent studies have demonstrated that the 
exosomal miR-29c-3p derived from M1 macrophages inhibits 
the invasiveness of melanoma cells through ectonucleotide 
pyrophosphatase/phosphodiesterase 2 (ENPP2) (109). Meanwhile, 
miR-650 facilitated melanoma metastasis by targeting the inhibitor 
of growth family member 4 (ING4). Additionally, extracellular 
vesicles derived from melanoma cells stimulated cancer-associated 
fibroblasts through the miR-92b-3p-mediated downregulation of 
PTEN (110, 111). These findings established a multi-miRNA 
regulatory axis that is crucial for the progression of melanoma. 
Therefore, miRs may serve as promising molecular targets for 
melanoma treatment. 

Previous studies have demonstrated that miR-targeted 
therapy can influence melanoma and increase sensitivity to both 
conventional and immunotherapeutic approaches. Three miRs, 
specifically miR-495-3p, miR-376c-3p, and miR-6730-3p, were 
shown to be enriched in exosomes and microvesicle fractions in 
a P2X purinoceptor 7 (P2 × 7)-dependent manner. These three 
miRs promoted the proliferation and migration of melanoma cells, 
while antagonism of P2 × 7 alleviated their vesicle release. This 
suggests that the pro-metastatic activity of the P2 × 7 receptor 
may be mediated through exosomes/microvesicles and miR (112). 
Additionally, another study indicated that overexpression of 
miR-107 reduced the migration, proliferation, and invasion of 
melanoma cells. The overexpression of POU domain, class 3, 
transcription factor 2 (POU3F2), a downstream target of miR-
107, antagonized miR-107-mediated suppression of melanoma 
cells, highlighting miR-107 as a novel tumor suppressor during 
melanoma metastasis (113). Therefore, these miRs represent 
potential biomarkers for melanoma, providing new strategies for 
the development of personalized treatment approaches. 

2.6.2 Squamous cell carcinoma (SCC) 
Squamous cell carcinoma is a lethal malignancy characterized 

by a high propensity for metastasis (114). Studies have 
demonstrated that elevated expression of tumor necrosis factor-α-
induced protein 8 (TNFAIP8) is associated with the progression of 
SCC. Induction of TNFAIP8 expression in SCC cell lines promotes 
cell growth. Conversely, silencing of TNFAIP8 diminishes cell 
survival and reduces cell migration. Moreover, the study also 
confirmed that miR-205-5p targets the 3’UTR of TNFAIP8, leading 
to the inhibition of TNFAIP8 expression. Accordingly, miR-205-5p 
downregulates TNFAIP8-mediated autophagy, increases sensitivity 
to vemurafenib, and induces apoptosis in the cells. Therefore, miR-
205-5p acts as a tumor suppressor in SCC by targeting TNFAIP8 
(115). In addition, one research team disrupted the expression 
of the tumor suppressor Grainyhead-like 3 (GRHL3), leading 
to a loss of PTEN and the activation of the PI3K/mammalian 
target of rapamycin (mTOR) signaling pathway. This disruption 
promotes the development of aggressive SCC in both mouse 
and human skin. Experimental results indicated that resistant 
SCC exhibited increased miR-21 expression, while antagonists 
of miR-21 restored GRHL3 and PTEN expression levels (116). 
Recently, a team conducted a comprehensive investigation into 
the expression levels of miR-34 family members in patients with 
SCC. They found that the levels of miR-34a and miR-34b/c 
were significantly decreased in these patients. Moreover, both 
miR-34a and miR-34b/c suppressed the proliferation, migration 
and invasion of SCC cells via the Notch1 signaling pathway, with 
miR-34b/c exhibiting a stronger inhibitory eect than miR-34a. 
Furthermore, miR-34a showed a significant association with 
CD44 levels in the patients. The knockdown of CD44 significantly 
reduced the miR-34a-mediated inhibition of cell migration and 

FIGURE 3 

Potential effects and mechanisms of microRNAs (miRs) in 
dermatological diseases. MiRs influences a wide range of 
pathophysiological processes of dermatological diseases including 
psoriasis, skin wound, diabetic skin wound, burn, systemic sclerosis, 
skin tumors, recessive dystrophic epidermolysis bullosa, and 
systemic lupus erythematosus. In terms of mechanism, regulation 
on oxidative stress, inflammation, apoptosis and angiogenesis might 
be responsible for the distinct roles of miRs in skin. 
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invasion. This study confirmed that miR-34 family members 
act as negative regulators of SCC, with their inhibitory eects 
potentially mediated by multiple complex signaling pathways 
(117). Additionally, in healthy epithelia, follistatin-like 1 (FSTL1), 
a pro-metastatic glycoprotein, experiences mRNA destabilization 
by binding of KH-type splicing regulatory protein (KSRP), which 
processes it into primary miR encoding miR-198. However, the 
downregulation of KSRP in SCC terminates miR-198 processing, 
thereby facilitating FSTL1 translation. The deletion of miR-198 
leads to the aberrant expression of the pro-migratory targets. 
Subsequently, pro-invasion proteins, in conjunction with FSTL1, 
enhance SCC invasion and metastasis (118). Therefore, miR-198 
presents a potential biomarker candidate for SCC prognosis. 
A suitable FSTL1 inhibitor, combined with a compound to restore 
the expression of the tumor suppressor miR-198, may significantly 
limit metastatic spread in SCC. 

2.6.3 Basal cell carcinoma (BCC) 
Few studies have investigated the dierential expression 

of miRs in BCC, and the regulatory roles of miRs in BCC 
development remain unclear. MiR-451a has been identified as a 
tumor suppressor in cutaneous BCC. By assessing miR-451a levels 
in human BCC tissues and in an inducible BCC mouse model, 
researchers found that miR-451a was significantly reduced. The 
overexpression of miR-451a in tumor cells markedly inhibited cell 
growth by inducing G1 cell cycle arrest, while the inhibition of miR-
451a in primary cells promoted cell growth and colony-forming 
ability. Further studies confirmed T-box 1 (TBX1) as a downstream 
target of miR-451a, indicating that miR-451a/TBX1 axis plays a 
critical role in BCC tumorigenesis. In subsequent stage, it will be 
essential to verify the therapeutic eects of the topical application 
of miR-451a, which will provide a comprehensive understanding of 
its clinical eÿcacy of BCC treatment (119). Another team collected 
tissue samples from 20 patients with BCC and 20 healthy controls 
(HC) to compare the expression of miR-18a in these samples. 
They found that miR-18a exerts oncogenic eects through the 
Akt/mTOR/Beclin 1/protein light chain 3 (LC3) pathway, and 

the antitumor eects of miR-18a inhibitors may be a promising 
approach for the treatment of BCC (120). 

Taken together, the studies mentioned above reveal the 
regulatory eects and fundamental biological roles of miRs in 
skin tumors. This understanding will contribute to elucidating the 
molecular pathogenesis of melanoma, SCC and BCC. 

2.7 Other dermatological diseases 

Recessive dystrophic epidermolysis bullosa is a skin fragility 
disorder caused by mutations in the COL7A1 gene, which encodes 
type VII collagen. This condition is characterized by persistent 
blistering, chronic wounds with significant inflammation and 
fibrosis. Inhibition of miR-145p-5p in RDEB skin fibroblasts 
significantly increased the expression of the transcriptional 
repressor Krüppel-like factor 4, which regulates contractile 
proteins, inhibited the fibrosis inducer Jagged1, and ultimately 
reduced the levels of the contractile markers α-SMA and transgelin 
(121). These data highlighted the profibrotic role of miR-145-
5p and associated regulatory networks in RDEB, shedding light 
on novel pathomechanisms and potential therapeutic targets for 
future interventions. 

Systemic lupus erythematosus is an autoimmune illness with 
an unknown cause and pathogenic mechanism. The persistent 
autoimmune response associated with SLE can damage tissues or 
organs, leading to lesions or relevant symptoms. Recent studies 
have highlighted the crucial role of miRs in regulating both innate 
and adaptive immune responses (122–124). Subacute cutaneous 
lupus erythematosus (SCLE) and discoid lupus erythematosus 
(DLE) are two common forms of the disease that present 
with skin lesions in 80 percent to 90 percent of patients. 
Specific overexpression of miR-31 activated NF-κB pathway, 
leading to apoptosis in keratinocytes and the production of 
inflammatory cytokines that promote the recruitment of neutrophil 
and monocyte to sites of inflammation. Stimulation with IL-
1α and TGF-β1 elevated the expression of miR-485-3p in 
peripheral blood monocytes from patients with DLE and triggered 

TABLE 1 The levels, target genes, primary functions, target cells and mechanisms of pleiotropic microRNAs (miRs). 

MiRs Disease Levels Target genes Primary functions Target cells Mechanisms References 

miR-21 Psoriasis ↑ CD11b (ITGAM) Disrupt macrophage function; 
Promoted keratinocyte 

proliferation 

Keratinocytes, 
Macrophages 

Immune dysregulation (32) 

Skin wound ↑ PTEN/PI3K-AKT Enhanced fibroblast migration; 
Accelerated re-epithelialization 

Dermal Fibroblasts Pro-repair ECM remodeling (48) 

Melanoma ↑ PTEN/RECK (via 

exosomes) 
Promoted metastasis; 

Angiogenesis 
Tumor cells, Stroma Exosome-mediated 

tumor-stroma crosstalk 

(108) 

Systemic sclerosis ↑ miR-29a/TGF-β Drived collagen deposition Dermal Fibroblasts Fibrotic ECM stabilization (88) 

miR-155 Diabetic foot ulcers ↑ FGF-7/HIF-1α Impaired re-epithelialization Fibroblasts, 
Endothelial cells 

Metabolic memory impairment (75) 

Arsenic 

dermatopathy 

↑ Immune regulators Exacerbated immune dysfunction Lymphocytes Chemical toxicity response (126) 

miR-146a Diabetic skin wound ↓ IRAK1/NF-κB Failed to suppress inflammation Macrophages, 
Keratinocytes 

Hyperglycemia-induced 

signaling dysregulation 

(66) 

Skin wound ↑ ZO-1, ZO-1 Restored barrier function Keratinocytes Silencing of tight junction 

proteins by biofilm infection 

(53) 
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TABLE 2 The levels, targets and effects of microRNAs (miRs) in dermatological diseases. 

Diseases MiRs Levels Targets 
molecules 

Effects References 

Psoriasis miR-215-5p ↓ EGFR MiR-215-5p overexpression inhibited HaCaT cell proliferation and 

diminished psoriasis-like inflammation. 
(27) 

miR-21 ↑ caspase -8, apaf-1 MEG3/miR-21 axis contributed to the proliferation and apoptosis of 
psoriatic keratinocytes. 

(31) 

CD11b Upregulation of miR-21 expression induced Mac-1 function 

disturbance, innate immune cell abnormality, and the cytokines 
secretion excess in psoriasis pathogenesis. 

(32) 

miR-744-3p ↑ KLLN Up-regulated miR-744-3p in psoriasis regulated the proliferation 

and dierentiation of keratinocytes by targeting KLLN. 
(34) 

miR-146b, miR-10b ↑ ACKR2 Bound directly to the 3’-UTR of ACKR2, then suppressed ACKR2 

transcription and protein expression in keratinocytes and lymphoid 

endothelium cells, respectively. 

(35) 

miR-146a-5p, miR-21-5p, 
miR-122-5p 

↑ MAPK, JAK, STAT, 
NF-κB 

Acitretin inhibited inflammatory response and keratinocyte 

proliferation to attenuated the development of psoriasis via 

reducing miRs expression. 

(36) 

miR-31 ↑ STAT3, p53 Overexpression of miR-31 led to STAT3 upregulation and p53 

enhancement, and induced keratinocytes hyperproliferation. 
(37) 

miR-17-3p ↑ CTR9 MiR-17-3p promoted keratinocyte proliferation and 

pro-inflammatory cytokine secretion. 
(38) 

miR-210 ↑ IL-17A, INF-γ NG-anti-miR210 ameliorated erythematous dermatitis, attenuated 

scaling and acanthosis, and inhibited skin inflammatory cell 
infiltration. 

(39) 

Skin wound miR-21 ↑ – Intradermal injection of miR-21 plasmid around skin wounds 
improved healing and alleviating age-related skin wound defects. 

(46) 

PTEN MiR-21 accelerated wound healing by increasing DCs through 

PTEN inhibition via Akt/PI3K signal pathway. 
(47) 

α-SMA, N-cadherin, 
MAPK, ERK 

MV miR-21promoted the migration and dierentiation of 
fibroblasts. 

(40) 

miR-19b ↑ CCL1 Human ADMSCs-derived miR-19b improved cutaneous wound 

healing by targeting CCL1 via TGF-β pathway. 
(50) 

miR-23b ↑ ASK1 MiR-23b mediated ASK1 to inhibit inflammation, thereby 

promoting wound healing. 
(42) 

TIMP3 MiR-23b promoted keratinocyte migration by downregulating 

TIMP3. 
(50) 

miR-106b ↓ VEGF, TGF-β1 MiR-106b delayed wound healing by inhibiting the angiogenesis 
process. 

(52) 

miR-146a, miR-106b ↓ - Topical delivery of miR-146a and miR-106b inhibitors restored 

barrier function and promoted wound closure. 
(53) 

miR-212 ↑ - MiR-212 knockdown alleviated the improvement eects of 
resveratrol in keratinocyte proliferation and migration, thereby 

inhibiting skin wound healing. 

(54) 

miR-31 ↑ FBN1 MiR-31 overexpression accelerated HEKa migration through FBN1. (55) 

miR-206 ↓ VEGFA ZEB1 enhanced angiogenesis to promote skin wound healing by 

inhibiting miR-206 and increasing VEGFA expression. 
(56) 

miR-21-5p, miR-125b-5p ↑ TGFBR2, TGFBR1 MiR-21-5p and miR-125b-5p inhibited TGFBR2 and TGFBR1, 
respectively, thereby aecting the TGF-β1 signaling pathway to 

hinder myofibroblast dierentiation. 

(57) 

miR-29b ↑ HSP47 Local injection of miR-29b lentiviral particles suppressed the 

expression of HSP47, blocked collagen synthesis and inhibited 

angiogenesis, thereby alleviating scar formation. 

(59) 

miR-21-5p ↑ PTEN/AKT EB irradiation regulated miR-21-5p to aect autophagy, migration, 
and apoptosis of keloid fibroblasts, and finally prevented local 

invasion and recurrence. 

(60) 

(Continued) 
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TABLE 2 (Continued) 

Diseases MiRs Levels Targets 
molecules 

Effects References 

Diabetic skin 

wound 

miR-146a ↑ – MiR-146a deficiency slowed wound healing by increasing the 

inflammatory response in diabetic mice. 
(64) 

p-p65, IRAK1, 
NF-κB 

C66 increased miR-146a levels, down-regulated the levels of p-p65 

and IRAK1, and inhibited inflammation-related cytokine 

expression. 

(66) 

miR-497 ↓, ↑ IL-1β, IL-6, TNF-α MiR-497 reduced the expression of pro-inflammatory factors in vivo 

and in vitro. 
(67) 

miR-23c ↑ SDF-1α MiR-23c exerted an inhibitory eect on angiogenesis by targeting 

SDF-1α. 
(72) 

miR-92a-3p ↑ Integrin α5 MiR-92a inhibitor up-regulated the expression of integrin α5 to 

increase angiogenesis, promote epithelialization, thereby facilitating 

wound closure. 

(73) 

miR-155 ↑ FGF-7 Local inhibition of miR-155 reduced macrophage and T-cell 
infiltration in wounds and suppressed tissue inflammation. 

(74) 

– HIF-1α Overexpression of lncRNA CASC2 promoted wound healing 

through miR-155/HIF-1α in DFU 

(75) 

miR-15b-5p – – MiR-15b-5p suppressed inflammation and DNA repair-related 

genes, leading to the accumulation of DNA DSB. 
(76) 

miR-193b-3p ↑ – MiR-193b-3p mediated anti-migratory activity by disrupting stress 
fiber formation and reducing the activity of GTPase RhoA. 

(78) 

Burn miR-126 ↑ – MiR-126 promoted endothelial cell migration, proliferation, and 

angiogenesis but inhibited apoptosis. 
(81) 

miR-451 ↑ – MiR-451 inhibited angiogenesis and increased endothelial cells 
permeability. 

(82) 

miR-486, miR-663 ↑ BCL2L14 Overexpression of miR-486 or miR-663 increased keratinocyte 

proliferation while inhibited human skin fibroblast apoptosis. 
(83) 

miR-16-5p – Dsg3 IPSCs-MVs activated the p38/MAPK pathway and promoted 

keratinocyte migration by targeting Dsg3 via miR-16-5p. 
(84) 

miR-135-5p – PIM2 MiR-135-5p interfered with cell viability and apoptosis. (85) 

miR-506-3p ↑ Beclin-1 MiR-506-3p regulated autophagy and proliferation in post-burn 

skin fibroblasts through post-transcriptionally suppressing Beclin-1 

expression. 

(58) 

Systemic 

sclerosis 
miR-125b ↓ – MiR-125b downregulation increased apoptosis, promoted dermal 

fibroblast proliferation, and increased α-SMA expression. 
(87) 

miR-33a-3p – DKK-1 MiR-33a-3p down-regulated the expression of DKK-1 in tissues and 

cells from SSc. 
(95) 

miR-5196 ↓ fra2 The expression of Fra2 and TIMP-1 was reduced by exogenous 
transfection of miR-5196. 

(91) 

miR-21, miR-29a ↑, ↓ – The TGF-β-induced fibrotic response in dermal fibroblasts was able 

to be attenuated after miR-29a expression enhancement or miR-21 

activity reduction. 

(88) 

miR-29 – – CXCL17 post-transcriptionally regulated the expression of type I 
collagen through miR-29 and MMP1. 

(96) 

Melanoma miR-23b ↓ – MiR-23b up-regulation successfully impaired cell viability and 

colony formation, inhibited angiogenesis and accelerated apoptosis 
in SK-MEL-28. 

(103) 

miR-214 ↑ CADM1 MiR-214 promoted EMT by downregulating CADM1, while 

miR-214 inhibitor blocked the EMT process. 
(107) 

miR-182 ↑ RECK MiR-182 regulated RECK expression and inhibited the proliferation 

of malignant melanoma cells. 
(108) 

miR-495-3p, miR-376c-3p, 
miR-6730-3p 

↑ P2 × 7 Three miRNAs increased the proliferation or migration of 
melanoma cells. 

(112) 

miR-107 – POU3F2 MiR-107 overexpression reduced migration, proliferation, and 

invasion of melanoma cells. 
(113) 

(Continued) 
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TABLE 2 (Continued) 

Diseases MiRs Levels Targets 
molecules 

Effects References 

Squamous cell 
carcinoma 

miR-205-5p ↓ TNFAIP8 MiR-205-5p downregulated TNFAIP8-mediated autophagy, 
increased sensitivity to vemurafenib, and induced apoptosis. 

(115) 

miR-21 ↑ – Antagonists of miR-21 rescued GRHL3/PTEN expression levels (115) 

miR-34a, miR-34b/c ↓ Notch1 Both miR-34a and miR-34b/c inhibited the proliferation, migration 

and invasion of SCC cells through the Notch1 pathway. 
(117) 

Basal cell 
carcinoma 

miRNA-451a ↓ TBX1 Overexpression of miRNA-451a significantly inhibited cell growth 

through G1 cell cycle arrest. 
(119) 

miR-18a ↑ Akt, mTOR, Beclin 

1, LC3 

MiR-18a exerted oncogenic eect. (120) 

Recessive 

dystrophic 

epidermolysis 
bullosa 

miR-145p ↑ Unknown MiR-145-5p demonstrated a profibrotic role in RDEB. (121) 

Systemic lupus 
erythematosus 

miR-31, miR-485-3p ↑ NF-κB, PGC-1α Overexpression of miR-31 and miR-485-p regulated the production 

of inflammatory factors, thereby inducing DLE skin inflammation. 
(125) 

T cell activation. Furthermore, overexpression of miR-485-3p 
promoted fibrosis in dermal fibroblasts by targeting peroxisome 
proliferator-activated receptor-gamma coactivator-1α (PGC-1α) 
(125). This study demonstrates that overexpression of miR-31 
and miR-485-p regulates the production of inflammatory factors, 
recruits neutrophils and monocytes to the skin, and induces skin 
inflammation associated with DLE, thereby providing new insights 
for clinical treatment of DLE. 

It is worth noting that miRs also play a significant role in many 
other skin diseases, including photoaging, alopecia, pigmentation 
disorders (such as chloasma, vitiligo, and albinism), acne, 
dermatitis, and urticaria (12–17). These studies demonstrate that 
miRs have regulatory eects on various dermatological diseases. 

3 Clinical study and novel 
applications of miRs in 
dermatological diseases 

Currently, some scientists are investigating miRs for clinical 
research in dermatological diseases. A research team selected 
75 patients with significant skin damage from the confirmed 
endemic areas of coal-burning arsenism as study subjects. Research 
indicated that Ginkgo biloba downregulated intracellular miR-155-
5p and improved arsenic-induced immune dysfunction, thereby 
reducing the expression of biomarkers associated with arsenic-
induced skin damage (126). As mentioned above, certain miRs 
can regulate angiogenesis, with miR-424 functioning as a tumor 
suppressor gene. Specifically, miR-424 modulates VEGF and basic 
fibroblast growth factor (bFGF) signaling in HUVECs by targeting 
VEGF, VEGFR2, and fibroblast growth factor receptor 1 (FGFR1), 
thereby inhibiting endothelial cell proliferation, migration, tube 
formation, and angiogenesis. Conversely, miR-424 promotes 
angiogenesis in hypoxic endothelial cells, suggesting that its eects 
may be context-dependent. Notably, a clinical study found low 
expression levels of miR-424 in infantile skin hemangioma tissue. 
Furthermore, miR-424 can inhibit the bFGF/FGFR1 pathway 

and suppress ERK1/2 phosphorylation, thereby attenuating cell 
proliferation, migration, and tube formation capacity, ultimately 
delaying the development of cutaneous hemangiomas in infants 
(127). A project evaluated angio-miRs (miR-92a, miR-126-3p, miR-
221, miR-222) and inflamma-miRs (miR-21-5p, miR-146a-5p) in 
psoriasis patients undergoing adalimumab treatment. The study 
confirmed that reductions of miR-146a levels were associated 
with improvements in the Psoriasis Area and Severity Index 
(PASI), suggesting that the inhibition of miR-146a may help 
alleviate psoriasis (128). Nevertheless, larger-scale clinical studies 
are indispensable to determine and fully validate the clinical role of 
miRs in dermatological diseases. 

Over the past few decades, significant progress has been 
made in understanding the potential eects of miRs on various 
dermatological diseases (129–131). The regulation of oxidative 
stress, inflammation, apoptosis, and angiogenesis may account 
for the distinct roles of miRs in skin (Figure 3). However, the 
precise mechanisms by which miRs influence skin diseases remain 
to be fully elucidated. With the rapid advancements in materials 
science, the integration of miRs with novel materials presents 
new opportunities for treating skin diseases. A research group has 
developed a miR-21-mimicking nanocarrier system utilizing facial 
amphiphilic bile acid-conjugated polyethyleneimines (BA-PEI) for 
the intracellular and transdermal delivery. These miRs nanocarrier 
systems have been shown to enhance the speed and quality of 
wound healing, promote collagen synthesis, and accelerate wound 
re-epithelialization (132). 

Synovial mesenchymal stem cells (SMSCs) can enhance 
fibroblasts’ proliferation. However, their eect on promoting 
angiogenesis is not as pronounced. Recent studies have reported 
that the overexpression of miR-126-3p can transfer the angiogenic 
capacity of endothelial progenitor cells to SMSCs. Exosomes 
derived from SMSCs overexpressing miR-126-3p (SMSC-
126-Exos) activated human dermal fibroblasts and dermal 
microvascular endothelial cells (HMEC-1) in a dose-dependent 
manner. The gene overexpression in these modified cells allowed 
SMSC-126-Exos to serve as an eÿcient drug delivery system, 
presenting limitless possibilities for future therapies targeting skin 
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wounds (133). Additionally, wound healing can be facilitated by 
both magnetic nanoparticles (MNPs) and exosomes produced 
from bone mesenchymal stem cells (BMSC-Exos) (134). BMSCs 
will produce novel exosomes (mag-BMSC-Exos) in response to the 
stimulation of MNPs and a static magnetic field (SMF). MiR-21 is 
a blood vessel-specific molecule that regulates angiogenesis and 
fibrosis. Notably, miR-21-5p has been found to be highly enriched 
in mag-BMSC-Exo, enabling it to be delivered into resident 
HUVECs and human skin fibroblasts. This delivery stimulates 
their regenerative response, thereby accelerating skin wound repair 
and regeneration. The upregulation of miR-21-5p may improve 
wound healing through the action of mag-BMSC-Exos (135). 
Therefore, the biologically active miR-21-5p can serve as a carrier 
for delivering therapeutic agents to recipient cells, providing a 
promising strategy for clinically promoting wound healing. 

Multiple previous studies have shown that increased 
inflammation and decreased expression of miR-146a delay diabetic 
wound healing. To address this issue, a research team coupled 
miR-146a with cerium oxide nanoparticles (CNP), targeting ROS 
and inflammation. Administration of CNP-miR-146a at a dose 
of 100 ng shortened wound healing time, reduced inflammation, 
and increased angiogenesis, thereby promoting diabetic wound 
healing without compromising the biomechanical properties of 
the healed skin (136). In addition, anofilaments composed of 
silk fibroin successfully carried CNP-miR-146a and improve the 
biological properties of diabetic skin. This approach promoted 
the healing of diabetic wounds by synergistically reducing 
oxidative stress, inhibiting pro-inflammatory gene signaling, and 
promoting fibrosis (137). This nanotechnology-based therapy 
shows promising potential for future applications. 

4 Pleiotropic roles of miRs across 
dermatological diseases 

It is noteworthy that the same miR can exert divergent, 
and even opposing, eects in dierent dermatological conditions 
due to cell-type specificity, micro-environmental cues, and 
disease-specific target gene networks. This context-dependent 
functionality highlights the complexity of miR regulation in skin 
pathophysiology. Below, we summarize the pleiotropic roles of 
miR-21, miR-155, and miR-166a across various dermatological 
diseases (Table 1). 

5 Conclusion 

In recent years, miRs have been reported to be implicated in 
various pathophysiological processes of dermatological diseases, 
including psoriasis, skin wound, diabetic skin wound, burn, 
SSc, skin tumors (melanoma, SCC and BCC), RDEB, and SLE. 
Mechanistically, the regulation of oxidative stress, inflammation, 
apoptosis, and angiogenesis may account for the distinct roles 
of miRs in skin (Figure 3 and Table 2). A deeper understanding 
of dierent miRs and their related regulatory targets is essential 
for elucidating the pathophysiology of numerous skin diseases. 
Moreover, the combination of miRs with novel materials or 
compounds may oer innovative approaches for the treatment of 

skin diseases. However, further research is necessary to facilitate the 
translation into clinical applications for dermatological diseases. 

Beyond the diseases discussed herein, miRs are increasingly 
recognized as key players in a variety of other dermatological 
conditions, including photoaging, alopecia, pigmentary disorders, 
acne, and inflammatory dermatoses such as dermatitis and 
urticaria. Future research should continue to elucidate the specific 
miR signatures and their functional roles in these prevalent 
conditions, building upon the mechanistic frameworks and 
therapeutic concepts explored in this review for other skin diseases. 
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