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Background: Distant metastasis is a key factor contributing to poor prognosis

in renal cell carcinoma (RCC). Early prediction of metastasis is crucial for

developing personalized treatment plans and improving patient outcomes. This

study aimed to establish and validate a clinical prediction model for distant

metastasis in RCC patients.

Methods: Ten machine learning algorithms were employed to develop a

predictive model for distant metastasis in RCC. Data from 51,566 RCC patients

in The Surveillance, Epidemiology, and End Results (SEER) database (2010–

2018) were used for model development, while 726 RCC patients from the

First Hospital of Shanxi Medical University were selected for external validation.

Hyperparameters were optimized using grid search and tenfold cross-validation.

Model performance was assessed using metrics such as the area under the

receiver operating characteristic curve (AUC), the area under the precision-

recall curve (AUPRC), decision curve analysis, calibration curves, precision,

and accuracy. Shapley additive explanations (SHAP) were used for model

interpretation. The best-performing model was then used to create a web-based

calculator to predict metastasis risk in RCC patients.

Results: The study included 51,566 RCC patients, with 3,667 showing distant

metastases. Logistic regression identified tumor size, grade, T-stage, N-stage,

radiotherapy, chemotherapy, and surgery as independent risk factors. The

Extreme Gradient Boosting (XGB) model demonstrated superior performance

(AUC: 0.957, Accuracy: 0.898) in the training set and was validated externally

(AUC: 0.742, Accuracy: 0.904). A web-based calculator was developed

using the XGB model.

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1624198
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1624198&domain=pdf&date_stamp=2025-07-29
https://doi.org/10.3389/fmed.2025.1624198
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1624198/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1624198 July 24, 2025 Time: 18:11 # 2

Hou et al. 10.3389/fmed.2025.1624198

Conclusion: This study designed and validated an XGB model using

clinicopathologic data to predict the risk of distant metastasis in RCC patients,

potentially aiding clinical decision-making.

KEYWORDS

renal cell carcinoma, distant metastasis, machine learning, predictive modeling,
external validation, web-based calculator

1 Introduction

Renal cell carcinoma is the 14th most common malignancy
worldwide, with over 430,000 new cases reported in 2020, and
is the most common histopathological subtype, constituting
approximately 90% of all renal malignancies (1). According to
relevant epidemiological evidence, renal cancer is the ninth most
diagnosed cancer in female patients and the sixth most diagnosed
in male patients, accounting for 3% and 5% of all malignant
tumor diagnoses, respectively (2). Despite the increase in its
incidence, overall mortality from RCC has been decreasing (3, 4).
Advances in therapeutic strategies such as targeted therapies and
immune checkpoint inhibitors (ICIs) have led to an improvement
in the prognosis of patients with RCC (5), but there is a
significant difference in the prognosis of patients with limited
and metastatic renal cancer. The 5 years survival rate is nearly
93% for limited renal cancer and only 17% for patients with
distant metastases (2, 6). Previous studies have shown that 18%–
30% of RCC patients present with systemic metastases at initial
diagnosis, and an additional one-third develop metastatic disease
following nephrectomy during long-term follow-up (7, 8). Among
metastatic RCC (mRCC) cases, approximately 75% exhibit three or
more metastatic locations (9). Therefore, identifying risk factors
for RCC metastasis, as well as developing metastasis prediction
models, is essential for improving the survival prospects of
patients with RCC.

Artificial Intelligence (AI) is a branch of computer science
focused on creating systems capable of performing tasks that
typically require human intelligence (10). Machine learning
(ML) is at the heart of AI, which uses algorithms to enable
machines to train or learn from large amounts of empirical data
without specific computer programming, to generate patterns
to form corresponding models, and iteratively refine predictive
models without explicit programming (11). Traditional statistical
methods emphasize hypothesis testing and causal inference under
rigid parametric assumptions, which inherently constrains their
capacity to enhance predictive accuracy and generalizability
in complex, real-world clinical scenarios. Furthermore, their
reliance on manual feature engineering and linearity assumptions

Abbreviations: RCC, renal cell carcinoma; SEER, Surveillance, Epidemiology,
and End Results; LR, Logistic Regression; DT, Decision Trees; RF, Random
Forests; NBC, Naive Bayes; KNN, K Nearest Neighbors; SVM, Support
Vector Machines; Enet, Elastic Networks; MLP, Multilayer Perceptrons;
XGB, Extreme Gradient Boosting; LightGBM, Lightweight Gradient Boosting
Machine; ROC, receiver operating characteristic; PR, Precision-Recall; DCA,
Decision Curve Analysis; SHAP, Shapley’s Additive Explanation.

fundamentally limits scalability when analyzing high-dimensional
biomedical data or unstructured clinical data streams (12).
ML can integrate computer science and statistics with medical
problems, and its use of complex algorithms running on large-
scale, heterogeneous datasets can be used to discover useful models.
As summarized by Suarez-Ibarrola et al. (13) ML and Deep
Learning (DL) were found to outperform traditional statistical
methods in diagnosis, prediction of response to treatment,
prediction of pathology grading, and patient survival in urological
disorders such as urolithiasis, renal cancer, prostate cancer,
and bladder cancer.

In this study, ten ML predictive models were developed
based on conventional clinicopathological parameters to identify
the key factors influencing distant metastasis in RCC. The
performance of these models was comprehensively evaluated using
multiple metrics, and the interpretability of their key features
was thoroughly addressed. Ultimately, the optimal models were
integrated into a clinical practice framework to assist in the
screening of high-risk patients, thereby improving the accuracy
of the diagnosis of distant metastasis of RCC and providing an
evidence-based basis for the development of therapeutic guidelines
and standards of care.

2 Materials and methods

2.1 Data source and patient cohorts

This study used a retrospective cohort design with data
from the Surveillance, Epidemiology, and End Results (SEER)
database (2010–2018) established by the National Cancer Institute
and an independent validation cohort at the First Hospital of
Shanxi Medical University (2013–2021) The SEER database covers
28% of the United States population and provides us with a large
amount of data from cancer-related research, and information on
metastatic tumors has been systematically collected since 2010 (14).
Patients with RCC meeting the following criteria were extracted
by SEER∗STAT 8.4.4 software. Inclusion criteria: histologically
confirmed primary RCC (International Classification of Diseases
of Oncology ICD-O-3 codes: 8120/3 for migratory cell carcinoma,
8130/3 for papillary migratory cell carcinoma, 8260/3 for papillary
adenocarcinoma, 8310/3 for clear cell adenocarcinoma, 8312/3 for
renal cell carcinoma, 8317/3 for chromophobe cell carcinoma)
Exclusion criteria: (1) missing demographic/tumor characteristics
(age, sex, tumor size, TNM stage, etc.); (2) autopsy-confirmed
diagnosis; and (3) unknown survival time or cause of death.
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A total of 51,566 patients from the SEER cohort were ultimately
included. The data were divided into training and testing sets
in a 7:3 ratio, with 726 patients from a single-center cohort in
China used for external validation. The study variables included
three major dimensions: demographic characteristics (age, gender,
race, and marital status), tumor characteristics: (size, histological
subtype, laterality, grading, and T/N/M staging), and treatment
modalities: (surgery, radiotherapy, and chemotherapy). This study
followed the Declaration of Helsinki, SEER data were granted an
ethical exemption due to de-identified characteristics (open access
number)1, and the external validation cohort received approval
from the Ethics Committee of the First Hospital of Shanxi Medical
University (approval number: 2018 K006). Specific information
about the SEER and external validation of the RCC cohort is shown
in Table 1. The study flow of this paper is shown in Figure 1.

2.2 Feature screening

This study employed LASSO regression for feature
dimensionality reduction to select candidate variables.
Subsequently, univariate logistic regression was performed
to preliminarily identify potential predictors associated with
metastasis. Multivariate logistic regression was then used to
determine the independent risk factors for distant metastasis
in RCC (P < 0.05). These key variables were subsequently
incorporated into the machine-learning modeling process.

2.3 Model development and evaluation

This study employs ten machine learning algorithms: Logistic
Regression (LR) (15), Decision Trees (DT) (16), Random Forests
(RF) (17), Naive Bayes (NBC) (18), K Nearest Neighbors (KNN)
(19), Support Vector Machines (SVM) (20), Elastic Networks
(Enet) (21), Multilayer Perceptrons (MLP) (22), Extreme Gradient
Boosting (XGB) (23), Lightweight Gradient Boosting Machine
(LightGBM) (24).

The models were developed using a training dataset.
Notably, Logistic Regression was evaluated using 10-fold cross-
validation but did not require hyperparameter tuning due to its
straightforward nature. Conversely, grid search hyperparameter
tuning was conducted for the remaining nine machine learning
algorithms, building upon the results from the 10-fold cross-
validation, to ensure optimal performance and mitigate the risk of
overfitting. The specifics of the hyperparameter optimizations are
as follows:

Decision Tree (DT): Parameters optimized included the Cost-
Complexity Parameter (cost_complexity), maximum depth of the
tree (tree_depth), and the minimum number of data points in
a node (min_n).

Random Forest (RF): Optimization focused on the number of
features randomly selected for splitting (mtry), the number of trees
(trees), and the minimum number of data points in a node (min_n).

1 http://seer.cancer.gov/about/

Naive Bayes (NBC): The relative smoothness of the class
boundary (smoothness) and the Laplace correction parameter
(Laplace) were optimized.

K Nearest Neighbors (KNN): A single integer representing the
number of neighbors to consider (neighbors) was optimized.

Support Vector Machines (SVM): Parameters optimized
included the cost of predicting samples within or beyond
the margin (cost) and the sigma value for the Radial Basis
Function (rbf_sigma).

Elastic Networks (Enet): Optimized parameters included the
amount of regularization (penalty) and the proportion of Lasso
Penalty (mixture).

Multilayer Perceptrons (MLP): Key parameters optimized were
the number of units in the hidden layer (hidden_units), the amount
of regularization (penalty), and the number of training iterations
(epochs).

Extreme Gradient Boosting (XGB): The optimization process
included the number of predictors randomly sampled at each
split (mtry), maximum depth of the tree (tree_depth), minimum
number of data points in a node (min_n), learning rate (learn_rate),
loss reduction required for additional splits (loss_reduction), and
size of the dataset exposed during fitting (sample_size).

Lightweight Gradient Boosting Machine (LightGBM): The
number of predictors sampled at each split (mtry), the number of
trees in model training (trees), minimum number of data points in
a node (min_n), maximum depth of the tree (tree_depth), learning
rate (learn_rate), and minimum loss reduction (loss_reduction)
were all subjects of optimization. The specific hyperparameter
values for each model are provided in Supplementary Table 1.

To assess the generalization ability of the models, the ten
developed models were applied to both the internal test set and
external validation set. The performance was comprehensively
evaluated using receiver operating characteristic (ROC) curves,
Precision-Recall (PR) curves, calibration curves, and confusion
matrix results on the training set, internal test set, and external
validation set. The model with the best performance was selected
based on the relevant metrics.

Additionally, Shapley Additive Explanations (SHAP), a model-
agnostic interpretability technique based on cooperative game
theory, was employed to explain the predictions made by the best-
performing ensemble machine learning model (25). The SHAP
method was used to calculate the importance of each variable in
the optimal model. Finally, we constructed a network calculator
to facilitate the generalization and application of the model in
clinical settings.

2.4 Statistical analysis

Data analysis was performed using R software (version 4.2.2).
Due to the marked imbalance in the number of RCC patients
with distant metastases compared to those without, we applied
the Synthetic Minority Over-sampling Technique (SMOTE) to
increase the number of patients with distant metastases, thereby
mitigating the impact of class imbalance on model performance.
SMOTE generates synthetic samples and incorporates them into
the minority class to address the imbalance in the original dataset,
ultimately improving model accuracy (26). Chi-square tests and
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TABLE 1 Characterization of clinical and pathological data in the training, test, and validation cohort.

Variables SEER database (N = 51,566) External validation (N = 726) P-value

Train (N = 36,096) Test (N = 15,470)

Age, n (%)

< 50 6,882 (19.1) 3,001 (19.4) 48 (6.6) P < 0.001

50–60 9,698 (26.9) 4,004 (25.9) 78 (10.7) –

60–70 11,378 (31.5) 4,984 (32.2) 67 (9.2) –

≥ 70 8,138 (22.5) 3,481 (22.5) 533 (73.4) –

Sex, n (%)

Male 22,802 (63.2) 9,833 (63.6) 468 (64.5) P = 0.566

Female 13,294 (36.8) 5,637 (36.4) 258 (35.5) –

Race, n (%)

White 29,854 (82.7) 12,876 (83.2) 0 (0.0) P < 0.001

Black 3,656 (10.1) 1,544 (10.0) 0 (0.0) –

American Indian/Alaska Native 368 (1.0) 146 (0.9) 0 (0.0) –

Asian or Pacific Islander 2,218 (6.1) 904 (5.8) 726 (100.0) –

Marital, n (%)

Single (never married) 5,850 (16.2) 2,508 (16.2) 5 (0.7) P < 0.001

Married (including common law) 23,719 (65.7) 10,255 (66.3) 707 (97.4) –

Separated 440 (1.2) 173 (1.1) 0 (0.0) –

Divorced 3,452 (9.6) 1,462 (9.5) 5 (0.7) –

Widowed 2,487 (6.9) 1,012 (6.5) 9 (1.2) –

Unmarried or domestic partner 148 (0.4) 60 (0.4) 0 (0.0) –

Size, n (%)

≤ 5 22,307 (61.8) 9,602 (62.1) 174 (24.0) P < 0.001

> 5 13,789 (38.2) 5,868 (37.9) 552 (76.0) –

Laterality, n (%)

Right 18,330 (50.8) 7,889 (51.0) 382 (52.6) P = 0.578

Left 17,766 (49.2) 7,581 (49.0) 344 (47.4) –

Tumor histology, n (%)

8,120/3 162 (0.4) 63 (0.4) 0 (0.0) P < 0.001

8,130/3 107 (0.3) 43 (0.3) 0 (0.0) –

8,260/3 4,693 (13.0) 1,949 (12.6) 17 (2.3) –

8,310/3 25,466 (70.6) 10,990 (71.0) 678 (93.4) –

8,312/3 4,067 (11.3) 1,758 (11.4) 13 (1.8) –

8,317/3 1,601 (4.4) 667 (4.3) 18 (2.5) –

Grade, n (%)

Grade I 4,094 (11.3) 1,750 (11.3) 125 (17.2) P < 0.001

Grade II 18,728 (51.9) 8,179 (52.9) 430 (59.2) –

Grade III 10,655 (29.5) 4,421 (28.6) 149 (20.5) –

Grade IV 2,619 (7.3) 1,120 (7.2) 22 (3.0) –

T-stage, n (%)

T1 24,701 (68.4) 10,551 (68.2) 632 (87.1) P < 0.001

T2 3,700 (10.3) 1,593 (10.3) 70 (9.6) –

T3 7,290 (20.2) 3,142 (20.3) 20 (2.8) –

T4 405 (1.1) 184 (1.2) 4 (0.6) –

(Continued)
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TABLE 1 (Continued)

Variables SEER database (N = 51,566) External validation (N = 726) P-value

Train (N = 36,096) Test (N = 15,470)

N-stage, n (%)

N0 34,800 (96.4) 14,897 (96.3) 710 (97.8) P = 0.047

N1 907 (2.5) 414 (2.7) 16 (2.2) –

N2 389 (1.1) 159 (1.0) 0 (0.0) –

M-stage, n (%)

M0 33,537 (92.9) 14,362 (92.8) 644 (88.7) P < 0.001

M1 2,559 (7.1) 1,108 (7.2) 82 (11.3) –

Radiation, n (%)

No 35,298 (97.8) 15,121 (97.7) 716 (98.6) P = 0.29

Yes 798 (2.2) 349 (2.3) 10 (1.4) –

Chemotherapy, n (%)

No 34,075 (94.4) 146,16 (94.5) 700 (96.4) P = 0.062

Yes 2,021 (5.6) 854 (5.5) 26 (3.6) –

RX Summ-Surg, n (%)

No 1,792 (5.0) 740 (4.8) 0 (0.0) P < 0.001

Yes 34,304 (95.0) 14,730 (95.2) 726 (100.0) –

RX Summ-Surg, surgery.

FIGURE 1

Study design and patient screening workflow diagram.
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TABLE 2 Overview of clinical and pathological characteristics of the Surveillance, Epidemiology, and End Results (SEER) database cohort.

Variables SEER cohort P-value

All (N = 51566) DM (−) (N = 47899) DM (+) (N = 3667)

Age, n (%)

< 50 9,883 (19.17) 9,455 (19.74) 428 (11.67) P < 0.0001

50–60 13,702 (26.57) 12,700 (26.51) 1,002 (27.32) –

60–70 16,362 (31.73) 15,088 (31.50) 1,274 (34.74) –

≥ 70 11,619 (22.53) 10,656 (22.25) 963 (26.26) –

Sex, n (%)

Male 32,635 (63.29) 30,096 (62.83) 2,539 (69.24) P < 0.0001

Female 18,931 (36.71) 17,803 (37.17) 1,128 (30.76) –

Race, n (%)

White 42,730 (82.86) 39,611 (82.70) 3,119 (85.06) P < 0.0001

Black 5,200 (10.08) 4,941 (10.32) 259 (7.06) –

American Indian/Alaska Native 514 (1.00) 478 (1.00) 36 (0.98) –

Asian or Pacific Islander 3,122 (6.05) 2,869 (5.99) 253 (6.90) –

Marital, n (%)

Single (never married) 83 58 (16.21) 7,801 (16.29) 557 (15.19) P = 0.0131

Married (including common law) 33 974 (65.88) 31,581 (65.93) 2,393 (65.26) –

Separated 613 (1.19) 579 (1.21) 34 (0.93) –

Divorced 4 914 (9.53) 4 530 (9.46) 384 (10.47) –

Widowed 3 499 (6.79) 3 214 (6.71) 285 (7.77) –

Unmarried or domestic partner 208 (0.40) 194 (0.41) 14 (0.38) –

Size, n (%)

≤ 5 31 909 (61.88) 31 446 (65.65) 463 (12.63) P < 0.0001

> 5 19 657 (38.12) 16 453 (34.35) 3,204 (87.37) –

Laterality, n (%)

Right 26 219 (50.85) 24 479 (51.11) 1 740 (47.45) P < 0.0001

Left 25 347 (49.15) 23 420 (48.89) 1 927 (52.55) –

Tumor histology, n (%)

8,120/3 225 (0.44) 155 (0.32) 70 (1.91) P < 0.0001

8,130/3 150 (0.29) 136 (0.28) 14 (0.38) –

8,260/3 6,642 (12.88) 6,430 (13.42) 212 (5.78) –

8,310/3 36,456 (70.70) 33,771 (70.50) 2,685 (73.22) –

8,312/3 5,825 (11.30) 5,180 (10.81) 645 (17.59) –

8,317/3 2,268 (4.39) 2,227 (4.65) 41 (1.12) –

Grade, n (%)

Grade I 5,844 (11.33) 5,738 (11.98) 106 (2.89) P < 0.0001

Grade II 26,907 (52.18) 26,097 (54.48) 810 (22.09) –

Grade III 15,076 (29.24) 13,492 (28.17) 1,584 (43.20) –

Grade IV 3,739 (7.25) 2,572 (5.37) 1,167 (31.82) –

T-stage, n (%)

T1 35,252 (68.36) 34,682 (72.41) 570 (15.54) P < 0.0001

T2 5,293 (10.26) 4,657 (9.72) 636 (17.34) –

T3 10,432 (20.23) 8,338 (17.41) 2,094 (57.10) –

T4 589 (1.14) 222 (0.46) 367 (10.01) –

(Continued)
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TABLE 2 (Continued)

Variables SEER cohort P-value

All (N = 51566) DM (−) (N = 47899) DM (+) (N = 3667)

N-stage,n (%)

N0 49,697 (96.38) 47,119 (98.37) 2,578 (70.30) P < 0.0001

N1 1,321 (2.56) 587 (1.23) 734 (20.02) –

N2 548 (1.06) 193 (0.40) 355 (9.68) –

Radiation, n (%)

No 50,419 (97.78) 47,740 (99.67) 2,679 (73.06) P < 0.0001

Yes 1,147 (2.22) 159 (0.33) 988 (26.94) –

Chemotherapy, n (%)

No 48,691 (94.42) 47,058 (98.24) 1,633 (44.53) P < 0.0001

Yes 2,875 (5.58) 841 (1.76) 2,034 (55.47) –

RX Summ-Surg, n (%)

No 2,532 (4.91) 1,759 (3.67) 773 (21.08) P < 0.0001

Yes 49,034 (95.09) 46,140 (96.33) 2,894 (78.92) –

DM (+), patients with distant metastasis; DM (−), patients without distant metastasis; RX Summ-Surg, surgery.

Fisher’s exact tests were used to compare categorical variables
between different groups, with categorical variables reported as
frequency (percentage, %). A P-value less than 0.05 was considered
statistically significant.

3 Result

3.1 Baseline characteristics of the study
cohort

A total of 51,566 RCC patients were included in the study,
sourced from the SEER database. Of these, 3,667 (7.11%) developed
distant metastases and 47,899 (92.89%) did not. Table 2 presents
the demographic and clinicopathological characteristics of all the
patients included in the study. Patients from the SEER database
were randomly assigned to a training set (n = 36,096) and an
internal test set (n = 15,470) in a 7:3 ratio. External validation was
conducted using data from 736 RCC patients at the First Hospital
of Shanxi Medical University (Table 3). Detailed information on the
training, testing, and validation cohorts is provided in Table 1.

We compared the characteristics of patients in the metastatic
and non-metastatic groups from the SEER database. Thirteen
clinicopathological factors were included in our study: age, sex,
race, marital status, tumor size, tumor laterality, histological type,
tumor grade, T-stage, N-stage, radiotherapy, chemotherapy, and
surgery. Patients from the SEER database were categorized into two
subgroups: DM (−) (47,899 patients without distant metastases,
92.89%) and DM (+) (3,667 patients with distant metastases,
7.11%). Our analysis revealed that a higher proportion of patients
aged ≥ 50 years was observed in the DM (+) subgroup compared to
the DM (−) subgroup (P < 0.0001); Males exhibited significantly
higher metastatic rates than females in DM (+) (P < 0.0001);
The proportion of White, Asian, or Pacific Islander patients was
higher in the DM (+) subgroup compared to the DM (−) subgroup

(P < 0.0001). Additionally, married patients (2,393/33,974, 7.05%)
showed a higher incidence of distant metastasis than single patients
(557/8,358, 6.66%; P = 0.0131). Regarding renal cancer progression,
a greater proportion of patients with tumor sizes larger than 5 cm
was observed in the DM (+) group (87.37%) compared to the
DM (−) group (34.35%, P < 0.0001). The DM (+) subgroup also
exhibited significantly higher proportions of certain histological
subtypes: 8120/3 (1.91% vs. 0.32%), 8130/3 (0.38% vs. 0.28%),
8310/3 (73.22% vs. 70.50%), and 8312/3 (17.59% vs. 10.81%)
compared to DM (−) (P < 0.0001); The DM (+) subgroup
exhibited a significantly higher prevalence of Grade III–IV disease
(histopathological grading), T2–T4 category (tumor extent), and
N1–N2 category (regional lymph node involvement) compared
to the DM (−) subgroup (P < 0.0001); significant disparities in
treatment administration (radiotherapy, chemotherapy, surgery)
between subgroups (P < 0.0001).

3.2 Feature variable selection

As shown in Figure 2, based on Lasso regression analysis,
two sets of regularization parameters (λ), λ.min (0.000252)
and λ0.1se (0.004947), were determined using 10-fold cross-
validation. To optimize the balance between model complexity
and generalization, the most parsimonious parameter, λ0.1se,
which corresponds to the range within one standard error, was
selected as the optimal parameter. Seven significant predictors
were identified in the training set: maximum tumor diameter,
histological grade, T-stage, N-stage, radiotherapy, chemotherapy,
and surgical intervention. Univariate and multivariate logistic
regression analyses were conducted on these predictors, with the
results summarized in Table 4. Tumor size, grade, T-stage, N-stage,
radiotherapy, and chemotherapy were ultimately identified as
independent risk factors for distant metastasis in renal cell
carcinoma (RCC) patients (P < 0.001). Additionally, surgery
(OR = 0.14, 95% CI = 0.13–0.16, P < 0.001) was found to
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TABLE 3 Clinical and pathological characteristics of the Chinese cohort study population.

Variables Chinese cohort P-value

All (N = 726) DM (−) (N = 644) DM (+) (N = 82)

Age, n (%)

< 50 48 (6.61) 43 (6.68) 5 (6.10) P = 0.1107

50–60 78 (10.74) 67 (10.40) 11 (13.41) –

60–70 67 (9.23) 54 (8.39) 13 (15.85) –

≥ 70 533 (73.42) 480 (74.53) 53 (64.63) –

Sex, n (%)

Male 468 (64.46) 407 (63.20) 61 (74.39) P = 0.0612

Female 258 (35.54) 237 (36.80) 21 (25.61) –

Race, n (%)

White 0 0 0 NA

Black 0 0 0 –

American Indian/Alaska Native 0 0 0 –

Asian or Pacific Islander 726 (100.00) 644 (100.00) 82 (100.00) –

Marital, n (%)

Single (never married) 5 (0.69) 5 (0.78) 0 (0.00) P = 0.1168

Married (including common law) 707 (97.38) 627 (97.36) 80 (97.56) –

Separated 0 0 0 –

Divorced 5 (0.69) 3 (0.47) 2 (2.44) –

Widowed 9 (1.24) 9 (1.40) 0 (0.00) –

Unmarried or domestic partner 0 0 0 –

Size, n (%)

≤ 5 174 (23.97) 153 (23.76) 21 (25.61) P = 0.816

> 5 552 (76.03) 491 (76.24) 61 (74.39) –

Laterality, n (%)

Right 382 (52.62) 341 (52.95) 41 (50.00) P = 0.6991

Left 344 (47.38) 303 (47.05) 41 (50.00) –

Tumor histology, n (%)

8,120/3 0 0 0 P = 0.2086

8,130/3 0 0 0 –

8,260/3 17 (2.34) 16 (2.48) 1 (1.22) –

8,310/3 678 (93.39) 604 (93.79) 74 (90.24) –

8,312/3 13 (1.79) 10 (1.55) 3 (3.66) –

8,317/3 18 (2.48) 14 (2.17) 4 (4.88) –

Grade, n (%)

Grade I 125 (17.22) 119 (18.48) 6 (7.32) P = 0.0001

Grade II 430 (59.23) 388 (60.25) 42 (51.22) –

Grade III 149 (20.52) 122 (18.94) 27 (32.93) –

Grade IV 22 (3.03) 15 (2.33) 7 (8.54) –

T-stage, n (%)

T1 632 (87.05) 579 (89.91) 53 (64.63) P < 0.0001

T2 70 (9.64) 50 (7.76) 20 (24.39) –

T3 20 (2.76) 14 (2.17) 6 (7.32) –

T4 4 (0.55) 1 (0.16) 3 (3.66) –

(Continued)
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TABLE 3 (Continued)

Variables Chinese cohort P-value

N-stage, n (%)

N0 710 (97.80) 642 (99.69) 68 (82.93) P < 0.0001

N1 16 (2.20) 2 (0.31) 14 (17.07) –

N2 0 0 0 –

Radiation, n (%)

No 716 (98.62) 643 (99.84) 73 (89.02) P < 0.0001

Yes 10 (1.38) 1 (0.16) 9 (10.98) –

Chemotherapy, n (%)

No 700 (96.42) 635 (98.60) 65 (79.27) P < 0.0001

Yes 26 (3.58) 9 (1.40) 17 (20.73) –

Surgery, n (%)

No 0 0 0 NA

Yes 726 (100.00) 644 (100.00) 82 (100.00) –

DM (+), patients with distant metastasis; DM (−), patients without distant metastasis.

FIGURE 2

Risk factors for distant metastasis of renal cancer identified by LASSO regression. (A) Based on the logarithmic (lambda) sequence, a coefficient
profile was created, yielding non-zero coefficients corresponding to the optimal lambda value. (B) The process of selecting the optimal value for the
parameter λ in the Lasso regression model was performed using cross-validation. The dotted vertical lines indicate the optimal predictors based on
the minimum criteria and the 1 standard error of the minimum criteria (1-SE criteria).

TABLE 4 Univariate and multivariate logistic regression in patients with distant metastases from renal cancer.

Variables Univariate logistics Multivariable logistics

OR 95% CI P OR 95% CI P

Size 13.23 11.98—14.61 P < 0.001 3.64 3.16–4.18 P < 0.001

Grade 3.59 3.42–3.75 P < 0.001 1.76 1.65–1.88 P < 0.001

T-stage 3.83 3.67–3.98 P < 0.001 1.88 1.76–2.01 P < 0.001

N-stage 10.52 9.64–11.48 P < 0.001 2.29 2.06–2.54 P < 0.001

Radiation 110.73 93.24–131.50, P < 0.001 36.29 29.37–44.83, P < 0.001

Chemotherapy 69.7 63.42–76.59 P < 0.001 14.43 12.87–16.17 P < 0.001

RX Summ-Surg 0.14 0.13–0.16 P < 0.001 0.11 0.09–0.13 P < 0.001

Univariate logistic regression analysis revealed that tumor size, tumor grade, T-stage, N-stage, radiotherapy, and chemotherapy were significant risk factors for distant metastasis in renal cancer
patients (OR and 95% CI all greater than 1, P < 0.05). In contrast, surgical intervention was identified as a protective factor against distant metastasis (OR and 95% CI all less than 1, P < 0.05).
Multivariate logistic regression analysis confirmed that tumor size, tumor grade, T-stage, N-stage, radiotherapy, and chemotherapy remained independent risk factors for distant metastasis
(OR and 95% CI both greater than 1, P < 0.05), while surgical intervention, as an independent protective factor, significantly reduced the risk of distant metastasis (OR and 95% CI both less
than 1, P < 0.05). RX Summ-Surg, surgery.
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TABLE 5 Model performance evaluation metrics for ten machine learning models.

Data set Model Accuracy Precision Recall F1 score AUC

Train LR 0.887 0.889 0.885 0.887 0.953

ENet 0.887 0.888 0.886 0.887 0.953

DT 0.888 0.884 0.893 0.888 0.946

RF 0.890 0.894 0.885 0.890 0.949

XGB 0.890 0.897 0.881 0.889 0.957

SVM 0.887 0.892 0.880 0.886 0.951

MLP 0.891 0.895 0.886 0.890 0.959

LightGBM 0.890 0.896 0.881 0.889 0.957

KNN 0.884 0.935 0.825 0.877 0.938

NBC 0.884 0.890 0.875 0.883 0.951

Test LR 0.891 0.387 0.894 0.540 0.950

ENet 0.891 0.386 0.894 0.539 0.949

DT 0.885 0.371 0.882 0.522 0.939

RF 0.896 0.397 0.875 0.546 0.942

XGB 0.898 0.402 0.874 0.550 0.949

SVM 0.894 0.393 0.876 0.543 0.948

MLP 0.896 0.398 0.873 0.547 0.945

LightGBM 0.898 0.403 0.875 0.552 0.950

KNN 0.931 0.513 0.821 0.631 0.935

NBC 0.892 0.388 0.872 0.537 0.944

Validation LR 0.902 0.612 0.366 0.458 0.749

ENet 0.898 0.577 0.366 0.448 0.732

DT 0.888 0.508 0.366 0.426 0.669

RF 0.902 0.617 0.354 0.450 0.731

XGB 0.904 0.630 0.354 0.453 0.742

SVM 0.904 0.625 0.366 0.462 0.706

MLP 0.897 0.581 0.305 0.400 0.731

LightGBM 0.905 0.644 0.354 0.457 0.727

KNN 0.904 0.630 0.354 0.453 0.706

NBC 0.898 0.587 0.329 0.422 0.719

Test set accuracy is inflated by majority-class dominance. F1 score and AUC better reflect model utility for imbalanced data. The XGB model demonstrates the most balanced and stable
performance metrics across all datasets.

be an independent protective factor for RCC distant metastasis.
Variables with P < 0.05 in the multivariate logistic regression
analysis were subsequently included in the machine learning
model.

3.3 Model performance evaluation

To build a predictive model for distant metastasis of RCC
using ML algorithms, we used seven features (tumor size,
tumor grade, T-stage, N-stage, radiotherapy, chemotherapy, and
surgery) identified through screening as independent factors. The
algorithms used included LR, DT, RF, NBC, KNN, SVM, Enet,
MLP, XGB, and LightGBM. To reduce overfitting and select the best
model, We conducted 10-fold cross-validation on the training set,

evaluating accuracy, precision, recall, F1 score, and AUC for ten ML
models (Table 5), and calibration curve plots (Figure 3).

The results demonstrated that the XGB model exhibited the
most stable performance and superior discriminative ability in
the validation set. Figures 4–6 represent the ROC curves, PR
curves, DCA curves, and calibration curves for all 10 models across
the training, test, and external validation sets. The XGB model
consistently delivered strong and stable performance across all
datasets, outperforming the other models in terms of discriminative
power. Furthermore, the heatmap analysis (Figure 7) offers a
comprehensive multidimensional assessment, providing a clearer
and more detailed overview of the model’s performance. Following
a thorough evaluation of the models across the three datasets, we
conclude that the XGB model demonstrates balanced and robust
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FIGURE 3

Calibration curves of 10 machine learning methods in the training set (A), test set (B), and external validation set (C). The black diagonal line
represents the ideal calibration curve. A calibration curve closer to this line indicates better model calibration.

performance in predicting distant metastasis in RCC patients, thus
making it the optimal model.

3.4 Interpretability of the model

Shapley’s Additive Explanation values were employed to
interpret the XGB model. Generally, a higher SHAP value for
a feature correlates with an increased probability of the target
event occurring. The study results indicated that undergoing
chemotherapy was the most significant variable, followed by
receiving radiotherapy, having stage T3 disease, possessing a tumor
size greater than 5 cm, undergoing surgery, Grade IV, Grade III,
stage T4, stage N1, stage T2, stage N2, and Grade II (Figure 8).

3.5 Online calculator for predicting
distant metastasis in RCC

Although the XGB model outperformed other machine
learning models, its complexity and limitations in interpretability
pose challenges for clinical application. To enhance its clinical
utility, we developed an interactive web-based calculator based on
the XGB model. This tool allows clinicians to input variables via
interactive fields to estimate the probability of distant metastasis
in RCC patients. Figure 9 displays a screenshot of the online web
calculator. The web calculator can be accessed via the following
link: https://houzhao11.shinyapps.io/DM_Predictor/.

4 Discussion

The majority of RCC patients are diagnosed with localized
disease, while a small proportion present with metastases at
onset. However, up to 30% experience distant metastasis following
radical resection (27, 28), and the exact molecular mechanisms

remain poorly understood. The mRCC patients usually have
poor clinical survival, despite the introduction of numerous
new targeted and immunotherapeutic agents, patients inevitably
develop resistance to these treatments (29, 30). A study by Pereira
et al. (31) found that positron emission tomography-computed
tomography (PET/CT) offers significantly higher specificity and
negative predictive value than CT scans in detecting metastasis
and recurrence in RCC patients. However, due to its high cost and
the potential risk of radiation exposure, PET/CT is not commonly
used for routine screening of distant metastases (32). Consequently,
developing a clinical prediction model to identify high-risk RCC
patients is crucial.

This study successfully developed and validated an
interpretable machine learning model (XGBoost) for predicting
the risk of distant metastasis in RCC patients, utilizing data
from the SEER database and a single-center cohort in China The
results demonstrate that the XGBoost model exhibits balanced
and stable predictive performance in both the internal test set
and external validation set, outperforming traditional statistical
methods, and revealed the non-linear associations of key drivers
such as chemotherapy, radiotherapy, and T-stage through
the SHAP analysis. This result provides a new tool for early
detection and individualized intervention of RCC metastasis, as
well as a data-driven perspective for the exploration of tumor
biological mechanisms.

The innovation of the present model, compared to previous
studies, is evident in three key aspects: first, by integrating data
from the SEER cohort (n = 51,566) and a Chinese validation
cohort (n = 726), cross-regional and multi-center validation of
the model’s generalization ability was achieved, although external
validation performance (AUC = 0.742) declined compared to
internal testing (AUC = 0.949), this discrepancy may stem from
marked skews in both tumor histologic subtype distribution (93.4%
being ICD-O-3 type 8310/3) and treatment patterns (100% surgical
intervention) within the validation cohort, suggesting that model
requires further optimization for heterogeneous populations.
Additionally, the relatively small sample size of the Chinese
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FIGURE 4

The receiver operating characteristic (ROC) curves (A), Precision-Recall (PR) curves (B), Decision Curve Analysis (DCA) curves (C), and calibration
curves (D) of the 10 machine learning models in the training set, with calibration curves based on the best model.

cohort may exacerbate the impact of class imbalance on the
model’s generalizability. Second, the category imbalance problem of
distant metastasis samples was effectively alleviated by the SMOTE
technique. Third, the web-based calculator developed for the first
time transformed the XGBoost model into a visualization tool,
providing clinicians with a dynamic risk assessment interface,
which is in line with the requirement of “algorithmic transparency”
in the International Guidelines for the Application of Artificial
Intelligence in Medicine (33).

It is crucial to emphasize that the performance of external
validation (AUC = 0.742) was lower than that of internal

testing (AUC = 0.949). This inconsistency can primarily be
attributed to differences in surgical management structures
across study groups and the histological heterogeneity present.
Specifically, Surgical Intervention Bias: The Chinese validation
cohort exclusively included patients who underwent surgical
treatment, resulting in a surgery rate of 100%. In contrast,
the SEER dataset encompasses a heterogeneous real-world
population that includes non-surgical management of advanced
cases. This bias arises from variations in clinical practices and
inherently limits the generalizability of the model. Dominance
of Histological Subtypes: The validation cohort exhibited a
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FIGURE 5

The receiver operating characteristic (ROC) curves (A), Precision-Recall (PR) curves (B), Decision Curve Analysis (DCA) curves (C), and calibration
curves (D) of the 10 machine learning models in the test set, with calibration curves based on the best model.

significantly higher proportion of clear cell carcinom, while the
SEER dataset comprised a diverse range of histological types.
Different subtypes may demonstrate distinct treatment responses
and prognostic trajectories, contributing to instability in the
model’s performance. T-stage Distribution: The proportion of
early-stage tumors is notably higher in the Chinese cohort (87.1%
T1) compared to the SEER dataset (68.4%). This discrepancy
may reflect a referral pattern that is biased toward localized
disease.

External validation is crucial for accurately assessing the
reliability of risk prediction models; failure to conduct appropriate
external validation can lead to misinterpretation of model
performance (34, 35). In this study, we acknowledge the presence
of selection bias within the validation cohort, which demonstrates
certain differences when compared to the SEER dataset. The lack

of adequate external validation may limit the model’s applicability
in specific populations. Consequently, to mitigate the selection
bias present in the current analysis, we plan to strengthen our
external validation efforts in future studies to enhance the model’s
reliability. We will consider incorporating a broader patient sample,
including data from multiple centers across China and European
databases, such as the European RECUR database, to achieve more
comprehensive external validation.

Shapley’s Additive Explanation analysis revealed two levels of
predictive mechanisms: Treatment-related factors. The analysis
revealed that chemotherapy and radiotherapy emerged as the
most significant contributors to metastatic risk, a finding that
aligns closely with the immunomodulatory dynamics of the RCC
microenvironment. Mechanistically, chemotherapy may potentiate
immunogenicity by inducing tumor cell release of neoantigenic
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FIGURE 6

The receiver operating characteristic (ROC) curves (A), Precision-Recall (PR) curves (B), Decision Curve Analysis (DCA) curves (C), and calibration
curves (D) of the 10 machine learning models in the external validation set, with calibration curves based on the best model.

epitopes (36), while radiotherapy could paradoxically activate
pro-metastatic inflammatory cytokine cascades (37), underscoring
the dual-edged role of conventional therapies in modulating
metastatic propensity; Markers of tumor heterogeneity: Tumor
size > 5 cm and high-grade pathological classification (Grade
III–IV) are significant factors in the distant metastasis of renal
cancer, suggesting that large-volume tumors may induce epithelial-
mesenchymal transition (EMT) through mechanical stress, whereas
high-grade is associated with vasculogenic mimicry (38, 39).
It is noteworthy that surgical intervention was identified as a
protective factor; however, its protective efficacy was markedly

attenuated in the high-risk metastasis subgroup. This phenomenon
may be attributed to the preoperative dissemination of occult
micrometastases, necessitating further validation through dynamic
monitoring of circulating tumor DNA (ctDNA) (40).

Despite the rigorous study design, this study has the
following limitations: Data level: Firstly, the SEER database
lacks radiogenomic, genomics, and immunotherapy data, which
limits the integration of multimodal information. Additionally,
the absence of comprehensive details regarding radiotherapy and
chemotherapy protocols restricts our understanding of treatment
impacts. Furthermore, the ethnic homogeneity (100% Asian) in
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FIGURE 7

Predictive performance of 10 models in the training set (A), test set (B), and external validation set (C).

FIGURE 8

Relative importance of variables based on SHAP for XGB prediction model. Where (A) illustrates the SHAP value distribution of features and (B) shows
the feature importance scores visualized as a bar plot.Chemotherapy_X1 indicates receipt of chemotherapy, Radiation_X1 indicates receipt of
radiotherapy, T_X3 represents tumor stage T3, size_X2 indicates a tumor size greater than 5 cm, RX_X1 indicates receipt of surgical treatment,
Grade_X4 represents tumor grade IV, Grade_X3 represents tumor grade III, T_X4 represents tumor stage T4, N_X1 represents tumor stage N1, T_X2
represents tumor stage T2, N_X2 represents tumor stage N2, and Grade_X2 represents tumor grade II. SHAP, Shapley’s Additive Explanation; RX, RX
Summ-Surg (surgery).

the validation cohort may affect the applicability of the model in
different populations. To address these gaps, future studies should
integrate multi-source datasets (e.g., National Cancer Database,
institutional electronic health records) to enrich the SEER dataset
with multimodal information and specific treatment regimens.
This integration will facilitate a more nuanced assessment of
how distinct treatment modalities and regimens influence distant

metastasis in renal cell carcinoma, ultimately enhancing the model’s
applicability across various population groups. Methodological
level: while SMOTE alleviates class imbalance, it may induce
synthetic sample bias (41); SHAP interpretation provides only static
feature importance and fails to reveal time-dependent metastasis-
driven mechanisms (42). Additionally, this study primarily focused
on traditional machine learning models. Future research should
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FIGURE 9

An online web-based calculator for predicting distant metastasis of renal cell carcinoma.

explore the potential of deep learning architectures like TabNet,
particularly on larger datasets. Such models could provide valuable
insights into improving predictive accuracy while maintaining
interpretability. To address this limitation, future research plans
to implement a time-based interpretability framework designed
to capture the spatiotemporal effects of treatment characteristics
on the mechanisms of metastasis. Our approach will specifically
encompass: Dynamic Time Series Modeling: We will integrate Long
Short-Term Memory (LSTM) networks with XGBoost to effectively
analyze longitudinal data, including sequential tumor markers and
treatment regimens. To enhance our analysis, we will collaborate
with multi-center medical institutions to obtain comprehensive
treatment timelines that include specific start dates for adjuvant
therapies and detailed drug regimens. This integration will enable
our model to identify and learn time-dependent patterns associated
with risk factors, thereby providing deeper insights into how
the timing of treatments influences metastatic outcomes. Clinical
translational level: the current model relies mainly on traditional
clinical metrics (such as tumor size and staging) but does not
incorporate some of the most recent detection metrics (such as
PD-L1 protein level and VHL mutation status) (43). These metrics
can help to determine the patient’s response to precision drug
therapies (such as targeted agents and immunotherapies), whereas
omitting them may lead to the model’s inability to accurately
predict metastatic risk in patients receiving novel therapies. In the
future, we can use single-cell sequencing technology to analyze the
genetic changes of each cancer cell at different stages and draw a
dynamic “genetic map” of tumors from early stage to metastasis; at
the same time, we build an intelligent risk warning tool, embedding

the model into the hospital’s electronic medical record system,
automatically integrating the patient’s latest examination data (such
as serum biomarkers, and radiographic findings), enabling real-
time metastasis risk stratification, and assisting doctors in adjusting
the treatment plan.

This study confirms the practical value of interpretable ML
in predicting RCC metastasis. The XGB model developed in
this study not only surpasses the limitations of conventional
prognostic tools but also provides clinical interpretability through
the SHAP framework. The XGB model provides a new tool
for individualized prediction of the risk of distant metastasis
in renal cancer patients, and by identifying high-risk patients,
clinicians can formulate more active follow-up and treatment
strategies to improve patients’ prognosis. Future directions include
prospective multicenter validation to assess the model’s dynamic
predictive ability, further optimization of its performance, and
integration into clinical decision support systems to enhance
precision oncology strategies for RCC.

5 Conclusion

This study confirms the practical value of interpretable machine
learning in RCC metastasis prediction, and the XGBoost model
constructed by it not only overcomes limitations of conventional
prognostic tools but also provides clinical interpretability through
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the SHAP framework. The XGBoost model provides a new tool for
individualized prediction of the risk of distant metastasis in renal
cancer patients, and by identifying high-risk patients, clinicians
can formulate more active follow-up and treatment strategies to
improve patients’ prognosis. Future directions include prospective
multicenter validation to verify the dynamic predictive ability of the
model, continue to optimize the model performance, and integrate
it into the clinical decision support system, to assist in the precision
oncology strategies for RCC.
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