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Background: Differential cell counts (DCCs) on bone marrow aspirate (BMA) 

smear is a critical step in the diagnosis and treatment of blood and bone marrow 

diseases. However, manual counts relies on the experience of pathologists and 

is very time-consuming. In recent years, deep learning-based intelligent cell 

detection models have achieved high detection accuracy on datasets of specific 

diseases and medical centers, but these models depend on a large amount of 

annotated data and have poor generalization. When the detection task changes 

or model is applied in different medical centers, we need to re-annotate a large 

amount of data and retrain the model to ensure detection accuracy. 

Methods: To address the above issues, we designed an automated framework 

for whole-slide bone marrow aspirate smear differential cell counts (BMADCC), 

called VFM-SSL-BMADCC-Framework. This framework only requires whole-slide 

images (WSIs) as input to generate DCCs. The vision foundation model SAM, 

known for its strong generalization ability, precisely segments cells within the 

countable regions of the BMA. The MAE, pre-trained on a large unlabeled cell 

dataset, excels in generalized feature extraction, enabling accurate classification 

of cells for counting. Additionally, TextureUnet and TCNet, with their powerful 

texture feature extraction capabilities, effectively segment the body-tail junction 

areas from WSIs and classify suitable tiles for DCCs. The framework was trained 

and validated on 40 WSIs from Chongqing Cancer Hospital. To assess its 

generalization ability across different medical centers and diseases, correlation 

tests were conducted using 13 WSIs from Chongqing Cancer Hospital and 5 

WSIs from Southwest Hospital. 

Results: The framework demonstrated high accuracy across all stages: The IoU 

for region of interest (ROI) segmentation was 46.19%, and the accuracy for tile 

of interest (TOI) classification was 90.45%, the Recall75 for cell segmentation 

was 99.01%, and the accuracy for cell classification was 77.92%. Experimental 
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results indicated that the automated framework had excellent cell classification 

and counts performance, suitable for BMADCC across different medical centers 

and diseases. The differential cell counts results from all centers were highly 

consistent with manual analysis. 

Conclusion: The proposed VFM-SSL-BMADCC-Framework effectively 

automates differential cell counts on bone marrow aspirate smears, reducing 

reliance on extensive annotations and improving generalization across 

medical centers. 

KEYWORDS 

whole-slide bone marrow aspirate smears, differential cell counts, vision foundation 
model, self-supervised learning, texture 

1 Introduction 

Bone marrow aspirate smear dierential cell counts 
(BMADCC) plays a crucial role in diagnosing and treating 
hematologic malignancies. Specifically, it involves the process of 
pathologists determining the proportions of various cell types 
within the bone marrow. 

BMADCC helps diagnose acute lymphoblastic leukemia (ALL) 
(1), acute myeloid leukemia (AML) (2), angioimmunoblastic 
T-cell lymphoma (AITL) (3), Burkitt lymphoma (Burkitt) (4), 
chronic lymphocytic leukemia (CLL) (5), chronic myelogenous 
leukemia (CML) (6), chronic myelomonocytic leukemia (CMML) 
(7), classic Hodgkin lymphoma (cHL) (8), diuse large B-cell 
lymphoma (DLBCL) (9), essential thrombocythemia (ET) (10), 
follicular lymphoma (FL) (11), mantle cell lymphoma (MCL) 
(12), mucosa-associated lymphoid tissue lymphoma (MALT) 
(13), multiple myeloma (MM) (14), NK/T-cell lymphoma 
(NKTL) (15), prolymphocytic leukemia (PLL) (16), and 
immune thrombocytopenic purpura (ITP) (17), and other 
hematologic malignancies. 

Traditional BMADCC is performed manually by pathologists 
using a microscope. Considered as a gold standard, this method is 
widely applicable for diagnosing and monitoring various blood and 
bone marrow diseases (18). However, it has two main drawbacks: 
(1) Labor-intensive: Manual counts is a time-consuming and labor-
intensive task, requiring pathologists to spend significant amounts 
of time. Long-time continuous working may aect the accuracy of 
cell classification and counts. (2) Subjectivity: The inconsistency 
in DCCs experience levels among dierent pathologists leads to 
subjective bias (19). 

With the rapid development of deep learning, vision models 
based on deep learning have shown excellent performance in image 
processing tasks such as object detection, semantic segmentation, 
and image classification. These models have enabled quantitative 
routine tasks in computer-aided diagnosis, thereby accelerating the 
process, reducing bias, and improving the consistency of results 
(20–22). To address the issues associated with manual counts, 
many researchers (23–29) have applied deep learning algorithms 
to achieve automated BMADCC. This has significantly improved 
the accuracy and eÿciency of DCCs, holding great theoretical and 
practical value. These studies can be categorized into two main 

methods according to their processes: Tile-based counts methods 
and WSI-based counts methods. 

Tile-based counts methods require manually slicing the 
WSIs into tiles (i.e., square bone marrow images), selecting 
the appropriate tiles as input for DCCs, and then performing 
cell detection and classification. Wang et al. (23) utilized the 
Faster-RCNN object detection algorithm and feature pyramid 
network to detect 6 types of cells within tiles. However, the cell 
detection model’s classification accuracy still needed improvement. 
In contrast, Chandradevan achieved higher overall accuracy by 
using a separate cell classification model (24). They developed a 
two-stage system for standard clinical cell classification, manually 
selecting tiles with a large number of cells from BMA, detecting 
all cells as single category objects using Faster-RCNN, and then 
classifying the cells with VGG. Yu et al. (25) applied deep 
convolutional neural networks to automatically detect and classify 
bone marrow nucleated cells within tiles. These methods require 
manual selection of optimal tiles, making the process slow and 
unsuitable for full-process DCCs, which limits their scalability to 
clinical diagnostic work. 

Compared to Tile-based counts methods, WSI-based counts 
methods do not require manual selection of tiles. Instead, they 
automatically identify tiles of interest (TOI) from WSIs, detect 
cells within these tiles, and finally classify and count these cells, 
achieving intelligent full-process DCCs. These methods can be 
further categorized based on the approach of tile extraction: Grid-
based counts methods and ROI-based counts methods. 

Grid-based counts methods directly slices WSIs into uniformly 
sized tiles, then selects TOIs from these tiles. Tayebi et al. 
(26) developed an end-to-end automated bone marrow cytology 
system that slices WSIs into uniform tiles, uses DenseNet121 for 
binary classification to distinguish between TOI and Non-TOI, 
and then employs YOLOv4 for cell detection and classification 
within the TOIs. This approach achieved high accuracy and 
showed a strong correlation with manual counts results. Lewis 
et al. (27) proposed a more precise automated workflow, utilizing 
EÿcientNetV2S to classify the uniformly sliced tiles into four 
categories (optimal, particle, hemodilute and outside), Faster-
RCNN to detect cells treated as single category objects within the 
optimal tiles (i.e., TOIs), and EÿcientNetV2L for cell classification. 
Multiple experiments demonstrated the feasibility of automatically 
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generating DCCs from WSIs. Both methods slice WSIs into 
tiles, however, these tiles might include areas of cell clumping, 
overstaining, or blank spaces, resulting in many invalid tiles that 
need to be filtered out, making the process particularly time-
consuming. In practice, the region suitable for DCCs is the body-
tail junction area, known as region of interest (ROI). 

ROI-based counts methods identify ROIs from WSIs, then 
extract tiles from these regions for subsequent cell detection and 
classification. Wang et al. (28) proposed a hierarchical framework 
that utilizes a multi-resolution pyramid and Cascade R-CNN to 
identify suitable bounding boxes as ROIs from WSIs. This is 
followed by another Cascade R-CNN for BMA cell detection and 
classification within these regions, achieving eective nucleated 
cell classification and counts analysis from WSIs (28). Su et al. 
(29) further explored methods for automatically extracting high-
quality tile images and accurately locating and identifying nucleated 
cells, proposing the ROI-BMC-DNNet analysis framework. This 
framework used a pyramid network and an encoder-decoder to 
segment ROIs, from which high-quality tiles were then extracted. 
A tile quality evaluation network and a cell detection network were 
subsequently used to automatically identify and count nucleated 
bone marrow cells. Compared to Grid-based counts methods, 
which slice WSIs into uniformly sized tiles, ROI-based counts 
methods produce higher quality tiles with less data, resulting in 
shorter processing times during tile classification. 

However, both Tile-based and WSI-based counts methods have 
significant issues, as they are only applicable to BMA from specific 
diseases and medical centers. They require extensive labeled data, 
time, and computational resources, and have poor generalizability. 
Specifically: (1) Supervised learning issues: 1. Object detection 
models can only detect cell types known from the dataset, making 
them suitable only for specific detection tasks. When cell types 
change, additional labeling of cell bounding boxes is required; 2. 
Image classification models can only learn limited representation 
in the current dataset. When applied to dierent medical centers, 
they require extensive labeled data and retraining to maintain 
high accuracy. (2) Eÿciency and staining issues: 1. Grid-based 
counts methods produce a large amount of irrelevant data when 
slicing WSIs into tiles, which increases the time and computational 
resources required for tile classification model; 2. BMA from 
dierent medical centers may have staining dierences, making 
ROI segmentation and TOI classification based on traditional 
deep learning models less eective and unsuitable for application 
in other centers. 

In recent years, artificial intelligence has advanced rapidly, 
particularly in computer vision, where foundation models and self-
supervised learning have made significant progress. These models 
can eectively address issue 1. In terms of foundation models, the 
Segment Anything Model (SAM), trained on the SA-1B dataset 
with 11 million images and over 1 billion masks, exhibits strong 
zero-shot generalization capabilities (30). Even when domain-
specific images dier significantly from SAM’s training data, high-
precision segmentation results can be achieved by fine-tuning with 
a small amount of labeled data using prompts. SAM has recently 
gained considerable attention in the medical imaging field. For 
instance, methods such as MedSAM (31) and Med-SA (32) have 
been optimized for general medical images. In the cell segmentation 
domain, methods like CellSAM (33), Guided Prompting SAM (34), 
and UNSAM (35) have also shown remarkable eectiveness. In 

addition, self-supervised learning initially constructed supervisory 
signals from the interior of images, such as the Jigsaw puzzle 
prediction task proposed by Doersch et al. (36) and the image 
rotation prediction task by Noroozi and Favaro (37). Subsequently, 
contrastive learning became one of the mainstream methods in 
self-supervised learning, learning useful feature representations by 
comparing similarities and dierences between samples. Notable 
examples include MoCo proposed by He et al. (38) and SimCLR 
introduced by Chen et al. (39). Building on these advancements, 
the MAE model proposed by He et al. uses image masking and 
reconstruction approach to train feature extractors with strong 
generalization capabilities from a large amount of unlabeled data, 
and achieves excellent classification performance by fine-tuning 
with a small amount of labeled data (40). 

For Issue 2, Su et al. (29) addressed the time and computational 
eÿciency issue caused by a large amount of invalid tiles by 
segmenting ROIs, which occupy only a small portion of WSI, and 
then extracting high-quality tiles from these regions. However, 
previous research did not resolve the color dierences in BMA 
smears from dierent medical centers, nor the significant texture 
dierences among pairs of ROI and non-ROI images, as well as 
TOI and non-TOI images. Our previously proposed TextureUnet 
(41) and TCNet (42), which have complex texture feature extraction 
capabilities, can mitigate the impact of BMA staining dierences 
from a texture perspective. This improves the precision of ROI 
segmentation and tile classification across dierent medical centers, 
eectively enhancing the eÿciency of tile classification. 

Based on above, the paper proposed an automated framework 
for DCCs on whole-slide BMA, leveraging the vision foundation 
model SAM and the self-supervised learning model MAE (i.e., 
VFM-SSL-BMADCC-Framework). The framework consists of four 
stages: ROI segmentation, TOI classification, cell segmentation, 
and cell classification. (1) ROI Segmentation: In this stage, the 
framework uses TextureUnet to segment the ROI (i.e., the body-
tail junction areas) from the whole-slide BMA thumbnail. (2) 
TOI Classification: The framework slices the ROI-aligned WSI 
region into tiles and utilizes TCNet for binary classification to 
select TOIs. (3) Cell Segmentation: In this stage, SAM, a vision 
foundation model with strong generalization capabilities, segments 
all categories of individual cells from the selected TOIs. (4) Cell 
Classification: The framework uses the high-performance feature 
extractor trained by the self-supervised learning model MAE to 
extract features from individual cells and classify and count them 
according to the required categories. Cell proportions are calculated 
by dividing the number of each cell type by the total number of 
cells, resulting in a 16-component DCCs histogram (Figure 1). In 
summary, our automated framework oers strong generalization, 
high accuracy, and can provide valuable reference for pathologists 
across various medical centers. 

2 Materials and methods 

2.1 Data source for bone marrow aspirate 
smears 

This work included 40 BMA smears collected from the 
Hematology Oncology Center Laboratory at Chongqing Cancer 
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FIGURE 1 

The workflow of the automated framework for DCCs on whole-slide BMA based on the vision foundation model SAM and the self-supervised 
learning model MAE. The BMA smear is scanned using a 100× oil immersion objective, and its corresponding thumbnail image (with a reduction 
factor of 100) is processed. The ROI is segmented from the thumbnail using TextureUnet. Tiles are then sliced from the BMA smears corresponding 
to the ROIs using a grid approach. TCNet classifies the TOIs from these tiles. SAM segments all cells on the TOIs in the everything mode (i.e., 
SegEvery). MAE is used for cell classification and counts. Finally, a 16-component DCCs histogram is returned. 

Hospital, from 9 February 2022, to 30 April 2024. These smears 
exhibit varying cell characteristics and pathological features 
(Supplementary Table 1). The BMA smears were prepared 
manually by extracting 0.1–0.2 ml of bone marrow fluid from 
the posterior or anterior iliac crest of patients under local 
anesthesia using a BMA needle. The fluid was then placed on 
a glass slide to create 5–6 smears of uniform thickness. After 
natural drying, 2 smears from each set were selected for Wright-
Giemsa staining for routine examination. All BMA smears were 
scanned using a Bionovation Image Cytometry slide scanning 
device at 0.1 µm/pixel (100× oil immersion objective), generating 
WSIs of the BMA smears, with 40 unique images retained. This 
dataset was named BMA-WSI-Training. Each WSI was annotated 
by two pathologists with over ten years of experience using 
Labelme software (43) to mark ROIs and cell masks, followed 
by tile classification and cell classification using a self-developed 
annotation program. 

2.2 Model development and evaluation 

2.2.1 ROI segmentation 
In the ROI segmentation stage, WSIs (at least 10k × 10k pixels) 

from the BMA-WSI-Training dataset were downscaled by a factor 
of 100 using pyvips in Python, creating a new dataset named the 
ROI-SEG. This dataset includes dierent diseases such as AML, 
Burkitt, CLL, DLBCL, MM (Figure 2B). Pathologists annotated the 
body-tail junction areas (i.e., ROIs) using Labelme, resulting in 
40 annotated ROI masks. All thumbnails and their corresponding 
ROI masks are resized to 256 × 256 pixels when inputting 
into the model, using zero-padding based on ResizeLongestSide 
(Figure 2A). 

Whole-slide BMA commonly exhibit staining variability 
(Figure 2C). Notably, there are distinct texture dierences in the 
body, tail, and body-tail junction areas of the BMA thumbnails 
(Figure 2D). Given the limited texture feature extraction capability 
and lower accuracy of traditional segmentation models, we 
employed our previously proposed TextureUnet (41), which is 

eective in texture information extraction, to segment ROIs in 
whole-slide BMA to mitigate the impact of staining variability. 
The model was trained on the ROI-SEG dataset, which was split 
into training (80%) and validation (20%). The training parameters 
included a batch size of 4, Adam optimizer, a learning rate of 1e-4, 
and a multi-task loss function consisting of cross-entropy loss and 
dice loss, with a total of 100 epochs. Metrics for evaluation included 
IoU, Dice and PA. The comparison models used in the ROI 
segmentation shared the same hyperparameters as TextureUnet. 

2.2.2 TOI classification 
In the TOI classification stage, each ROI mask’s corresponding 

WSI was sliced into non-overlapping tiles based on a grid approach, 
retaining the tiles within the ROI mask area, while discarding the 
tiles outside this area. Given the large size of the whole-slide ROI, 
the retained tiles are numerous enough and include some areas 
unsuitable for counts (such as blank spaces or excessive staining, 
Figure 3A). Therefore, further binary classification is needed. 
Pathologists, following the TOI criteria (bone marrow nucleated 
cells distributed evenly, thin, without red cell aggregation, over-
staining, and cell debris) (26), annotated 1,312 TOIs and 1,671 
Non-TOIs from 10 WSIs (Supplementary Table 1) using a custom 
annotation program. All annotated tiles are 1600 × 1600 pixels in 
size, containing a suÿcient number of cells. The dataset was named 
TOI-CLS and split into training (80%) and validation (20%). Each 
tile image and its augmented copies in the training set were resized 
to 224 × 224 pixels, with horizontal or vertical flips, 90, 180, or 
270-degree rotations, and random adjustments to brightness and 
contrast. This resulted in an augmented training set of 3,000 TOIs 
and 3,000 Non-TOIs, containing a mix of original and augmented 
tile images (Figure 3B). The validation set consisted of 598 original 
tile images. 

TOI and Non-TOI images from WSIs have significant 
dierences in texture and contour (Figure 3C). Traditional 
classification models have weaker generalization abilities and lower 
accuracy in texture and contour feature extraction. To accurately 
classify TOIs, we used TCNet (42), which has strong texture 
and contour feature extraction capabilities and can achieve high 
accuracy with relatively small datasets. The batch size was set to 128, 
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FIGURE 2 

ROI segmentation. (A) Zero padding based on ResizeLongestSide: To preserve the original aspect ratio of the WSI thumbnails, the resizing is done by 
scaling the long side to the target size and applying zero padding on both sides of the short side. (B) Disease distribution of ROI-SEG dataset used for 
training and validation, including 40 WSIs. (C) Color similarity matrix of WSIs in the training and validation dataset. The darker the color of the grid, 
the lower the similarity between the two WSIs corresponding to the grid. Most of the grids in the matrix are dark, indicating significant color 
differences among WSIs. (D) WSI and its corresponding texture feature map. The textures in the body, tail, and body-tail junction areas of the BMA 
thumbnails exhibit significant differences. (E) Actual segmentation results of the model. 
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FIGURE 3 

TOI Classification. (A) Tiles within the ROI are divided into TOI and non-TOI categories. Data augmentation is performed, including random flipping, 
rotation, and adjustments to brightness and contrast. (B) Number of original and augmented images in the TOI classification stage. (C) Texture and 
contour features of TOI and non-TOI exhibit significant differences. (D) Confusion matrix for TOI classification. 

the Adam optimizer was used with a learning rate of 1e-4, and the 
loss function was cross-entropy loss. The model was trained for 50 
epochs. Metrics for evaluation included Accuracy, Precision, Recall, 
F1-score and AUROC. The comparison models used in the TOI 
classification stages shared the same hyperparameters as TCNet. 

2.2.3 Cell segmentation 
Previous studies have used object detection models to detect 

tiles of interest within BMA images. However, these methods 
require extensive labeled data of specific cell types to achieve high 
accuracy and have limited generalization, making it diÿcult to 
apply them to other medical centers. The Segment Anything Model 
(SAM) (30), developed by Meta AI, addresses this issue by enabling 
direct segmentation of all cells in TOIs from dierent medical 
centers without additional training. 

SAM has three components: an image encoder, a prompt 
encoder, and a mask decoder, supporting point, box, and text 
prompts (Figure 4B). Trained on the SA-1B dataset of 11 million 
images and over 1 billion masks, SAM demonstrates strong 
segmentation and generalization capabilities. It supports two 
segmentation methods: SegAny (44), which predicts masks for a 
single object based on a point or box, and SegEvery (45), which 
predicts masks for all objects in an image. To segment all cells, we 
chose ViT-H (632M parameters) (46) as the backbone. 

When SAM’s performance in specific domains is suboptimal, 
fine-tuning can enhance accuracy. Since SAM’s training images are 
natural images, there are dierences compared to bone marrow 
cell images, so direct segmentation of cells needs improvement. 
Fine-tuning is necessary with a cell masks dataset. We directly fine-
tuned SAM by freezing the oÿcial weights of the image encoder 
and prompt encoder, which handle feature extraction and point 
prompts eectively, and only updating the decoder weights. We 

used the geometric center points of cell masks, which precisely 
locate cells, as foreground points (Figure 4C) for fine-tuning with 
the SegAny method. In cell segmentation fine-tuning stage, each 
TOI image annotated with a single cell mask. 

During validation and testing, we employed the SegEvery for 
segmentation (Figure 4D). We did not use box or text prompts 
because SegEvery is based on point prompts, which improve 
segmentation performance. In cell segmentation validation stage, 
each TOI image annotated with all single cell masks, all used for 
validation. 

In a word, our cell segmentation dataset (CELL-SEG) is a 
subset of the TOI data from the ROI segmentation stage, consisting 
of 1,000 TOIs. The training dataset includes 800 TOI images, 
totaling 800 cell masks. The validation dataset includes 200 TOI 
images with 2,274 cell masks. Pathologists annotated bone marrow 
nucleated cells in each TOI using polygons in Labelme42. The 
dataset labels only include foreground 1 and background 0. We 
then converted the JSON annotation information into cell mask 
images using Python (Figure 4A). All images and masks were 
resized to 1024 × 1024 pixels. We set the batch size to 16, used 
the Adam optimizer with a learning rate of 1e-6, and employed 
dice loss and BCE loss as the loss functions, training for 30 
epochs. The evaluation metrics are Recall50 and Recall75, which 
measure the proportion of correctly predicted bounding boxes at 
dierent IoU thresholds. When applied to other medical centers, 
due to the relatively fixed morphology of the cells, the fine-tuned 
SAM demonstrates strong generalization capability and can achieve 
accurate segmentation without the need for additional fine-tuning. 
For the comparison models used in the cell segmentation stage, 
the segmentation models (UNet and Mask2Former) used the same 
hyperparameters as those applied when fine-tuning SAM. For the 
detection models (Faster R-CNN and YOLOv3), we set the batch 
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FIGURE 4 

Cell Segmentation. (A) TOI and their corresponding annotation information. We annotated the cells using polygons and converted them into masks 
using Python. (B) The model structure of SAM, which includes image encoder, prompt encoder, and mask decoder, and supports four types of 
prompts: point, box, mask, and text. (C) Point prompts, where the geometric center of each cell is used as input for SAM’s point prompts. 
(D) Segmentation results of SegEvery which can segment all foreground objects (i.e., cells). (E) Visualization of cell segmentation results from 
different models. 

size to 16, used the Adam optimizer with a learning rate of 1e-
4, and trained for 30 epochs. Specifically, Faster R-CNN employed 
BCELoss and Smooth L1 Loss as its loss functions, while YOLOv3 
employed BCELoss and MSELoss. 

2.2.4 Cell classification 
Cell classification is an essential step in BMADCC, and high-

precision cell classification models rely on feature extractors. 
Existing research depends on extensive labeled cell classification 
data to directly train feature extractors. However, these feature 
extractors often struggle with varying cell classification tasks and 
the cell classification labeling process is time-consuming and 
labor-intensive. In contrast, general-purpose feature extractors can 
achieve accurate cell classification with only a small amount of 
labeled data and can be flexibly applied to dierent cell classification 
tasks. Therefore, with only a limited amount of labeled cell data, we 
employ the self-supervised learning model MAE (40) with a ViT-B 
(46) backbone to accurately classify all cells segmented by SAM in 
the TOIs, training in two stages: MAE-Cell-Image-Reconstruction 
stage and Cell-Classification-Fine-tuning stage. 

In MAE-Cell-Image-Reconstruction stage, MAE learns 
general-purpose feature representations through image 
reconstruction from a large volume of unlabeled cell data. 
Our unlabeled cell dataset (CELL-CLS-UNLABELED) is based on 

the cells from the TOIs in the ROI segmentation stage. Using SAM, 
the cells are segmented and saved as square images of varying sizes 
with box osets (Figure 5A). 

CELL-CLS-UNLABELED dataset includes 83,957 unlabeled, 
unaugmented cell images across various diseases such as ALL, 
AML, AITL, Burkitt, CLL, CML, CMML, cHL, DLBCL, ET, FL, 
MCL, MALT, MM, NKTL, PLL, and ITP. For image reconstruction, 
we load the oÿcial pre-trained ViT-H weights, set the batch size to 
256, use the AdamW optimizer with a learning rate of 1e-3, and 
employ MSE as the loss function, training for a total of 200 epochs. 

In Cell-Classification-Fine-tuning stage, the MAE encoder 
is used as a general-purpose feature extractor and is fine-tuned 
with a small amount of labeled cell data to obtain a high-accuracy 
cell classification model. Our labeled cell dataset (CELL-CLS-
LABELED) is similar to the unlabeled cell dataset but does 
not overlap with it. We selected 22 common cell categories 
from the union of cell types across the mentioned diseases: 
apoptotic cell, atypical lymphocyte, band neutrophil, basophil, 
early erythroblast, eosinophil, immature lymphocyte, immature 
monocyte, intermediate erythroblast, intermediate neutrophilic 
myelocyte, late erythroblast, late neutrophilic myelocyte, 
lymphocyte, monocyte, myeloblast, plasma cell, prolymphocyte, 
promonocyte, promyelocyte, segmented neutrophil, smudge cell, 
others (e.g., irrelevant cell, cell fragment, impurity). 
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FIGURE 5 

Cell Classification. (A) Cell images with box offsets extracted from TOI according to masks, with image augmentation including random flips, 
rotations, and adjustments to brightness and contrast. (B) Data distribution in cell classification stage, including datasets CELL-CLS-UNLABELED and 
CELL-CLS-LABELED. (C) Cell annotation details. (D) Confusion matrix for cell classification. 

CELL-CLS- LABELED dataset includes 2,997 cell images 
(Figure 5B). Pathologists used a custom labeling program to 
annotate these cell types. The dataset was split into training 
(80%) and validation (20%). The training dataset consisted of 
2,389 cell images, augmented by horizontally or vertically flipping 
each cell image, rotating by 90◦ , 180◦ , or 270◦ , and randomly 
adjusting brightness and contrast (Figure 5A). This process resulted 

in an augmented training set of 22,000 images (Figure 5C), 
including both original and augmented cells, while the validation 
set comprised 608 original cell images. We used the augmented 
training set for classification fine-tuning. For fine-tuning, we loaded 
the pre-trained weights based on image reconstruction, set the 
batch size to 256, used the Adam optimizer with a learning rate of 
1e-3, and employed cross-entropy loss as the loss function, training 
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for a total of 200 epochs. We selected Accuracy, Precision, Recall, 
F1-score and AUROC as evaluation metrics. The comparison 
models used in the cell classification stages shared the same 
hyperparameters as classification fine-tuning. 

When applied to other medical centers, MAE demonstrates 
strong classification performance due to its powerful feature 
extraction capabilities. It allows for eective classification with 
minimal additional annotation and fine-tuning based on the 
specific types of cells of interest. 

2.2.5 Inter-observer agreement assessment 
To ensure the reliability of the annotations used for training 

and validation, two experienced hematopathologists independently 
labeled the dataset across four stages: ROI segmentation, TOI 
classification, cell segmentation, and cell classification. 

In the ROI segmentation stage, inter-observer assessment was 
evaluated using IoU and Dice coeÿcients, with an average IoU 
of 0.91 and an average Dice of 0.94; In the TOI classification 
stage, Cohen’s Kappa coeÿcient was used to assess inter-observer 
assessment, yielding a value of 0.88; In the cell segmentation stage, 
inter-observer assessment was again evaluated using IoU and Dice 
coeÿcients, with an average IoU of 0.85 and an average Dice of 0.91; 
In the cell classification stage, Cohen’s Kappa coeÿcient was again 
used, resulting in a value of 0.82; These consistently high values 
across all four stages demonstrate a strong assessment between the 
two hematopathologists in their annotations. 

2.3 Automated framework testing 

We used 13 BMA WSIs (BMA-WSI-TESTING) from 
Chongqing Cancer Hospital that were not used in the training of 
the automation framework model (Supplementary Table 2) for 
testing. The staining protocol for all images was Wright-Giemsa 
staining. The image sizes were similar to those used in the training 
stage, including diseases such as AML, CLL, MM, and DLBCL. For 
all test whole-slide BMA, pathologists conducted a 16 categories 
DCCs according to the guidelines of the International Council 
for Standardization in Hematology (ICSH) (47), manually counts 
a total of 300 cells using glass slides. The counted cell types 
include band neutrophil, basophil, early erythroblast, eosinophil, 
immature monocyte, intermediate erythroblast, intermediate 
neutrophilic myelocyte, late erythroblast, late neutrophilic 
myelocyte, lymphocyte, monocyte, myeloblast, plasma cell, 
promonocyte, promyelocyte, segmented neutrophil. The other 
six cell types (apoptotic cell, atypical lymphocyte, immature 
lymphocyte, prolymphocyte, smudge cell, and others) were not 
included in the actual count. During testing, the predicted ROI 
masks were post-processed to ensure the ROI masks matched the 
shape of the corresponding original BMA WSI thumbnails for 
subsequent region matching on WSIs. 

The 16-component DCCs returned by our automated 
framework can be directly compared with the manual counts 
results. We calculated both the Pearson correlation coeÿcient 
and the concordance correlation coeÿcient and designed multiple 
experiments for correlation analysis. 

In clinical analysis, the processing of each slide is divided 
into two main stages: image preprocessing and intelligent analysis. 

(1) Image preprocessing: In this stage, WSI is compressed into 
thumbnails. This step is handled by the Python package pyvips, and 
its runtime depends on the CPU’s processing speed. All operations 
were conducted on a server running Ubuntu 23.04, equipped 
with an AMD EPYC 7542 32-Core processor and 256 GB RAM. 
On this server, the average time required to tile a single WSI 
is approximately 13 min. (2) Intelligent analysis: The stages of 
ROI segmentation, TOI classification, cell segmentation, and cell 
classification were all performed on an RTX A6000 GPU. The 
average runtime for each stage was as follows: ROI segmentation— 
0.28 s; TOI classification—75 s; cell segmentation—302 s; and cell 
classification—213 s. The significantly shorter runtime for ROI 
segmentation is due to the fact that it processes only a single image, 
whereas TOI classification, cell segmentation, and cell classification 
involve processing hundreds to thousands of images. 

During the use of this framework, clinicians are not required to 
evaluate the quality of intermediate outputs. 

2.4 Different medical center testing 

To evaluate the generalization capability of our automated 
framework, we conducted experiments using 5 whole-slide 
BMA images (BMA-WSI-SWH) from Southwest Hospital 
(Supplementary Table 2). The staining protocol used was the same 
as that at Chongqing Cancer Hospital, specifically Wright-Giemsa 
staining, and all cases were diagnosed with DLBCL. Pathologists 
performed cell classification and counts according to the same 16 
categories using the guidelines of the ICSH, consistent with the 
protocol at Chongqing Cancer Hospital. 

We directly utilized the automated framework trained on the 
dataset BMA-WSI-TRAINING from Chongqing Cancer Hospital 
to perform inference on the datasets from Southwest Hospital. The 
output 16-component DCCs were then analyzed for correlation 
with the manual counts results. 

3 Results 

3.1 The ROI segmentation model 
accurately obtains the regions of interest 
from bone marrow aspirate thumbnails 

In this work, we employed TextureUnet (41), a model with 
strong texture feature extraction capabilities, to segment ROIs (i.e., 
the body-tail junction areas) from the BMA thumbnails. 

The ROI segmentation model achieved an IoU of 46.19%, Dice 
score of 63.19%, and PA of 95.38% on the validation set. To validate 
the eectiveness of TextureUnet, we compared its performance 
with other classical segmentation networks, including PSPNet (48), 
FCN (49), DeepLabV3 (50), and U-Net (51), as shown in Table 1. 
TextureUnet outperformed these models in terms of IoU, Dice, 
and PA. Due to the higher proportion of non-ROI regions in 
the annotated masks and the relatively blurry boundaries of the 
ROI, the PA was high while IoU and Dice scores were lower. 
The segmentation results of TextureUnet and other models were 
illustrated in Figure 2E, showing that TextureUnet’s output was 
quite similar to the manually annotated masks. Overall, the ROI 
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TABLE 1 Comparative experiment for ROI segmentation. 

Methods IoU↑ Dice↑ PA↑ 

DeepLabV3 23.19 35.16 92.20 

PSPNet 28.67 42.21 93.50 

FCN 30.82 44.56 92.39 

U-Net 44.51 61.50 95.23 

TextureUnet 46.19 63.19 95.38 

The bold values indicate the best performance achieved among the compared methods for 
each evaluation metric. 

segmentation model eectively identifies ROIs and is suitable for 
most leukemia and lymphoma cases. 

The framework proposed in this study was specifically 
designed with consideration for the potential impact of ROI 
segmentation on subsequent analysis stages. Therefore, in the TOI 
classification stage, sliced regions resulting from ROI segmentation 
are further filtered—only high-quality tiles are forwarded to the 
cell segmentation stage, while low-quality ones are discarded. 
In clinical practice, the availability of high-quality smears is 
generally suÿcient. Even if some high-quality regions are missed 
during segmentation, the remaining tiles are still adequate for 
downstream analysis. This also aligns with the manual workflow, 
where pathologists typically select only a small number of high-
quality smears for dierential cell counts. 

3.2 TOI classification model accurately 
selects tiles suitable for cell counts 

To accurately identify TOI, we employed TCNet (42), 
which features texture and contour depth supervision modules. 
This model demonstrates strong texture and contour feature 
extraction capabilities on cell tiles and achieves high accuracy with 
minimal labeled data. 

The TOI classification model exhibits excellent performance, as 
shown in Figure 3D and Table 2. The accuracy was 90.45%, TOI 
AUROC was 96.81%, Precision was 88.15%, Recall was 90.49%, 
and F1-score was 89.30%. To validate the eectiveness of TCNet, 
we compares it with classic classification networks based on CNN, 
including VGG16 (52), ResNet50 (53), and DenseNet121 (54). 
TCNet outperformed these models in terms of Accuracy, Precision, 
Recall, F1-score and AUROC. These results indicate that the TOI 
classification model can accurately identify regions suitable for 
BMADCC, regardless of the WSIs’ pathological diagnosis and cell 
characteristics. 

TABLE 3 Comparative experiment for cell segmentation. 

Methods Recall50↑ Recall75↑ 

Faster-RCNN 96.52 93.35 

YOLOv3 97.60 92.39 

Unet 96.14 93.18 

Mask2Former 86.86 68.55 

SAM 99.77 98.37 

Fintuning-SAM 99.77 99.01 

The bold values indicate the best performance achieved among the compared methods for 
each evaluation metric. 

3.3 Cell segmentation model accurately 
segments all cells 

The computer vision foundation model SAM (30) oers strong 
zero-shot generalization capabilities and achieves higher accuracy 
without requiring predictions about the class of segmented objects. 
By using SegEvery (45), we can segment all cells within the TOIs. 
When segmentation results are suboptimal, SAM can be fine-
tuned to improve accuracy. In this framework, SAM’s output is 
filtered using Non-Maximum Suppression (NMS) (55) to remove 
duplicate masks. 

SAM demonstrated impressive segmentation performance. 
We compared SAM with several object detection, semantic 
segmentation, and instance segmentation models. Since SAM and 
other segmentation models return masks rather than bounding 
boxes, we used the bounding boxes derived from the masks to 
calculate IoU. The evaluation metrics are Recall50 and Recall75, 
which measure the proportion of correctly predicted bounding 
boxes at dierent IoU thresholds. As shown in Table 3, the 
fine-tuned SAM outperformed current cell detection [Faster-
RCNN (56), YOLOv3 (57)], semantic segmentation [U-Net (51)] 
and instance segmentation models [Mask2Former (58)] in terms 
of Recall50 and Recall75. The segmentation accuracy of fine-
tuned SAM also exceeded that of the original SAM. Overall, 
SAM is capable of accurately segmenting all cells in TOI from 
various diseases. As shown in Figure 4E, the fine-tuned SAM 
demonstrates a significant advantage over the baseline SAM and 
other segmentation models. While the original SAM already 
exhibits strong zero-shot segmentation capabilities, it occasionally 
fails to delineate precise cell boundaries, particularly in regions with 
blurred edges. In contrast, the fine-tuned SAM can segment cells 
of various morphologies with greater accuracy, outperforming the 
other comparative models. 

Although SAM demonstrates strong zero-shot performance 
in cell segmentation tasks, our results indicate that fine-tuning 

TABLE 2 Comparative experiment for TOI classification. 

Methods Accuracy↑ Precision↑ Recall↑ F1-score↑ AUROC↑ 

VGG16 87.54 86.37 87.90 87.13 95.25 

ResNet50 88.13 86.92 88.51 87.71 95.46 

DenseNet121 88.92 87.62 89.03 88.32 96.14 

TCNet 90.45 88.15 90.49 89.30 96.81 

The bold values indicate the best performance achieved among the compared methods for each evaluation metric. 
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SAM on domain-specific datasets can still bring non-negligible 
benefits. In high-precision segmentation (IoU ≥ 0.75), the 0.64% 
improvement suggests that fine-tuning enhances the model’s ability 
to capture finer object boundaries and structural details. This 
is particularly critical in medical image analysis, where accurate 
localization directly aects the reliability of subsequent diagnoses. 

Moreover, considering that segmentation errors under high 
IoU thresholds may propagate to downstream tasks (such as cell 
counting or subtype classification), the improved segmentation 
accuracy through fine-tuning justifies the additional training eort 
in high-reliability clinical scenarios. 

From a hematopathologist’s perspective, the subtle 
improvement in boundary recognition achieved by the 
fine-tuned model can reduce both over-segmentation and 
under-segmentation, minimizing the need for manual correction 
and increasing overall diagnostic eÿciency and confidence. This 
is especially valuable in regions with complex bone marrow cell 
morphology and densely packed adjacent cells, where precise 
boundary detection helps distinguish overlapping cells more 
eectively—allowing pathologists to complete reviews and 
confirmations more rapidly and accurately. 

3.4 Cell classification model achieves 
accurate classification with limited 
annotation data 

In complex scenarios like cell image analysis, using a 
classification model alone after cell detection can significantly 
improve classification accuracy. Considering the high time cost of 
cell classification annotation, we use the self-supervised learning-
based MAE (40), which achieves good classification results with 
only a small amount of labeled data. 

We compared MAE with convolutional neural networks 
Resnext101_32 × 8d (59) and ViT-B (46), noting that their 
parameter sizes and accuracy on ImageNet (60) are similar. As 
shown in Table 4, compared to Resnext101_32 × 8d and ViT-B, the 
self-supervised MAE achieves excellent classification performance 
with minimal labeled data for fine-tuning. ViT-B performs worse 
than Resnext101_32 × 8d because convolutional neural networks 
generally perform better on smaller datasets. Moreover, since 
MAE’s reconstruction stage is self-supervised and does not require 
labeled data, it directly reconstructs on a large unlabeled dataset 
CELL-CLS-UNLABELED before fine-tuning on a small labeled 
dataset CELL-CLS- LABELED, making it more generalizable in 
practical scenarios. 

The MAE-based cell classification model showed robust 
performance across 22 cell types, with an average AUROC value 
exceeding 0.95 (Figure 5D and Table 5). Most cell categories 

TABLE 5 Classification results of the cell classification model. 

Cell type AUROC↑ Precision↑ Recall↑ F1-score↑ 

Early 

erythroblasts 
95.93 75.00 66.67 70.59 

Intermediate 

erythroblasts 
97.78 84.13 88.33 86.18 

Late 

erythroblasts 
98.34 87.04 95.92 91.26 

Monocytes 99.50 83.33 62.50 71.43 

Promonocytes 85.93 33.52 25.00 28.64 

Immature 

monocytes 
98.90 76.92 81.08 78.95 

Lymphocytes 97.44 68.75 78.57 73.33 

Prolymphocytes 88.23 80.00 50.00 61.54 

Immature 

lymphocytes 
98.01 71.05 90.00 79.41 

Atypical 
lymphocytes 

98.27 62.50 33.33 43.48 

Basophils 87.14 40.00 80.00 53.33 

Eosinophils 99.91 88.46 100.00 93.88 

Smudge cells 96.94 87.50 87.50 87.50 

Myeloblasts 96.10 77.78 77.78 77.78 

Promyelocytes 98.70 100.00 60.00 75.00 

Intermediate 

neutrophilic 

myelocytes 

91.81 72.50 53.70 61.70 

Late neutrophilic 

myelocytes 
95.01 60.66 74.00 66.67 

Band neutrophils 96.79 87.50 85.37 86.42 

Segmented 

neutrophils 
97.73 85.71 88.89 87.27 

Plasma cells 91.21 100.00 88.89 94.12 

Apoptotic cells 91.73 68.42 44.83 54.17 

Others 90.45 88.15 90.49 89.31 

achieved accuracy, precision, recall, F1-score, and AUROC scores 
above 0.8, with AUROC values over 0.9, and an average accuracy of 
77.92%, reflecting its strong cell classification capabilities. 

We also identified certain limitations of our framework in 

detecting specific cell types. Therefore, we have implemented a 

confidence-based warning mechanism within the model: when the 

prediction confidence for any cell type is below 60%, a mandatory 

review by a pathologist is triggered. Additionally, if the model 

TABLE 4 Comparative experiment for cell classification. 

Methods Natural image pre-trained weights CELL-CLS-UNLABELED CELL-CLS-LABELED Accuracy↑ 

ViT-B 
√ 

× 
√ 

66.75 

Resnext101_32 × 8d 
√ 

× 
√ 

77.16 

MAE 
√ √ √ 

77.92 

The bold value indicates the best performance achieved among the compared methods for each evaluation metric. 
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assigns a misclassification rate ≥ 10% to more than one cell type, an 
“automatic rescreening” alert is generated for manual verification. 

Briefly, the cell recognition performance of the proposed 
framework can be categorized into three levels: 

(1) High-confidence recognition (accuracy > 80%): 
The framework performs robustly in identifying a variety 

of mature cell types, including segmented/band neutrophils, 
eosinophils, basophils, intermediate/late erythroblasts, plasma 
cells, and smear cells. These results support the diagnostic process 
for chronic myeloproliferative neoplasms (CMPN), and plasma 
cell disorders and reliably distinguish nucleated bone marrow cells 
from staining artifacts. 

(2) Moderate-confidence recognition (accuracy 60–70%): 
For some cell types such as immature monocytes and 

atypical lymphocytes, the model serves as a valuable preliminary 
screening tool. To mitigate diagnostic risks: If the misclassification 
rate exceeds 10%, the system automatically issues a “manual 
rescreening” alert. If prediction confidence is below 60% for any 
category, expert review is mandated. 

(3) Low-confidence recognition or high-overlap categories: 
Monoblast vs. immature monocyte (Row 10, Column 15, error 

rate: 75%): These cells show substantial morphological overlap 
(e.g., size, N/C ratio), diering mainly in chromatin detail. As 
reported by Osman et al. (61), distinguishing these subtypes 
morphologically is inherently diÿcult. Notably, both are clinically 

regarded as equivalent in WHO classification due to similar 
prognostic value (62). 

Atypical lymphocyte vs. lymphocyte (Row 1, Column 22, error 
rate: 53.33%): Atypical lymphocytes typically exhibit only subtle 
morphological changes and are often present in low proportions. 
Given their close resemblance to normal lymphocytes, even expert-
level inter-observer agreement is about 60% (62). Flow cytometry is 
often required for definitive classification. 

Prolymphocyte vs. Immature Lymphocyte (Row 11, Column 
16, error rate: 50%): These cells are similar in size and 
nuclear/cytoplasmic morphology, with only minor dierences in 
cytoplasmic granules and nucleoli. As WHO guidelines (63), they 
are considered equivalent in the context of diagnosing acute 
lymphoblastic leukemia. 

Promyelocyte vs. immature monocyte (Row 17, Column 15, 
error rate: 40%): Promyelocytes and immature monocytes are 
similar in size, making morphological distinction challenging— 
even for experienced hematopathologists (64, 65). These cells 
often require cytochemical staining or flow cytometry for accurate 
classification. We plan to improve accuracy in future iterations by 
expanding the labeled training dataset. 

These considerations provide a clearer understanding of where 
model limitations may aect clinical interpretation and where 
errors are less likely to impact diagnosis due to biological or 
clinical equivalence. 

FIGURE 6 

Correlation analysis. (A) The number of effective cells segmented from each WSI in the BMA-WSI-TESTING dataset. (B) Regression plot of DCCs 
from manual counts and the automated framework for CML-CP-20234341. The closer the points in the two regions are to the red line, the more 
related they are. (C) Bland-Altman plot of DCCs from manual counts and the automated framework for CML-CP-20234341. Most points within the 
upper and lower limits represent small differences. (D) Pearson correlation coefficient and concordance correlation coefficient for each WSI in 
BMA-WSI-TESTING dataset. 
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FIGURE 7 

Correlation Analysis Across Different Medical Centers. (A) The number of effective cells segmented per WSI from SWH. (B) Regression plot of the cell 
proportion for manual counts versus automated framework counts for DLBC-46-SWH. (C) Bland-Altman plot of the cell proportion for manual 
counts versus automated framework counts for DLBC-46-SWH. (D) Pearson correlation coefficient and agreement correlation coefficient for each 
WSI from SWH. 

3.5 High correlation between automated 
framework and manual differential cell 
counts 

Our VFM-SSL-BMADCC-Framework demonstrated good 
performance on the validation set after training. To verify the 
framework’s generalization capability and the high correlation 
between the results and manual analysis, we used 13 whole-slide 
BMA images from Chongqing Cancer Hospital (Supplementary 
Table 2) for comparative analysis. The number of eective cells 
segmented from each WSI was shown in Figure 6A, with an average 
of 3,042 cells. Figure 6B showed the regression plot of the DCCs 
from manual counts and the automated framework for CML-CP-
20234341 (results for other WSIs were provided in Supplementary 
Figure 1), with a Pearson correlation coeÿcient of 0.9438 and a 
concordance correlation coeÿcient of 0.9401, indicating a very 
strong correlation between the two. Figure 6C showed the Bland-
Altman plot for the DCCs from manual counts and the automated 
framework for CML-CP-20234341, most dierences within the 
limits of agreement, indicating good consistency between the 
two (results for other WSIs were provided in Supplementary 
material). The Pearson and concordance correlation coeÿcients 
for all test WSIs were shown in Figure 6D, with an average close 
to 0.8. Overall, the automated framework proposed in this paper 
provided DCCs that were highly correlated and consistent with 
manual DCCs. 

3.6 The automated framework is 
applicable to bone marrow cell counts 
on whole-slide images from different 
medical centers 

Previous studies have proposed frameworks that are only 

applicable to BMADCC within the same medical center, exhibiting 

poor generalization and limiting practical application and 

dissemination. To test the generalization capability of the 

automated framework across dierent medical centers, we 

conducted experiments using 5 WSIs from Southwest Hospital 
(SWH) (Supplementary Table 2). 

In the SWH experiment, the average number of eective cells 
per slide was 1,437 (Figure 7A). Figure 7B showed the regression 

analysis between manual counts and automated framework counts 
for the DLBC-46-SWH sample, with a Pearson correlation 

coeÿcient of 0.8223 and an agreement correlation coeÿcient of 
0.8149, indicating strong correlation between the two methods. 
The Bland-Altman plot further confirmed that most dierences 
fall within the agreement limits (Figure 7C), indicating good 

consistency in the counts results. The average Pearson correlation 

coeÿcient and agreement correlation coeÿcient for all SWH 

test samples were approximately 0.73 (Figure 7D), suggesting 

consistent performance of the automated framework across 
dierent samples. Overall, the proposed automated framework 
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eectively performed BMADCC across dierent medical centers, 
showing high correlation and consistency with manual results. 

4 Discussion 

Most previous studies on bone marrow cell classification and 
counts relied on traditional machine learning or deep learning 
algorithms, requiring training on specific large annotated datasets 
to achieve high accuracy. When the cell detection task changes or 
when applying to new datasets at other centers, traditional models 
often see a significant drop in accuracy due to staining dierences 
in BMA and variations in cell types. This necessitates re-annotating 
data and retraining the models to maintain high accuracy, making 
it diÿcult to generalize. With the continuous advancement of 
AI technology, there have been significant developments in the 
application of foundation models and self-supervised learning in 
computer vision. The self-supervised learning model MAE was 
trained on a large number of unannotated target domain images 
through masking and reconstruction, resulting in a backbone that 
serves as a feature extractor with strong generalization capabilities. 
With only a small amount of annotated data from the target 
domain for fine-tuning, it can achieve good classification results. 
The visual foundation model SAM was trained on the SA-1B 
dataset with 11 million images and over 1 billion masks, exhibiting 
powerful zero-shot generalization capabilities. Even with a small 
amount of domain-specific images that dier significantly from 
the SAM training data, high-precision segmentation results can be 
achieved by fine-tuning with a few annotated data via prompts. 
Since there may be staining dierences when preparing BMA 
smears at dierent medical centers, classic image segmentation 
and classification models may not be directly applicable to other 
centers. We use TextureUnet and TCNet, which have complex 
texture feature extraction capabilities, to reduce the impact of 
BMA staining dierences and accurately segment and classify BMA 
thumbnails and tiles from dierent medical centers. Based on this, 
we propose an automated framework for BMA cell classification 
and counts using the visual foundation model SAM and the 
self-supervised learning model MAE (i.e., VFM-SSL-BMADCC-
Framework). In the cell detection or segmentation stage, compared 
to traditional target detection algorithms like Faster-RCNN, we can 
segment all cells in the TOIs using the original SAM pre-trained 
model, which is more accurate than traditional target detection 
algorithms. We can also further fine-tune SAM to achieve better 
segmentation accuracy. On the other hand, previous methods often 
involved directly slicing the original image into tiles to find the TOI 
on WSIs, resulting in many non-TOI tiles. By using TextureUnet 
to perform region segmentation on the original image to obtain 
ROIs, we achieve higher quality tiles within that region and reduce 
the amount of data. This results in shorter processing time for TOI 
classification. Cell classification annotation is time-consuming and 
highly dependent on the technician’s experience level. We use the 
self-supervised learning model MAE for cell classification, which 
achieves good results with only a small amount of annotated data. 

Our proposed framework is applicable to various types of 
leukemia and lymphoma. The process begins with the ROI 
segmentation model TextureUnet, which segments the ROI from 
the thumbnail of the whole-slide BMA image that requires cell 

counts. Then, tiles are obtained from the corresponding ROI of 
the whole-slide BMA image. These tiles are filtered for TOI using 
the TOI classification model TCNet. Next, all cells within the TOI 
are segmented using the cell segmentation model SAM. Finally, 
the cells are classified using the cell classification model MAE, and 
a histogram of cell proportions is generated. All four stages of 
our models demonstrate strong performance, and DCCs on BMA-
WSI-TESTING dataset, which was not used for model training, are 
highly consistent with the manual results. 

The VFM-SSL-BMADCC framework demonstrates high 
accuracy, strong generalization, and low annotation dependency, 
making it highly adaptable to real-world clinical workflows. 
Specifically, the model can be integrated in the following ways: 
(1) As a pre-screening tool: It can eÿciently process whole-slide 
images, prioritize abnormal cells for review, and significantly 
reduce manual workload, thereby improving clinical throughput. 
(2) As a second reader: It supports collaborative diagnostics, 
enhancing accuracy and consistency across the diagnostic 
workflow. For rare or easily missed cell types, the deep learning 
model enables precise localization and identification, improving 
detection rates and reducing missed diagnoses. (3) As a training 
aid: The system provides standardized references, expands case 
libraries, and oers real-time feedback to accelerate the learning 
curve for junior pathologists. We believe these integrated pathways 
will facilitate the practical adoption of the model in routine 
hematopathology practice. 

Our automated framework still has aspects for optimization 
in future work: (1) Cell Segmentation Stage: SegEvery may also 
segment unwanted cells or objects, such as red blood cells. We 
can design a SAM with automatic point prompts to accurately 
segment each nucleated cell in the bone marrow. (2) Other Stages: 
As the performance of deep learning models continues to improve, 
we can apply more advanced models in the other three stages to 
achieve better results. 

In summary, VFM-SSL-BMADCC-Framework significantly 
reduces the time required for cell classification and counts 
while ensuring accuracy and consistency. It demonstrates strong 
generalization capabilities. 
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