AUTHOR=Valk Timothy , McMorrow Carol TITLE=A proposed model using glycation metrics and circulating biomarkers for the prevention of cardiovascular disease JOURNAL=Frontiers in Medicine VOLUME=Volume 12 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1624682 DOI=10.3389/fmed.2025.1624682 ISSN=2296-858X ABSTRACT=IntroductionCardiovascular aging starts early in life due to the glycation of critical proteins, though its progression remains undetected in the formative years. The glycation reaction affects all tissues by the same non enzymatic irreversible reaction. The variables are the pH, temperature, glucose concentration, and the specific protein. This relationship implies that glycated blood biomarkers could potentially be used as a proxy for assessing in situ myocardial changes.MethodsLaboratory tests for troponin I (cTnI), hemoglobin A1c (A1c), fructosamine, and low-density lipoprotein (LDL), were chosen to calculate the proxy for in situ glycation. An algorithm was developed incorporating these variables as individual measurements and as calculated metrics of glycation. This data was obtained from previous large group studies of variables and outcomes.ResultsModeling of glycation was determined for each variable. Using metrics from multiple studies, theoretical rates of glycation of LDL and troponin I were calculated. The glycated changes in LDL and troponin I were used to determine the increases above optimal physiological rates.ConclusionLaboratory results of LDL, cTnI, A1c and fructosamine could be used sequentially to derive a cost-effective proxy for assessing in situ aging and deterioration of cardiovascular tissue. This model could theoretically predict the rate of cardiovascular aging by integrating four blood biomarkers into a dedicated algorithm guiding proactive diagnostics and treatment.