:' frontiers | Frontiers in Medicine

‘ ® Check for updates

OPEN ACCESS

EDITED BY
Yanan Wu,
China Medical University, China

REVIEWED BY
Giuseppe D'Abbronzo,

University Hospital “Luigi Vanvitelli®, Italy
Jiong Chen,

University of Pennsylvania, United States

*CORRESPONDENCE

Xing Wu
wuxing@cqu.edu.cn

Zailin Yang
zailinyang@cqu.edu.cn

Yao Liu
liuyao77@cqu.edu.cn

TThese authors have contributed equally
to this work

RECEIVED 07 May 2025
ACCEPTED 28 August 2025
PUBLISHED 24 September 2025

CITATION

Zhou S, Ran L, Yao Y, Wu X, Liu Y, Wang C,
He Z and Yang Z (2025)
VFM-SSL-BMADCC-Framework: vision
foundation model and self-supervised
learning based automated framework for
differential cell counts on whole-slide bone
marrow aspirate smears.

Front. Med. 12:1624683.

doi: 10.3389/fmed.2025.1624683

COPYRIGHT

© 2025 Zhou, Ran, Yao, Wu, Liu, Wang, He
and Yang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Medicine

TYPE Original Research
PUBLISHED 24 September 2025
pol 10.3389/fmed.2025.1624683

VEM-SSL-BMADCC-Framework:
vision foundation model and
self-supervised learning based
automated framework for
differential cell counts on
whole-slide bone marrow
aspirate smears

Shirong Zhou't, Longrong Ran?, Yuanyou Yao3!, Xing Wu?*,

Yao Liu?*, Chengliang Wang?, Zhongshi He! and Zailin Yang?*
!College of Computer Science, Chongging University, Chongqging, China, ?Chongging Key Laboratory
of Translational Research for Cancer Metastasis and Individualized Treatment, Department

of Hematology-Oncology, Chongging University, Chongging, China, *Center for Hematology,
Southwest Hospital, Army Medical University, Chongqging, China

Background: Differential cell counts (DCCs) on bone marrow aspirate (BMA)
smear is a critical step in the diagnosis and treatment of blood and bone marrow
diseases. However, manual counts relies on the experience of pathologists and
is very time-consuming. In recent years, deep learning-based intelligent cell
detection models have achieved high detection accuracy on datasets of specific
diseases and medical centers, but these models depend on a large amount of
annotated data and have poor generalization. When the detection task changes
or model is applied in different medical centers, we need to re-annotate a large
amount of data and retrain the model to ensure detection accuracy.

Methods: To address the above issues, we designed an automated framework
for whole-slide bone marrow aspirate smear differential cell counts (BMADCC),
called VFM-SSL-BMADCC-Framework. This framework only requires whole-slide
images (WSIs) as input to generate DCCs. The vision foundation model SAM,
known for its strong generalization ability, precisely segments cells within the
countable regions of the BMA. The MAE, pre-trained on a large unlabeled cell
dataset, excels in generalized feature extraction, enabling accurate classification
of cells for counting. Additionally, TextureUnet and TCNet, with their powerful
texture feature extraction capabilities, effectively segment the body-tail junction
areas from WSIs and classify suitable tiles for DCCs. The framework was trained
and validated on 40 WSIs from Chongqging Cancer Hospital. To assess its
generalization ability across different medical centers and diseases, correlation
tests were conducted using 13 WSIs from Chongqging Cancer Hospital and 5
WSiIs from Southwest Hospital.

Results: The framework demonstrated high accuracy across all stages: The loU
for region of interest (ROI) segmentation was 46.19%, and the accuracy for tile
of interest (TOI) classification was 90.45%, the Recall75 for cell segmentation
was 99.01%, and the accuracy for cell classification was 77.92%. Experimental
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results indicated that the automated framework had excellent cell classification
and counts performance, suitable for BMADCC across different medical centers
and diseases. The differential cell counts results from all centers were highly
consistent with manual analysis.

Conclusion: The proposed VFM-SSL-BMADCC-Framework effectively
automates differential cell counts on bone marrow aspirate smears, reducing
reliance on extensive annotations and improving generalization across
medical centers.

KEYWORDS

whole-slide bone marrow aspirate smears, differential cell counts, vision foundation
model, self-supervised learning, texture

1 Introduction

Bone marrow aspirate smear differential cell counts
(BMADCC) plays a crucial role in diagnosing and treating
hematologic malignancies. Specifically, it involves the process of
pathologists determining the proportions of various cell types
within the bone marrow.

BMADCC helps diagnose acute lymphoblastic leukemia (ALL)
(1), acute myeloid leukemia (AML) (2), angioimmunoblastic
T-cell lymphoma (AITL) (3), Burkitt lymphoma (Burkitt) (4),
chronic lymphocytic leukemia (CLL) (5), chronic myelogenous
leukemia (CML) (6), chronic myelomonocytic leukemia (CMML)
(7), classic Hodgkin lymphoma (cHL) (8), diffuse large B-cell
lymphoma (DLBCL) (9), essential thrombocythemia (ET) (10),
follicular lymphoma (FL) (11), mantle cell lymphoma (MCL)
(12), mucosa-associated lymphoid tissue lymphoma (MALT)
(13), multiple myeloma (MM) (14), NK/T-cell lymphoma
(NKTL) (15), prolymphocytic leukemia (PLL) (16), and
immune thrombocytopenic purpura (ITP) (17), and other
hematologic malignancies.

Traditional BMADCC is performed manually by pathologists
using a microscope. Considered as a gold standard, this method is
widely applicable for diagnosing and monitoring various blood and
bone marrow diseases (18). However, it has two main drawbacks:
(1) Labor-intensive: Manual counts is a time-consuming and labor-
intensive task, requiring pathologists to spend significant amounts
of time. Long-time continuous working may affect the accuracy of
cell classification and counts. (2) Subjectivity: The inconsistency
in DCCs experience levels among different pathologists leads to
subjective bias (19).

With the rapid development of deep learning, vision models
based on deep learning have shown excellent performance in image
processing tasks such as object detection, semantic segmentation,
and image classification. These models have enabled quantitative
routine tasks in computer-aided diagnosis, thereby accelerating the
process, reducing bias, and improving the consistency of results
(20-22). To address the issues associated with manual counts,
many researchers (23-29) have applied deep learning algorithms
to achieve automated BMADCC. This has significantly improved
the accuracy and efficiency of DCCs, holding great theoretical and
practical value. These studies can be categorized into two main
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methods according to their processes: Tile-based counts methods
and WSI-based counts methods.

Tile-based counts methods require manually slicing the
WSIs into tiles (i.e., square bone marrow images), selecting
the appropriate tiles as input for DCCs, and then performing
cell detection and classification. Wang et al. (23) utilized the
Faster-RCNN object detection algorithm and feature pyramid
network to detect 6 types of cells within tiles. However, the cell
detection model’s classification accuracy still needed improvement.
In contrast, Chandradevan achieved higher overall accuracy by
using a separate cell classification model (24). They developed a
two-stage system for standard clinical cell classification, manually
selecting tiles with a large number of cells from BMA, detecting
all cells as single category objects using Faster-RCNN, and then
classifying the cells with VGG. Yu et al. (25) applied deep
convolutional neural networks to automatically detect and classify
bone marrow nucleated cells within tiles. These methods require
manual selection of optimal tiles, making the process slow and
unsuitable for full-process DCCs, which limits their scalability to
clinical diagnostic work.

Compared to Tile-based counts methods, WSI-based counts
methods do not require manual selection of tiles. Instead, they
automatically identify tiles of interest (TOI) from WSIs, detect
cells within these tiles, and finally classify and count these cells,
achieving intelligent full-process DCCs. These methods can be
further categorized based on the approach of tile extraction: Grid-
based counts methods and ROI-based counts methods.

Grid-based counts methods directly slices WSIs into uniformly
sized tiles, then selects TOIs from these tiles. Tayebi et al.
(26) developed an end-to-end automated bone marrow cytology
system that slices WSIs into uniform tiles, uses DenseNet121 for
binary classification to distinguish between TOI and Non-TOI,
and then employs YOLOv4 for cell detection and classification
within the TOIs. This approach achieved high accuracy and
showed a strong correlation with manual counts results. Lewis
et al. (27) proposed a more precise automated workflow, utilizing
EfficientNetV2S to classify the uniformly sliced tiles into four
categories (optimal, particle, hemodilute and outside), Faster-
RCNN to detect cells treated as single category objects within the
optimal tiles (i.e., TOIs), and EfficientNetV2L for cell classification.
Multiple experiments demonstrated the feasibility of automatically

frontiersin.org


https://doi.org/10.3389/fmed.2025.1624683
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Zhou et al.

generating DCCs from WSIs. Both methods slice WSIs into
tiles, however, these tiles might include areas of cell clumping,
overstaining, or blank spaces, resulting in many invalid tiles that
need to be filtered out, making the process particularly time-
consuming. In practice, the region suitable for DCCs is the body-
tail junction area, known as region of interest (ROI).

ROI-based counts methods identify ROIs from WSIs, then
extract tiles from these regions for subsequent cell detection and
classification. Wang et al. (28) proposed a hierarchical framework
that utilizes a multi-resolution pyramid and Cascade R-CNN to
identify suitable bounding boxes as ROIs from WSIs. This is
followed by another Cascade R-CNN for BMA cell detection and
classification within these regions, achieving effective nucleated
cell classification and counts analysis from WSIs (28). Su et al.
(29) further explored methods for automatically extracting high-
quality tile images and accurately locating and identifying nucleated
cells, proposing the ROI-BMC-DNNet analysis framework. This
framework used a pyramid network and an encoder-decoder to
segment ROIs, from which high-quality tiles were then extracted.
A tile quality evaluation network and a cell detection network were
subsequently used to automatically identify and count nucleated
bone marrow cells. Compared to Grid-based counts methods,
which slice WSIs into uniformly sized tiles, ROI-based counts
methods produce higher quality tiles with less data, resulting in
shorter processing times during tile classification.

However, both Tile-based and WSI-based counts methods have
significant issues, as they are only applicable to BMA from specific
diseases and medical centers. They require extensive labeled data,
time, and computational resources, and have poor generalizability.
Specifically: (1) Supervised learning issues: 1. Object detection
models can only detect cell types known from the dataset, making
them suitable only for specific detection tasks. When cell types
change, additional labeling of cell bounding boxes is required; 2.
Image classification models can only learn limited representation
in the current dataset. When applied to different medical centers,
they require extensive labeled data and retraining to maintain
high accuracy. (2) Efficiency and staining issues: 1. Grid-based
counts methods produce a large amount of irrelevant data when
slicing WSIs into tiles, which increases the time and computational
resources required for tile classification model; 2. BMA from
different medical centers may have staining differences, making
ROI segmentation and TOI classification based on traditional
deep learning models less effective and unsuitable for application
in other centers.

In recent years, artificial intelligence has advanced rapidly,
particularly in computer vision, where foundation models and self-
supervised learning have made significant progress. These models
can effectively address issue 1. In terms of foundation models, the
Segment Anything Model (SAM), trained on the SA-1B dataset
with 11 million images and over 1 billion masks, exhibits strong
zero-shot generalization capabilities (30). Even when domain-
specific images differ significantly from SAM’s training data, high-
precision segmentation results can be achieved by fine-tuning with
a small amount of labeled data using prompts. SAM has recently
gained considerable attention in the medical imaging field. For
instance, methods such as MedSAM (31) and Med-SA (32) have
been optimized for general medical images. In the cell segmentation
domain, methods like CellSAM (33), Guided Prompting SAM (34),
and UNSAM (35) have also shown remarkable effectiveness. In
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addition, self-supervised learning initially constructed supervisory
signals from the interior of images, such as the Jigsaw puzzle
prediction task proposed by Doersch et al. (36) and the image
rotation prediction task by Noroozi and Favaro (37). Subsequently,
contrastive learning became one of the mainstream methods in
self-supervised learning, learning useful feature representations by
comparing similarities and differences between samples. Notable
examples include MoCo proposed by He et al. (38) and SimCLR
introduced by Chen et al. (39). Building on these advancements,
the MAE model proposed by He et al. uses image masking and
reconstruction approach to train feature extractors with strong
generalization capabilities from a large amount of unlabeled data,
and achieves excellent classification performance by fine-tuning
with a small amount of labeled data (40).

For Issue 2, Su et al. (29) addressed the time and computational
efficiency issue caused by a large amount of invalid tiles by
segmenting ROIs, which occupy only a small portion of WSI, and
then extracting high-quality tiles from these regions. However,
previous research did not resolve the color differences in BMA
smears from different medical centers, nor the significant texture
differences among pairs of ROI and non-ROI images, as well as
TOI and non-TOI images. Our previously proposed TextureUnet
(41) and TCNet (42), which have complex texture feature extraction
capabilities, can mitigate the impact of BMA staining differences
from a texture perspective. This improves the precision of ROI
segmentation and tile classification across different medical centers,
effectively enhancing the efficiency of tile classification.

Based on above, the paper proposed an automated framework
for DCCs on whole-slide BMA, leveraging the vision foundation
model SAM and the self-supervised learning model MAE (i.e.,
VFM-SSL-BMADCC-Framework). The framework consists of four
stages: ROI segmentation, TOI classification, cell segmentation,
and cell classification. (1) ROI Segmentation: In this stage, the
framework uses TextureUnet to segment the ROI (i.e., the body-
tail junction areas) from the whole-slide BMA thumbnail. (2)
TOI Classification: The framework slices the ROI-aligned WSI
region into tiles and utilizes TCNet for binary classification to
select TOIs. (3) Cell Segmentation: In this stage, SAM, a vision
foundation model with strong generalization capabilities, segments
all categories of individual cells from the selected TOIs. (4) Cell
Classification: The framework uses the high-performance feature
extractor trained by the self-supervised learning model MAE to
extract features from individual cells and classify and count them
according to the required categories. Cell proportions are calculated
by dividing the number of each cell type by the total number of
cells, resulting in a 16-component DCCs histogram (Figure 1). In
summary, our automated framework offers strong generalization,
high accuracy, and can provide valuable reference for pathologists
across various medical centers.

2 Materials and methods

2.1 Data source for bone marrow aspirate
smears

This work included 40 BMA smears collected from the
Hematology Oncology Center Laboratory at Chongging Cancer
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FIGURE 1

The workflow of the automated framework for DCCs on whole-slide BMA based on the vision foundation model SAM and the self-supervised
learning model MAE. The BMA smear is scanned using a 100x oil immersion objective, and its corresponding thumbnail image (with a reduction
factor of 100) is processed. The ROl is segmented from the thumbnail using TextureUnet. Tiles are then sliced from the BMA smears corresponding
to the ROIs using a grid approach. TCNet classifies the TOls from these tiles. SAM segments all cells on the TOls in the everything mode (i.e.,
SegEvery). MAE is used for cell classification and counts. Finally, a 16-component DCCs histogram is returned.

Hospital, from 9 February 2022, to 30 April 2024. These smears
exhibit varying cell characteristics and pathological features
(Supplementary Table 1). The BMA smears were prepared
manually by extracting 0.1-0.2 ml of bone marrow fluid from
the posterior or anterior iliac crest of patients under local
anesthesia using a BMA needle. The fluid was then placed on
a glass slide to create 5-6 smears of uniform thickness. After
natural drying, 2 smears from each set were selected for Wright-
Giemsa staining for routine examination. All BMA smears were
scanned using a Bionovation Image Cytometry slide scanning
device at 0.1 pm/pixel (100x oil immersion objective), generating
WSIs of the BMA smears, with 40 unique images retained. This
dataset was named BMA-WSI-Training. Each WSI was annotated
by two pathologists with over ten years of experience using
Labelme software (43) to mark ROIs and cell masks, followed
by tile classification and cell classification using a self-developed
annotation program.

2.2 Model development and evaluation

2.2.1 ROl segmentation

In the ROI segmentation stage, WSIs (at least 10k x 10k pixels)
from the BMA-WSI-Training dataset were downscaled by a factor
of 100 using pyvips in Python, creating a new dataset named the
ROI-SEG. This dataset includes different diseases such as AML,
Burkitt, CLL, DLBCL, MM (Figure 2B). Pathologists annotated the
body-tail junction areas (i.e., ROIs) using Labelme, resulting in
40 annotated ROI masks. All thumbnails and their corresponding
ROI masks are resized to 256 x 256 pixels when inputting
into the model, using zero-padding based on ResizeLongestSide
(Figure 2A).

Whole-slide BMA commonly exhibit staining variability
(Figure 2C). Notably, there are distinct texture differences in the
body, tail, and body-tail junction areas of the BMA thumbnails
(Figure 2D). Given the limited texture feature extraction capability
and lower accuracy of traditional segmentation models, we
employed our previously proposed TextureUnet (41), which is
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effective in texture information extraction, to segment ROIs in
whole-slide BMA to mitigate the impact of staining variability.
The model was trained on the ROI-SEG dataset, which was split
into training (80%) and validation (20%). The training parameters
included a batch size of 4, Adam optimizer, a learning rate of le-4,
and a multi-task loss function consisting of cross-entropy loss and
dice loss, with a total of 100 epochs. Metrics for evaluation included
IoU, Dice and PA. The comparison models used in the ROI
segmentation shared the same hyperparameters as TextureUnet.

2.2.2 TOI classification

In the TOI classification stage, each ROI masK’s corresponding
WSI was sliced into non-overlapping tiles based on a grid approach,
retaining the tiles within the ROI mask area, while discarding the
tiles outside this area. Given the large size of the whole-slide ROI,
the retained tiles are numerous enough and include some areas
unsuitable for counts (such as blank spaces or excessive staining,
Figure 3A). Therefore, further binary classification is needed.
Pathologists, following the TOI criteria (bone marrow nucleated
cells distributed evenly, thin, without red cell aggregation, over-
staining, and cell debris) (26), annotated 1,312 TOIs and 1,671
Non-TOIs from 10 WSIs (Supplementary Table 1) using a custom
annotation program. All annotated tiles are 1600 x 1600 pixels in
size, containing a sufficient number of cells. The dataset was named
TOI-CLS and split into training (80%) and validation (20%). Each
tile image and its augmented copies in the training set were resized
to 224 x 224 pixels, with horizontal or vertical flips, 90, 180, or
270-degree rotations, and random adjustments to brightness and
contrast. This resulted in an augmented training set of 3,000 TOIs
and 3,000 Non-TOlIs, containing a mix of original and augmented
tile images (Figure 3B). The validation set consisted of 598 original
tile images.

TOI and Non-TOI images from WSIs have significant
differences in texture and contour (Figure 3C). Traditional
classification models have weaker generalization abilities and lower
accuracy in texture and contour feature extraction. To accurately
classify TOIs, we used TCNet (42), which has strong texture
and contour feature extraction capabilities and can achieve high
accuracy with relatively small datasets. The batch size was set to 128,
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ROI segmentation. (A) Zero padding based on ResizeLongestSide: To preserve the original aspect ratio of the WSI thumbnails, the resizing is done by
scaling the long side to the target size and applying zero padding on both sides of the short side. (B) Disease distribution of ROI-SEG dataset used for
training and validation, including 40 WSils. (C) Color similarity matrix of WSIs in the training and validation dataset. The darker the color of the grid,
the lower the similarity between the two WSIs corresponding to the grid. Most of the grids in the matrix are dark, indicating significant color
differences among WSlIs. (D) WSI and its corresponding texture feature map. The textures in the body, tail, and body-tail junction areas of the BMA
thumbnails exhibit significant differences. (E) Actual segmentation results of the model.
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the Adam optimizer was used with a learning rate of le-4, and the
loss function was cross-entropy loss. The model was trained for 50
epochs. Metrics for evaluation included Accuracy, Precision, Recall,
Fl-score and AUROC. The comparison models used in the TOI
classification stages shared the same hyperparameters as TCNet.

2.2.3 Cell segmentation

Previous studies have used object detection models to detect
tiles of interest within BMA images. However, these methods
require extensive labeled data of specific cell types to achieve high
accuracy and have limited generalization, making it difficult to
apply them to other medical centers. The Segment Anything Model
(SAM) (30), developed by Meta Al, addresses this issue by enabling
direct segmentation of all cells in TOIs from different medical
centers without additional training.

SAM has three components: an image encoder, a prompt
encoder, and a mask decoder, supporting point, box, and text
prompts (Figure 4B). Trained on the SA-1B dataset of 11 million
images and over 1 billion masks, SAM demonstrates strong
segmentation and generalization capabilities. It supports two
segmentation methods: SegAny (44), which predicts masks for a
single object based on a point or box, and SegEvery (45), which
predicts masks for all objects in an image. To segment all cells, we
chose ViT-H (632M parameters) (46) as the backbone.

When SAM’s performance in specific domains is suboptimal,
fine-tuning can enhance accuracy. Since SAM’s training images are
natural images, there are differences compared to bone marrow
cell images, so direct segmentation of cells needs improvement.
Fine-tuning is necessary with a cell masks dataset. We directly fine-
tuned SAM by freezing the official weights of the image encoder
and prompt encoder, which handle feature extraction and point
prompts effectively, and only updating the decoder weights. We

Frontiers in Medicine

used the geometric center points of cell masks, which precisely
locate cells, as foreground points (Figure 4C) for fine-tuning with
the SegAny method. In cell segmentation fine-tuning stage, each
TOI image annotated with a single cell mask.

During validation and testing, we employed the SegEvery for
segmentation (Figure 4D). We did not use box or text prompts
because SegEvery is based on point prompts, which improve
segmentation performance. In cell segmentation validation stage,
each TOI image annotated with all single cell masks, all used for
validation.

In a word, our cell segmentation dataset (CELL-SEG) is a
subset of the TOI data from the ROI segmentation stage, consisting
of 1,000 TOIs. The training dataset includes 800 TOI images,
totaling 800 cell masks. The validation dataset includes 200 TOI
images with 2,274 cell masks. Pathologists annotated bone marrow
nucleated cells in each TOI using polygons in Labelme42. The
dataset labels only include foreground 1 and background 0. We
then converted the JSON annotation information into cell mask
images using Python (Figure 4A). All images and masks were
resized to 1024 x 1024 pixels. We set the batch size to 16, used
the Adam optimizer with a learning rate of le-6, and employed
dice loss and BCE loss as the loss functions, training for 30
epochs. The evaluation metrics are Recall50 and Recall75, which
measure the proportion of correctly predicted bounding boxes at
different IoU thresholds. When applied to other medical centers,
due to the relatively fixed morphology of the cells, the fine-tuned
SAM demonstrates strong generalization capability and can achieve
accurate segmentation without the need for additional fine-tuning.
For the comparison models used in the cell segmentation stage,
the segmentation models (UNet and Mask2Former) used the same
hyperparameters as those applied when fine-tuning SAM. For the
detection models (Faster R-CNN and YOLOvV3), we set the batch
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prompts: point, box, mask, and text. (C) Point prompts, where the geometric center of each cell is used as input for SAM’s point prompts.

(D) Segmentation results of SegEvery which can segment all foreground objects (i.e., cells). (E) Visualization of cell segmentation results from

different models.

size to 16, used the Adam optimizer with a learning rate of le-
4, and trained for 30 epochs. Specifically, Faster R-CNN employed
BCELoss and Smooth L1 Loss as its loss functions, while YOLOv3
employed BCELoss and MSELoss.

2.2.4 Cell classification
Cell classification is an essential step in BMADCC, and high-
precision cell classification models rely on feature extractors.
Existing research depends on extensive labeled cell classification
data to directly train feature extractors. However, these feature
extractors often struggle with varying cell classification tasks and
the cell classification labeling process is time-consuming and
labor-intensive. In contrast, general-purpose feature extractors can
achieve accurate cell classification with only a small amount of
labeled data and can be flexibly applied to different cell classification
tasks. Therefore, with only a limited amount of labeled cell data, we
employ the self-supervised learning model MAE (40) with a ViT-B
(46) backbone to accurately classify all cells segmented by SAM in
the TOIs, training in two stages: MAE-Cell-Image-Reconstruction
stage and Cell-Classification-Fine-tuning stage.
MAE
through

In MAE-Cell-Image-Reconstruction stage, learns

general-purpose  feature  representations image
reconstruction from a large volume of unlabeled cell data.

Our unlabeled cell dataset (CELL-CLS-UNLABELED) is based on
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the cells from the TOIs in the ROI segmentation stage. Using SAM,
the cells are segmented and saved as square images of varying sizes
with box offsets (Figure 5A).

CELL-CLS-UNLABELED dataset includes 83,957 unlabeled,
unaugmented cell images across various diseases such as ALL,
AML, AITL, Burkitt, CLL, CML, CMML, cHL, DLBCL, ET, FL,
MCL, MALT, MM, NKTL, PLL, and ITP. For image reconstruction,
we load the official pre-trained ViT-H weights, set the batch size to
256, use the AdamW optimizer with a learning rate of le-3, and
employ MSE as the loss function, training for a total of 200 epochs.

In Cell-Classification-Fine-tuning stage, the MAE encoder
is used as a general-purpose feature extractor and is fine-tuned
with a small amount of labeled cell data to obtain a high-accuracy
cell classification model. Our labeled cell dataset (CELL-CLS-
LABELED) is similar to the unlabeled cell dataset but does
not overlap with it. We selected 22 common cell categories
from the union of cell types across the mentioned diseases:
apoptotic cell, atypical lymphocyte, band neutrophil, basophil,
early erythroblast, eosinophil, immature lymphocyte, immature
monocyte, intermediate erythroblast, intermediate neutrophilic
erythroblast, late
lymphocyte, monocyte, myeloblast, plasma cell, prolymphocyte,

myelocyte, late neutrophilic myelocyte,

promonocyte, promyelocyte, segmented neutrophil, smudge cell,
others (e.g., irrelevant cell, cell fragment, impurity).
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CELL-CLS- LABELED dataset includes 2,997 cell images

(Figure 5B). Pathologists used a custom labeling program to
annotate these cell types. The dataset was split into training
(80%) and validation (20%). The training dataset consisted of
2,389 cell images, augmented by horizontally or vertically flipping
each cell image, rotating by 90°, 180°, or 270°, and randomly
adjusting brightness and contrast (Figure 5A). This process resulted
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in an augmented training set of 22,000 images (Figure 5C),
including both original and augmented cells, while the validation
set comprised 608 original cell images. We used the augmented
training set for classification fine-tuning. For fine-tuning, we loaded
the pre-trained weights based on image reconstruction, set the
batch size to 256, used the Adam optimizer with a learning rate of
le-3, and employed cross-entropy loss as the loss function, training
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for a total of 200 epochs. We selected Accuracy, Precision, Recall,
Fl-score and AUROC as evaluation metrics. The comparison
models used in the cell classification stages shared the same
hyperparameters as classification fine-tuning.

When applied to other medical centers, MAE demonstrates
strong classification performance due to its powerful feature
extraction capabilities. It allows for effective classification with
minimal additional annotation and fine-tuning based on the
specific types of cells of interest.

2.2.5 Inter-observer agreement assessment

To ensure the reliability of the annotations used for training
and validation, two experienced hematopathologists independently
labeled the dataset across four stages: ROI segmentation, TOI
classification, cell segmentation, and cell classification.

In the ROI segmentation stage, inter-observer assessment was
evaluated using IoU and Dice coefficients, with an average IoU
of 0.91 and an average Dice of 0.94; In the TOI classification
stage, Cohen’s Kappa coefficient was used to assess inter-observer
assessment, yielding a value of 0.88; In the cell segmentation stage,
inter-observer assessment was again evaluated using IoU and Dice
coefficients, with an average IoU of 0.85 and an average Dice 0f 0.91;
In the cell classification stage, Cohen’s Kappa coeflicient was again
used, resulting in a value of 0.82; These consistently high values
across all four stages demonstrate a strong assessment between the
two hematopathologists in their annotations.

2.3 Automated framework testing

We used 13 BMA WSIs (BMA-WSI-TESTING) from
Chonggqing Cancer Hospital that were not used in the training of
the automation framework model (Supplementary Table 2) for
testing. The staining protocol for all images was Wright-Giemsa
staining. The image sizes were similar to those used in the training
stage, including diseases such as AML, CLL, MM, and DLBCL. For
all test whole-slide BMA, pathologists conducted a 16 categories
DCCs according to the guidelines of the International Council
for Standardization in Hematology (ICSH) (47), manually counts
a total of 300 cells using glass slides. The counted cell types
include band neutrophil, basophil, early erythroblast, eosinophil,
immature monocyte, intermediate erythroblast, intermediate
late erythroblast,
myelocyte, lymphocyte, monocyte, myeloblast, plasma cell,

neutrophilic myelocyte, late neutrophilic
promonocyte, promyelocyte, segmented neutrophil. The other
six cell types (apoptotic cell, atypical lymphocyte, immature
lymphocyte, prolymphocyte, smudge cell, and others) were not
included in the actual count. During testing, the predicted ROI
masks were post-processed to ensure the ROI masks matched the
shape of the corresponding original BMA WSI thumbnails for
subsequent region matching on WSIs.

The 16-component DCCs returned by our automated
framework can be directly compared with the manual counts
results. We calculated both the Pearson correlation coefficient
and the concordance correlation coefficient and designed multiple
experiments for correlation analysis.

In clinical analysis, the processing of each slide is divided
into two main stages: image preprocessing and intelligent analysis.
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(1) Image preprocessing: In this stage, WSI is compressed into
thumbnails. This step is handled by the Python package pyvips, and
its runtime depends on the CPU’s processing speed. All operations
were conducted on a server running Ubuntu 23.04, equipped
with an AMD EPYC 7542 32-Core processor and 256 GB RAM.
On this server, the average time required to tile a single WSI
is approximately 13 min. (2) Intelligent analysis: The stages of
ROI segmentation, TOI classification, cell segmentation, and cell
classification were all performed on an RTX A6000 GPU. The
average runtime for each stage was as follows: ROI segmentation—
0.28 s; TOI classification—75 s; cell segmentation—302 s; and cell
classification—213 s. The significantly shorter runtime for ROI
segmentation is due to the fact that it processes only a single image,
whereas TOI classification, cell segmentation, and cell classification
involve processing hundreds to thousands of images.

During the use of this framework, clinicians are not required to
evaluate the quality of intermediate outputs.

2.4 Different medical center testing

To evaluate the generalization capability of our automated
framework, we conducted experiments using 5 whole-slide
BMA (BMA-WSI-SWH) from Southwest Hospital
(Supplementary Table 2). The staining protocol used was the same

images

as that at Chongqing Cancer Hospital, specifically Wright-Giemsa
staining, and all cases were diagnosed with DLBCL. Pathologists
performed cell classification and counts according to the same 16
categories using the guidelines of the ICSH, consistent with the
protocol at Chongqing Cancer Hospital.

We directly utilized the automated framework trained on the
dataset BMA-WSI-TRAINING from Chongqing Cancer Hospital
to perform inference on the datasets from Southwest Hospital. The
output 16-component DCCs were then analyzed for correlation
with the manual counts results.

3 Results

3.1 The ROI segmentation model
accurately obtains the regions of interest
from bone marrow aspirate thumbnails

In this work, we employed TextureUnet (41), a model with
strong texture feature extraction capabilities, to segment ROIs (i.e.,
the body-tail junction areas) from the BMA thumbnails.

The ROI segmentation model achieved an IoU of 46.19%, Dice
score of 63.19%, and PA of 95.38% on the validation set. To validate
the effectiveness of TextureUnet, we compared its performance
with other classical segmentation networks, including PSPNet (48),
FCN (49), DeepLabV3 (50), and U-Net (51), as shown in Table 1.
TextureUnet outperformed these models in terms of IoU, Dice,
and PA. Due to the higher proportion of non-ROI regions in
the annotated masks and the relatively blurry boundaries of the
ROI, the PA was high while IoU and Dice scores were lower.
The segmentation results of TextureUnet and other models were
illustrated in Figure 2E, showing that TextureUnet’s output was
quite similar to the manually annotated masks. Overall, the ROI
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TABLE 1 Comparative experiment for ROl segmentation.
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TABLE 3 Comparative experiment for cell segmentation.

oA “ecaisor | Recarsi
DeepLabV3 23.19 35.16 92.20 Faster-RCNN 96.52 93.35
PSPNet 28.67 42.21 93.50 YOLOV3 97.60 92.39
FCN 30.82 44.56 92.39 Unet 96.14 93.18
U-Net 4451 61.50 95.23 Mask2Former 86.86 68.55
TextureUnet 46.19 63.19 95.38 SAM 99.77 98.37
The bold values indicate the best performance achieved among the compared methods for Fintuning-SAM 99.77 99.01

each evaluation metric.

segmentation model effectively identifies ROIs and is suitable for
most leukemia and lymphoma cases.

The framework proposed in this study was specifically
designed with consideration for the potential impact of ROI
segmentation on subsequent analysis stages. Therefore, in the TOI
classification stage, sliced regions resulting from ROI segmentation
are further filtered—only high-quality tiles are forwarded to the
cell segmentation stage, while low-quality ones are discarded.
In clinical practice, the availability of high-quality smears is
generally sufficient. Even if some high-quality regions are missed
during segmentation, the remaining tiles are still adequate for
downstream analysis. This also aligns with the manual workflow,
where pathologists typically select only a small number of high-
quality smears for differential cell counts.

3.2 TOI classification model accurately
selects tiles suitable for cell counts

To accurately identify TOI, we employed TCNet (42),
which features texture and contour depth supervision modules.
This model demonstrates strong texture and contour feature
extraction capabilities on cell tiles and achieves high accuracy with
minimal labeled data.

The TOI classification model exhibits excellent performance, as
shown in Figure 3D and Table 2. The accuracy was 90.45%, TOI
AUROC was 96.81%, Precision was 88.15%, Recall was 90.49%,
and F1-score was 89.30%. To validate the effectiveness of TCNet,
we compares it with classic classification networks based on CNN,
including VGG16 (52), ResNet50 (53), and DenseNet121 (54).
TCNet outperformed these models in terms of Accuracy, Precision,
Recall, F1-score and AUROC. These results indicate that the TOI
classification model can accurately identify regions suitable for
BMADCGC, regardless of the WSIs’ pathological diagnosis and cell
characteristics.

TABLE 2 Comparative experiment for TOI classification.

The bold values indicate the best performance achieved among the compared methods for
each evaluation metric.

3.3 Cell segmentation model accurately
segments all cells

The computer vision foundation model SAM (30) offers strong
zero-shot generalization capabilities and achieves higher accuracy
without requiring predictions about the class of segmented objects.
By using SegEvery (45), we can segment all cells within the TOIs.
When segmentation results are suboptimal, SAM can be fine-
tuned to improve accuracy. In this framework, SAM’s output is
filtered using Non-Maximum Suppression (NMS) (55) to remove
duplicate masks.

SAM demonstrated impressive segmentation performance.
We compared SAM with several object detection, semantic
segmentation, and instance segmentation models. Since SAM and
other segmentation models return masks rather than bounding
boxes, we used the bounding boxes derived from the masks to
calculate ToU. The evaluation metrics are Recall50 and Recall75,
which measure the proportion of correctly predicted bounding
boxes at different IoU thresholds. As shown in Table 3, the
fine-tuned SAM outperformed current cell detection [Faster-
RCNN (56), YOLOV3 (57)], semantic segmentation [U-Net (51)]
and instance segmentation models [Mask2Former (58)] in terms
of Recall50 and Recall75. The segmentation accuracy of fine-
tuned SAM also exceeded that of the original SAM. Overall,
SAM is capable of accurately segmenting all cells in TOI from
various diseases. As shown in Figure 4E, the fine-tuned SAM
demonstrates a significant advantage over the baseline SAM and
other segmentation models. While the original SAM already
exhibits strong zero-shot segmentation capabilities, it occasionally
fails to delineate precise cell boundaries, particularly in regions with
blurred edges. In contrast, the fine-tuned SAM can segment cells
of various morphologies with greater accuracy, outperforming the
other comparative models.

Although SAM demonstrates strong zero-shot performance
in cell segmentation tasks, our results indicate that fine-tuning

Methods Accuracyt Precisiont Recallt Fl-scoret AUROC% ‘
VGG16 87.54 86.37 87.90 87.13 95.25
ResNet50 88.13 86.92 88.51 87.71 95.46
DenseNet121 88.92 87.62 89.03 88.32 96.14
TCNet 90.45 88.15 90.49 89.30 96.81

The bold values indicate the best performance achieved among the compared methods for each evaluation metric.
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SAM on domain-specific datasets can still bring non-negligible
benefits. In high-precision segmentation (IoU > 0.75), the 0.64%
improvement suggests that fine-tuning enhances the model’s ability
to capture finer object boundaries and structural details. This
is particularly critical in medical image analysis, where accurate
localization directly affects the reliability of subsequent diagnoses.

Moreover, considering that segmentation errors under high
IoU thresholds may propagate to downstream tasks (such as cell
counting or subtype classification), the improved segmentation
accuracy through fine-tuning justifies the additional training effort
in high-reliability clinical scenarios.

From a hematopathologists perspective, the subtle
achieved by the

fine-tuned model can reduce both over-segmentation and

improvement in boundary recognition
under-segmentation, minimizing the need for manual correction
and increasing overall diagnostic efficiency and confidence. This
is especially valuable in regions with complex bone marrow cell
morphology and densely packed adjacent cells, where precise
boundary detection helps distinguish overlapping cells more
effectively—allowing pathologists to complete reviews and

confirmations more rapidly and accurately.

3.4 Cell classification model achieves
accurate classification with limited
annotation data

In complex scenarios like cell image analysis, using a
classification model alone after cell detection can significantly
improve classification accuracy. Considering the high time cost of
cell classification annotation, we use the self-supervised learning-
based MAE (40), which achieves good classification results with
only a small amount of labeled data.

We compared MAE with convolutional neural networks
Resnext101_32 x 8d (59) and ViT-B (46), noting that their
parameter sizes and accuracy on ImageNet (60) are similar. As
shown in Table 4, compared to Resnext101_32 x 8d and ViT-B, the
self-supervised MAE achieves excellent classification performance
with minimal labeled data for fine-tuning. ViT-B performs worse
than Resnext101_32 x 8d because convolutional neural networks
generally perform better on smaller datasets. Moreover, since
MAE’s reconstruction stage is self-supervised and does not require
labeled data, it directly reconstructs on a large unlabeled dataset
CELL-CLS-UNLABELED before fine-tuning on a small labeled
dataset CELL-CLS- LABELED, making it more generalizable in
practical scenarios.

The MAE-based cell classification model showed robust
performance across 22 cell types, with an average AUROC value
exceeding 0.95 (Figure 5D and Table 5). Most cell categories

TABLE 4 Comparative experiment for cell classification.

10.3389/fmed.2025.1624683

TABLE 5 Classification results of the cell classification model.

Celltype | AUROC?t |Precisiont| Recallt |Fl-scoret

Early 95.93 75.00 66.67 70.59
erythroblasts
Intermediate 97.78 84.13 88.33 86.18
erythroblasts
Late 98.34 87.04 95.92 91.26
erythroblasts
Monocytes 99.50 83.33 62.50 71.43
Promonocytes 85.93 33.52 25.00 28.64
Immature 98.90 76.92 81.08 78.95
monocytes
Lymphocytes 97.44 68.75 78.57 73.33
Prolymphocytes 88.23 80.00 50.00 61.54
Immature 98.01 71.05 90.00 79.41
lymphocytes
Atypical 98.27 62.50 33.33 43.48
lymphocytes
Basophils 87.14 40.00 80.00 53.33
Eosinophils 99.91 88.46 100.00 93.88
Smudge cells 96.94 87.50 87.50 87.50
Myeloblasts 96.10 77.78 77.78 77.78
Promyelocytes 98.70 100.00 60.00 75.00
Intermediate 91.81 72.50 53.70 61.70
neutrophilic
myelocytes
Late neutrophilic 95.01 60.66 74.00 66.67
myelocytes
Band neutrophils 96.79 87.50 85.37 86.42
Segmented 97.73 85.71 88.89 87.27
neutrophils
Plasma cells 91.21 100.00 88.89 94.12
Apoptotic cells 91.73 68.42 44.83 54.17
Others 90.45 88.15 90.49 89.31

achieved accuracy, precision, recall, F1-score, and AUROC scores
above 0.8, with AUROC values over 0.9, and an average accuracy of
77.92%, reflecting its strong cell classification capabilities.

We also identified certain limitations of our framework in
detecting specific cell types. Therefore, we have implemented a
confidence-based warning mechanism within the model: when the
prediction confidence for any cell type is below 60%, a mandatory
review by a pathologist is triggered. Additionally, if the model

Methods Natural image pre-trained weights | CELL-CLS-UNLABELED CELL-CLS-LABELED Accuracyt
ViT-B WV x v 66.75
Resnext101_32 x 8d J x v 77.16
MAE v v J 77.92

The bold value indicates the best performance achieved among the compared methods for each evaluation metric.
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assigns a misclassification rate > 10% to more than one cell type, an
“automatic rescreening” alert is generated for manual verification.

Briefly, the cell recognition performance of the proposed
framework can be categorized into three levels:

(1) High-confidence recognition (accuracy > 80%):

The framework performs robustly in identifying a variety
of mature cell types, including segmented/band neutrophils,
eosinophils, basophils, intermediate/late erythroblasts, plasma
cells, and smear cells. These results support the diagnostic process
for chronic myeloproliferative neoplasms (CMPN), and plasma
cell disorders and reliably distinguish nucleated bone marrow cells
from staining artifacts.

(2) Moderate-confidence recognition (accuracy 60-70%):

For some cell types such as immature monocytes and
atypical lymphocytes, the model serves as a valuable preliminary
screening tool. To mitigate diagnostic risks: If the misclassification
rate exceeds 10%, the system automatically issues a “manual
rescreening” alert. If prediction confidence is below 60% for any
category, expert review is mandated.

(3) Low-confidence recognition or high-overlap categories:

Monoblast vs. immature monocyte (Row 10, Column 15, error
rate: 75%): These cells show substantial morphological overlap
(e.g., size, N/C ratio), differing mainly in chromatin detail. As
reported by Osman et al. (61), distinguishing these subtypes
morphologically is inherently difficult. Notably, both are clinically

10.3389/fmed.2025.1624683

regarded as equivalent in WHO classification due to similar
prognostic value (62).

Atypical lymphocyte vs. lymphocyte (Row 1, Column 22, error
rate: 53.33%): Atypical lymphocytes typically exhibit only subtle
morphological changes and are often present in low proportions.
Given their close resemblance to normal lymphocytes, even expert-
level inter-observer agreement is about 60% (62). Flow cytometry is
often required for definitive classification.

Prolymphocyte vs. Immature Lymphocyte (Row 11, Column
16, error rate: 50%): These cells are similar in size and
nuclear/cytoplasmic morphology, with only minor differences in
cytoplasmic granules and nucleoli. As WHO guidelines (63), they
are considered equivalent in the context of diagnosing acute
lymphoblastic leukemia.

Promyelocyte vs. immature monocyte (Row 17, Column 15,
error rate: 40%): Promyelocytes and immature monocytes are
similar in size, making morphological distinction challenging—
even for experienced hematopathologists (64, 65). These cells
often require cytochemical staining or flow cytometry for accurate
classification. We plan to improve accuracy in future iterations by
expanding the labeled training dataset.

These considerations provide a clearer understanding of where
model limitations may affect clinical interpretation and where
errors are less likely to impact diagnosis due to biological or
clinical equivalence.

@A) ‘ B) oo
Number of Viable Cells Concordance = 09401 %
30 vl
7000 P
6000 -
’ 4 L4
5000 20 bk
H e
5
4000 £1s //
3000
10 . '/
2000
5 )8
. | 8] ] of
2 P D A7 %4 ) ’» 5 $H " 0 5 10 15 20 25 30 35
RS QY & G PO RO 2 Automated
SR A S g R g i R g
QO QO QO Q' Q' Q' QO QO Q O O Q QO
RO N N D)
» %@“’ %é‘\% & & © &»’b N AN Chonging Cancer Hospital (CCH)
oo [
wurzozzres. |, /00
© ElandAlfman sengnz0222060 | ;3
@ Difference .
1004 = Avg difference serign20z33004 | |75
=== Upper limit (95% CI) 07278
=== Lower imit (95% CI) sunez0z21554 | © /i
7'5 sun0223000 | §7:
50 vz | oo
3 ev2osese: [, .2/
$ 23
k: ° ° evccr20300: |, 3::
a A
e ouczonzs . %,
5% . eaosc: [, © ;0
.
erzonss. [ 7o
-0 . ¢ wmozsesos . | 3312
St vaczosa: | ; 33:
o 5 10 15 20 25 30 0.0000 0.2000 0.4000 0.6000 0.8000 10000
Average
ac wpearso
FIGURE 6
Correlation analysis. (A) The number of effective cells segmented from each WSI in the BMA-WSI-TESTING dataset. (B) Regression plot of DCCs
from manual counts and the automated framework for CML-CP-20234341. The closer the points in the two regions are to the red line, the more
related they are. (C) Bland-Altman plot of DCCs from manual counts and the automated framework for CML-CP-20234341. Most points within the
upper and lower limits represent small differences. (D) Pearson correlation coefficient and concordance correlation coefficient for each WSl in
BMA-WSI-TESTING dataset.
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3.5 High correlation between automated
framework and manual differential cell
counts

Our VFM-SSL-BMADCC-Framework demonstrated good
performance on the validation set after training. To verify the
framework’s generalization capability and the high correlation
between the results and manual analysis, we used 13 whole-slide
BMA images from Chongging Cancer Hospital (Supplementary
Table 2) for comparative analysis. The number of effective cells
segmented from each WSI was shown in Figure 6A, with an average
of 3,042 cells. Figure 6B showed the regression plot of the DCCs
from manual counts and the automated framework for CML-CP-
20234341 (results for other WSIs were provided in Supplementary
Figure 1), with a Pearson correlation coefficient of 0.9438 and a
concordance correlation coefficient of 0.9401, indicating a very
strong correlation between the two. Figure 6C showed the Bland-
Altman plot for the DCCs from manual counts and the automated
framework for CML-CP-20234341, most differences within the
limits of agreement, indicating good consistency between the
two (results for other WSIs were provided in Supplementary
material). The Pearson and concordance correlation coeflicients
for all test WSIs were shown in Figure 6D, with an average close
to 0.8. Overall, the automated framework proposed in this paper
provided DCCs that were highly correlated and consistent with
manual DCCs.
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3.6 The automated framework is
applicable to bone marrow cell counts
on whole-slide images from different
medical centers

Previous studies have proposed frameworks that are only
applicable to BMADCC within the same medical center, exhibiting
poor generalization and limiting practical application and
dissemination. To test the generalization capability of the
automated framework across different medical centers, we
conducted experiments using 5 WSIs from Southwest Hospital
(SWH) (Supplementary Table 2).

In the SWH experiment, the average number of effective cells
per slide was 1,437 (Figure 7A). Figure 7B showed the regression
analysis between manual counts and automated framework counts
for the DLBC-46-SWH sample, with a Pearson correlation
coefficient of 0.8223 and an agreement correlation coeflicient of
0.8149, indicating strong correlation between the two methods.
The Bland-Altman plot further confirmed that most differences
fall within the agreement limits (Figure 7C), indicating good
consistency in the counts results. The average Pearson correlation
coefficient and agreement correlation coefficient for all SWH
test samples were approximately 0.73 (Figure 7D), suggesting
consistent performance of the automated framework across

different samples. Overall, the proposed automated framework
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effectively performed BMADCC across different medical centers,
showing high correlation and consistency with manual results.

4 Discussion

Most previous studies on bone marrow cell classification and
counts relied on traditional machine learning or deep learning
algorithms, requiring training on specific large annotated datasets
to achieve high accuracy. When the cell detection task changes or
when applying to new datasets at other centers, traditional models
often see a significant drop in accuracy due to staining differences
in BMA and variations in cell types. This necessitates re-annotating
data and retraining the models to maintain high accuracy, making
it difficult to generalize. With the continuous advancement of
Al technology, there have been significant developments in the
application of foundation models and self-supervised learning in
computer vision. The self-supervised learning model MAE was
trained on a large number of unannotated target domain images
through masking and reconstruction, resulting in a backbone that
serves as a feature extractor with strong generalization capabilities.
With only a small amount of annotated data from the target
domain for fine-tuning, it can achieve good classification results.
The visual foundation model SAM was trained on the SA-1B
dataset with 11 million images and over 1 billion masks, exhibiting
powerful zero-shot generalization capabilities. Even with a small
amount of domain-specific images that differ significantly from
the SAM training data, high-precision segmentation results can be
achieved by fine-tuning with a few annotated data via prompts.
Since there may be staining differences when preparing BMA
smears at different medical centers, classic image segmentation
and classification models may not be directly applicable to other
centers. We use TextureUnet and TCNet, which have complex
texture feature extraction capabilities, to reduce the impact of
BMA staining differences and accurately segment and classify BMA
thumbnails and tiles from different medical centers. Based on this,
we propose an automated framework for BMA cell classification
and counts using the visual foundation model SAM and the
self-supervised learning model MAE (i.e., VFM-SSL-BMADCC-
Framework). In the cell detection or segmentation stage, compared
to traditional target detection algorithms like Faster-RCNN, we can
segment all cells in the TOIs using the original SAM pre-trained
model, which is more accurate than traditional target detection
algorithms. We can also further fine-tune SAM to achieve better
segmentation accuracy. On the other hand, previous methods often
involved directly slicing the original image into tiles to find the TOI
on WSIs, resulting in many non-TOI tiles. By using TextureUnet
to perform region segmentation on the original image to obtain
ROIs, we achieve higher quality tiles within that region and reduce
the amount of data. This results in shorter processing time for TOI
classification. Cell classification annotation is time-consuming and
highly dependent on the technician’s experience level. We use the
self-supervised learning model MAE for cell classification, which
achieves good results with only a small amount of annotated data.

Our proposed framework is applicable to various types of
leukemia and lymphoma. The process begins with the ROI
segmentation model TextureUnet, which segments the ROI from
the thumbnail of the whole-slide BMA image that requires cell
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counts. Then, tiles are obtained from the corresponding ROI of
the whole-slide BMA image. These tiles are filtered for TOI using
the TOI classification model TCNet. Next, all cells within the TOI
are segmented using the cell segmentation model SAM. Finally,
the cells are classified using the cell classification model MAE, and
a histogram of cell proportions is generated. All four stages of
our models demonstrate strong performance, and DCCs on BMA-
WSI-TESTING dataset, which was not used for model training, are
highly consistent with the manual results.

The VFM-SSL-BMADCC framework demonstrates high
accuracy, strong generalization, and low annotation dependency,
making it highly adaptable to real-world clinical workflows.
Specifically, the model can be integrated in the following ways:
(1) As a pre-screening tool: It can efficiently process whole-slide
images, prioritize abnormal cells for review, and significantly
reduce manual workload, thereby improving clinical throughput.
(2) As a second reader: It supports collaborative diagnostics,
enhancing accuracy and consistency across the diagnostic
workflow. For rare or easily missed cell types, the deep learning
model enables precise localization and identification, improving
detection rates and reducing missed diagnoses. (3) As a training
aid: The system provides standardized references, expands case
libraries, and offers real-time feedback to accelerate the learning
curve for junior pathologists. We believe these integrated pathways
will facilitate the practical adoption of the model in routine
hematopathology practice.

Our automated framework still has aspects for optimization
in future work: (1) Cell Segmentation Stage: SegEvery may also
segment unwanted cells or objects, such as red blood cells. We
can design a SAM with automatic point prompts to accurately
segment each nucleated cell in the bone marrow. (2) Other Stages:
As the performance of deep learning models continues to improve,
we can apply more advanced models in the other three stages to
achieve better results.

In summary, VFM-SSL-BMADCC-Framework significantly
reduces the time required for cell classification and counts
while ensuring accuracy and consistency. It demonstrates strong
generalization capabilities.
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