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Precise classification of lung cancer stages based on CT images remains a significant
challenge in oncology. This is vitally necessary for determining prognosis and creating
practical treatment plans. Traditional methods mainly rely on human interpretation,
which can be inconsistent and prone to fluctuation. To overcome these limitations
an automated deep learning model based on the EfficientNet-BO based architecture
is proposed. Explainable Al features enhanced through Gradient-weighted Class
Activation Mapping (Grad-CAM) help further boost this model. Training of the
model was conducted with 1,190 CT scans from the IQ-OTH/NCCD dataset. All
the images fell into the benign, malignant, and normal categories. The suggested
technique performs remarkably well, reaching 99% accuracy, 99% precision, and
recall rates of 96% for benign cases, 99% for malignant cases, and 100% for normal
occurrences. Grad-CAM makes the model more interpretable and transparent by
providing visual explanations of its results. It identifies the most important regions
in the scans that significantly contribute to the classification results. Apart from
contributing to the field of medical image analysis, accurate precision and complete
explanations also bring automated diagnosis systems credibility and reliability.

KEYWORDS

lung cancer staging, EfficientNet, explainable artificial intelligence, Gradient-weighted
class activation mapping (Grad-CAM), CT image classification, diagnostic imaging

1 Introduction

Being the major cause of cancer-related mortality worldwide, lung cancer still presents a
challenging problem in the field of oncology (1). The stage of the cancer discovery determines
much the efficacy of treatment and patient prognosis (1). For best patient treatment, early
detection and suitable staging of lung cancer by radiological imaging especially computed
tomography are very vital (2). But the way radiologists interpret this imaging data primarily
depends on their subjective view, which can vary widely even among experts. This variation
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might result in unequal and maybe incorrect staging, therefore
affecting treatment decisions and results (3).

Deep learning (DL) and artificial intelligence (AI) have
opened fresh opportunities to increase diagnosis accuracy in
medical imaging (4). With a degree of precision usually
approaching human ability, DL models especially convolutional
neural networks (CNNs) have shown the ability to identify and
comprehend small patterns in picture data (5). Nevertheless, the
intrinsic opacity of such models limits their application in clinical
practice as the human users of artificial intelligence systems
sometimes find their decision-making process unclear or
interpretable (6). Figure 1 shows a range of CT scans from the
IQ-OTH/NCCD dataset (7, 8), therefore illustrating the range of
cases used to train and validate the proposed classification
system. The pictures show the range of lung cancer phases:
benign, malignant, and normal events. These illustrations provide
a graphic summary of the kinds of data used in this work to
evaluate the EfficientNet-B0 model and for training.

The major contributions of this research work are as follows:

o The study introduces an automated deep learning model based
on the EfficientNet-B0 architecture to classify lung cancer stages
(benign, malignant, normal) from CT images, reducing
dependence on subjective human interpretation.

o The integration of Gradient-weighted Class Activation Mapping
(Grad-CAM) provides clear visual explanations for the model’s
decisions, increasing transparency and aiding clinical trust in
Al outputs.

o By combining strong classification performance with
explainability, the approach supports the development of
trustworthy and clinically viable AI systems for automated
lung cancer diagnosis.

10.3389/fmed.2025.1625183

The objectives of this research can be summarized as follow:

« Construct a deep learning model that can classify lung cancer
stages from CT scans with high accuracy, leveraging the
EfficientNet-B0 architecture.

o Implement explainable AI techniques, specifically Grad-CAM, to
make the model’s decision-making process accessible and
interpretable to clinicians.

o Assess the model’s performance in terms of accuracy, precision,
and recall, comparing it against existing diagnostic standards to
underscore potential improvements and identify any limitations.

This study is organized to first develop a complete overview of the
present problems and advancements in lung cancer detection
technology. Subsequently, it outlines the suggested methodological
approach, utilizing both fresh and proven strategies to solve these
issues. The analysis of the data is aimed at confirming the usefulness
of the model in real-world scenarios, while the commentary aims to
frame this work within the larger context of medical Al research. By
boosting both the accuracy and transparency of lung cancer staging,
this work contributes to the continuing attempts to incorporate Al
into clinical practice, promising considerable gains in patient
outcomes through better informed and timely decision-making.

2 Literature review

Over the past few years, lung cancer diagnosis has moved
significantly from essentially symptom-driven diagnosis to
sophisticated imaging-based early detection techniques (1). Because
of the late start of symptoms, which severely limited treatment options
and significantly affected patient outcomes, lung cancer was
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FIGURE 1
Representative sample of CT images from the IQ-OTH/NCCD dataset.
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historically typically found in later stages (2). Early 2000s low dose
computed tomography (LDCT) debut was a breakthrough that
allowed a method to detect lung nodules somewhat sooner than
conventional radiography (2). By identifying the disease at a more
curable stage, studies including the National Lung Screening Trial
(NLST) have shown that LDCT screening can reduce lung cancer
death (6). Though early identification has improved, the interpretation
of imaging data remains a challenge, made worse by high rates of false
positives and inter-observer variance in nodule evaluation.

Because CT imaging exactly shows lung anatomy, allowing the
identification of tiny lesions not seen on conventional chest X-rays
(2), it has become the standard for lung cancer screening and
diagnosis. CT scan granularity lets one investigate nodule properties
more fully, which is essential for determining cancer risk. Not only
in the discovery but also in the stage of lung cancer, the imaging
technologies guide biopsy operations and surgical planning. Though
they have advantages, the interpretation of CT scans requires great
expertise; hence, the little differences between benign and malignant
nodules might result in different diagnosis among practitioners.

Table 1 explores the numerous research that are carried out in the
area of lung cancer diagnosis and detection and builds a platform for
why the research is essential in this field and what were the outcomes
of the past research that were carried out in this field.

Most previous Al lung cancer detection models suffer from
overfitting, poor interpretability, and high computational costs, which
limit clinical deployment. The model presented here overcomes these

TABLE 1 Review of recent studies.

Study
Shah et al. (9)

Objective

Develop an ensemble 2D CNN approach for detecting

lung nodules in CT scans.

Result

Achieved a combined accuracy of 95%.

10.3389/fmed.2025.1625183

shortcomings by combining EfficientNet-B0’s parameter-efficient
backbone with strong regularization and Grad-CAM-based
explainability. The architecture obtains high accuracy while keeping
computation and transparency simple, specifically to fill gaps in
previous models that usually utilize large, heavyweight architectures
without interpretability.

In contrast to recent directions that promote ensemble and
hybrid models for improved accuracy usually at the expense of
higher inference time and complexity the presented work takes a
lean, single-model architecture approach. EfficientNet-B0’s
compound scaling strategy evenly apportions network depth,
width, and resolution, producing state-of-the-art performance
with less overhead in terms of computation. Grad-CAM also adds
confidence by projecting onto areas impacting model predictions,
enabling clinical verification.

By combining efficiency, accuracy, and interpretability, this
approach presents a practical and scalable solution to real-world
clinical lung cancer diagnosis over existing major hindrances of past
deep learning methods.

3 Methodology

This section describes how to develop and evaluate the deep
learning model that is based on CT scans to detect various phases of
lung cancer.

Remarks

Utilized the LUNA 16 dataset.

Mikhael et al. (10) Predict future lung cancer risk from a single LDCT using

a deep learning model.

AUC scores ranged from 0.86 to 0.94 across different

validation sets.

Model runs in real-time, no

additional data required.

Tran etal. (11) Summarize deep learning applications in lung cancer

genomics for decision-making and therapeutics

Reviewed various genome-based models.

Focused on omics data and Al

integration.

development.
Wankhade and Propose a hybrid deep learning method for early lung
Vigneshwari (12) cancer detection using neural networks.

Confirmed the viability of the hybrid model for early

diagnosis.

Used LIDC-IDRI for image

extraction.

Wani et al. (13) Develop an interpretable AI model for lung cancer

detection using a hybrid deep learning approach.

Obtained high accuracy and explainability in
predictions (accuracy: 97.43%).

Employed the Survey Lung

Cancer dataset.

Guan et al. (14) Create an automated framework for PET image screening,

denoising, and segmentation using deep learning.

Demonstrated good performance and time efficiency

in tests on real medical PET images.

Focused on lesion tissue

segmentation.

Said et al. (15) Develop a system for early lung cancer diagnosis using
deep learning for CT scan image segmentation and

classification.

Achieved state-of-the-art performance in
segmentation and classification accuracy (97.83 and

98.77%, respectively).

Used the Decathlon dataset for

training.

Rajasekar et al.

(16)

Analyze features from CT and histopathological images
for lung cancer prediction using various deep learning

algorithms.

Showed improved performance in detection accuracy

compared to existing methods.

Highlighted the significance of

combining multiple image types.

Dingetal. (17) Propose a deep-learning-based method for fast and
accurate 3D CT deformable image registration in lung

cancer treatment.

Achieved a high average SSIM score and good 3D
Gamma passing rates, demonstrating accuracy and

efficiency.

Implemented two different

models for evaluation.

Zhang et al. (18) Use deep learning on histopathology images to predict
prognosis and therapeutic response in small cell lung

cancer.

Developed a pathomics signature with significant
prognostic value for survival outcomes and

chemoradiotherapy response prediction.

Utilized multicenter cohorts for

validation.
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It comprises the utilized dataset, preprocessing methods, model
development, training protocols, and the implementation of
explainable artificial intelligence technologies. Figure 2 offers a
comprehensive overview of methodological methods utilized in this
experiment through the illustration of the entire pipeline from image
preprocessing to model prediction and explanation. The process
begins with preprocessing CT images and proceeds to using
EfficientNet-BO0 for the training of models. Grad-CAM is then utilized
to present visually interpretable explanations of the results
of classification.

Algorithm 1 describes the phases and approach for developing a
deep learning model to identify lung cancer scans using the
EfficientNet-BO0 architecture, with specific focus on image preparation,
model training, performance evaluation, and interpretability using
Grad-CAM visualizations.

3.1 Dataset description

The study employed the lung cancer dataset from the Irag-
Oncology Teaching Hospital (IQ-OTH/NCCD) of the National
9). This dataset, which is divided into
three categories benign, malignant, and normal contains 1,190 CT

Center for Cancer Diseases (1

pictures from 110 people (19). The patients’ demographics included
variations in gender, age, and country of origin. The cases were
gathered in 2019 over a period of 3 months (19). Every image in the
collection shows a different area of the human chest from many views
and angles, making them essential for a thorough analysis (19). The
dataset component utilized for the training is shown in Table 2.

3.2 Preprocessing steps

Preprocessing is necessary to correctly condition the data for
interaction with deep learning models. For this study, a rigorous
approach was used to ensure that the CT scans from the IQ-OTH/
NCCD lung cancer dataset were optimally prepared for processing by
EfficientNet-BO0 architecture. The initial size of CT scan pictures varies
greatly due to their different source. Every picture was downsized to
a standard resolution of 224 x 224 pixels to provide a uniform input
size for the neural network. This size was selected to strike a
compromise between the computational efficiency of processing

10.3389/fmed.2025.1625183

smaller photos and the requirement to maintain enough image detail.
Bilinear interpolation (Equation 1) was used to do the resizing. This
technique estimates new pixel values by using the weighted average of
the four nearest known pixels, which are positioned diagonally to a
given pixel.

I(x,y):(l—a)(l—b)loo +a(1—b)110 +(1—a)b101 +abl;; (1)

Where:

o I(x,p) is the interpolated value at position (x,y).

o Ioo, Lo, Ini» I are the pixel values of the four nearest pixels.

o aand b are the distances from the pixel (x,y) to the nearest pixels
in the x and y directions, respectively.

This process aids in the quality preservation of the image during
resizing, an important factor in ensuring the integrity of medical images.

The pixel values of the CT images initially range over a large
number, characteristic of medical imaging modalities, which can
adversely affect the convergence behavior of deep learning models. To
overcome this, the pixel values were normalized into 0 to 1 range. This
normalization (Equation 2) was done by dividing the pixel values by
255 (the largest possible pixel value in an 8-bit image).

p

Pmax

2

Pnorm =

Normalization of the input data was used to alleviate internal
covariate shift and hence speed up learning and encourage stable
gradient updates during training. The technique minimizes the
sensitivity of the model to the different scales of input features, thereby
improving overall training efficiency.

Data augmentation methods such as rotation, zoom, and
horizontal flip were chosen to mimic natural anatomical
variability and symmetry commonly found in clinical CT
imaging. These augmentations provide increased data diversity
without adding synthetic artifacts that might affect model
reliability. Contrast adjustment and noise injection augmentation
techniques were specifically not used to avoid maintaining
medically important pixel intensities required to accurately
interpret clinically.

Resize

& ;
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Input Image

FIGURE 2
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Workflow illustrating the automated classification and explainable Al analysis process for lung cancer staging.
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normal.

Input: Image dataset containing lung cancer scans in three categories: benign, malignant, and

Output: Class predictions for the input images along with evaluation metrics.

Procedure:
1. Initialization:

o Set parameters:
BATCH_SIZE, EPOCHS.

2. Data Loading and Augmentation:
o Load images

ImageDataGenerator.
3. Model Setup:
top layer.

4. Model Training:

reduction.

5. Grad-CAM Integration:

o Load required libraries (TensorFlow, NumPy).
IMAGE_SIZE,

from  the
image dataset from_directory.
o Apply data augmentation techniques compatible with EfficientNet-BO using

o Initialize EfficientNet-B0O with ImageNet weights, customized by removing the

o Append custom layers for classification: Conv2D, GlobalAveragePooling2D,
Dense, Dropout, and BatchNormalization.

o Compile the model with Adam optimizer and sparse categorical crossentropy.
o Employ callbacks for early stopping, checkpoint saving, and learning rate

o Train the model on the training dataset while validating on the validation set.

o Implement Grad-CAM to generate heat maps highlighting influential regions
for predictions, enhancing model interpretability.

TARGET_SIZE, NUM_CLASSES,

specified  path  using  TensorFlow's

ALGORITHM 1
Lung Cancer Classification Using EfficientNet-BO.

TABLE 2 Class distribution of dataset.

Class Number of images

Normal 416
Benign 120
Malignant 561

Even though the initial CT scans were captured in grayscale form,
RGB conversion had to be undertaken to meet the pretrained
EfficientNet-B0 architecture requirements, which is three-channel
input based on its initialization through ImageNet. The conversion,
facilitated by duplicating the grayscale channel into all three RGB
channels, allows for diagnostic integrity while facilitating successful
transfer learning.

All the CT scan images were resized to 224 x 224 pixels to match
the input size requirement by EfficientNet-B0. Fixing image size
assists with reproducible feature extraction and enables effective
batch processing. This resolution was chosen as a compromise
between maintaining enough anatomical detail for reliable
classification and keeping the computation requirements low. Bilinear
interpolation was used for resizing, as it defines each output pixel
based on a weighted average of its four closest input pixels,
maintaining image smoothness and structural coherence (see
Table 3).

Effective preprocessing such as resizing, normalization, and
augmentation not only conditions the data for network input but
also improves training stability and model performance.
Normalization scales pixel values to a shared range, accelerating
convergence and mitigating internal covariate shift. Augmentation
adds diversity to the data, preventing overfitting and enhancing

Frontiers in Medicine

TABLE 3 Data split and preprocessing for lung cancer classification.

Parameter Training set = Validation set Test set
Data split 60% of original 20% of original data | 20% of

data original data
Shuffle Yes Yes No
Subset Training Validation N/A

generalization. These sequential steps are essential in realizing high
diagnostic performance with deep learning models such as
EfficientNet-B0.

3.3 Model architecture

Proposed deep learning model is developed on top of
EfficientNet-B0, which is very well known for its performance and
efficiency in handling complex picture data across various fields,
including medical imaging. EfficientNet-BO was chosen as the
platform due to its unique architecture, which produces convolutional
neural networks (CNNs) more balanced in terms of depth, width, and
resolution. This equilibrium avoids the exponential increase in
processing costs associated with deeper or larger systems while
enabling better performance. Depthwise separable convolutions of
Equation 3 and pointwise in Equation 4, which split the convolution
operation into two halves that are smaller in size, are important to the
EfficientNet-B0 architecture. This approach reduces the computational
expense and number of parameters significantly, making the model
more efficient without sacrificing its ability to extract useful
information from large, complex datasets.

frontiersin.org
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Depthwise Convolution: y[i,j,k]: zm nx{ln"}c m,j +:|.w[m,n,k:| 3)

Pointwise Convolution : z[i,j,k]: Z Uy[i,j,c]- W[C,k] (4)

where the convolutional kernel (w), the intermediate and output
feature maps (y) and (2), respectively, are represented by the variables
(%, y, and 2).

Every convolutional block consists of batch normalization
(Equations 5, 6) layers, which normalize and scale the activations. By
guaranteeing a more stable and balanced distribution of non-linear
inputs throughout the training process, this normalization aids in
preventing internal covariate shift, a prevalent issue in deep

network training.
Batch Normalization : & = ——b— (5)
Vol+e
Scaled and Shifted: y =yx+p (6)

where (H) and (0' 2) are the mean and variance of the batch,
(E) is a small constant to avoid division by zero, and (Y) and (ﬁ)
are learned parameters.

Replacing the usual ReLU, EfficientNet-B0 incorporates the Swish
activation function (Equation 7), which has been empirically proved
to help in quicker convergence.

Swish(x)=x-0/(x) )

where (0' (x )) is the sigmoid function.

The smooth structure of Swish, distinguished by its
non-monotonic and dynamic gating mechanism, enables it to
sustain activated neurons across the network, therefore facilitating
the flow
vanishing gradients.

of gradients and lowering the chance of

EfficientNet-BO base model is fine-tuned using pre-trained
weights from the ImageNet dataset such that the network can
benefit from learned features of a large and diverse set of generic
images. Such transfer learning is particularly beneficial for medical
imaging tasks in which labeled data may be sparse or expensive to
obtain (20).

To customize the network for the objective of classifying lung
cancer stages, unique layers are linked to the pre-trained foundation.
These contain additional convolutional layers, global average pooling
(Equation 8), and dense layers, culminating in a softmax classifier. The
convolutional layer extensions are meant to augment feature maps
produced by the underlying model, focusing on information vital to
medical imaging. The addition of a Conv2D layer atop EfficientNet-B0
allows the network to further adapt high-level features specifically for
the lung cancer classification task, capturing domain-specific details
absent from generic pretrained features.

Freezing the base EfficientNet layers prevents catastrophic
forgetting of general image features and reduces the risk of overfitting
given dataset size. While full fine-tuning may boost accuracy on larger

Frontiers in Medicine
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or more diverse datasets, this strategy promotes better generalizability
on smaller datasets and facilitates efficient training.

1 H w ..
v 2wl ®)

Global Average Pooling: z =

where (H ) and (W) are the height and width of the feature map,
and ( y) is the feature map before pooling.

The Adam optimizer (Equation 9), with its adaptive learning rate
feature, steers the learning process of the model by adjusting weights
to minimize the loss function suitably. Table 4 provides information
regarding model’s configuration and architecture.

Adam Update Rule: 6,1 =6, — \/VJ+ My (9)
t T€

where (9,) represents the parameters, (n) is the learning rate,
(mt) and (vt) are the first and second moment estimates, and (e) isa
small constant.

This advanced architecture not only guarantees that the
model attains high accuracy in classifying the stages of lung
cancer from CT images but also computational efficiency,
allowing its application in clinical environments where timely
and accurate diagnosis is paramount. Table 5 offers a detailed
description of the model architecture, layer types, output shapes,
and the number of parameters for each layer.

The added Conv2D layer on top of EfficientNet-BO enhances the
extraction of features specific to lung cancer CT scans, beyond what
is captured by the base model trained on natural images. The base
layers were frozen during initial training to retain robust general
features and prevent overfitting on the relatively small dataset. This
strategy supports model generalizability, with plans for fine-tuning if
larger datasets become available.

3.4 Training procedures

The model’s training schedule was carefully crafted to take use of
the Adam optimizer’s advantages. This optimizer is well known for its
ability to adaptively modify learning rates according to the first and

TABLE 4 Model architecture and configuration for lung cancer
classification.

Parameter ‘ Value
IMAGE_SIZE 256
TARGET_SIZE (224, 224)
NUM_CLASSES 3

BATCH_SIZE 32

EPOCHS 30

Dropout 0.5

Optimizer Adam

Loss FUNCTION Sparse Categorical Crossentropy
Metrics Accuracy
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TABLE 5 Model summary of the lung cancer classification architecture.

Layer (Type) Output Parameter
shape

EfficientNet-B0 (Functional) (None, 8, 8, 1,280) 4,049,571

Top_Conv_Layer (Conv2D) (None, 8, 8, 32) 368,672

global_average_pooling2d_10 (None, 32) 0

(GlobalAveragePooling2D)

dense_20 (Dense) (None, 128) 4,224

dropout_10 (Dropout) (None, 128) 0

batch_normalization_9 (None, 128) 512

(BatchNormalization)

dense_21 (Dense) (None, 3) 387

second moments of the gradients; this feature greatly accelerates the
model’s convergence rate and improves its overall training efficiency.
This kind of feature is very useful for datasets that require a lot of
computing, like those used in medical imaging applications.

For the loss function, Sparse Categorical Cross entropy was
employed. This choice is particularly well-suited for multi-class
classification scenarios where class labels are provided as integers,
allowing for a more memory-efficient handling of label data
compared to one-hot encoding.

In the proposed model, Dropout is applied before Batch
Normalization as an empirical design choice. While it is more
common to apply Batch Normalization first, placing Dropout before
BatchNorm can, in some cases, encourage greater regularization by
exposing the normalization layer to a wider distribution of activations.
It was observed stable performance with this configuration, though
both orders are valid and results may be data dependent.

The early stopping patience of five epochs was chosen empirically
to balance between adequate learning and prevention of overfitting,
as validated by the observed learning curves.

The model’s
comprehensive suite of metrics, including accuracy (Equation 10),

performance evaluation encompassed a
precision (Equation 11), recall (Equation 12), F2 score (Equation 13),
Matthews Correlation Coefficient (MCC) (Equation 14), and

Cohen’s Kappa.

Number of Correct Predictions

Accuracy = (10)

Total Number of Predictions

TP,

— 11
TP + FP, (0

Precision; =

where:

. (TP,-) is the number of true positives for class ( i ),
. (FP,-) is the number of false positives for class ( i )

TR

Recall; =————
TP, +FN;

(12)

where:

. (FN ,-) is the number of false negatives for class ( i )
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5x Precision; x Recall;

F2 Score; = — (13)
4 x Precision; + Recall;
MCC = TPxTN —FPxFN (14)
J(TP+FP)(TP+EN)(IN + FP)(TN +FN )
where:

. ( TN ) is the number of true negatives.

An Early Stopping callback was used, designed to stop the
training should the validation loss not show improvement over
five consecutive epochs, therefore preventing overfitting. This
approach not only saves computer resources but also keeps the
model from learning noise and pointless trends in the
training data.

In the training stage, the Model Checkpoint callback was also
rather important as it helped to store the model weights at the epoch
with best validation accuracy. This assured that, independent of any
possible performance drop in next epochs, the best performing model
configuration was maintained.

Figure 3 depicts the model’s training and validation accuracy
curves indicate robust learning with high final accuracy rates. The
model exhibits consistent improvement in both training and
validation accuracy, stabilizing at around 99% accuracy. The training
loss steadily decreases, indicating the model’s learning progression,
with minimal overfitting observed.

These strategies, when combined, form a robust framework for
training deep learning models, specifically tailored to meet the high
standards required in fields like medical imaging, where the accuracy
and reliability of predictions can directly impact clinical outcomes.

3.5 Integration of explainable Al using
gradient-weighted class activation
mapping (grad-CAM)

Interpretability is a core expectation for Al-driven diagnostic
instruments, especially for medical imaging, since it forms the basis
for trustworthiness and clinical validity. To meet this requirement,
Grad-CAM is incorporated into CNN models to enhance the
transparency of their decision-making. Grad-CAM makes it possible
to visualize the parts of an input image that contribute most to the
predictions made by a model, thus revealing the features that the
model weighs as a priority.

Applying Grad-CAM requires structural adjustments to the
CNN. In particular, the model is trained to produce both the final
convolutional layer’s activations and the probabilities of the predicted
class. This two-output setup is critical for obtaining spatial feature
maps and gradient calculations with respect to the target class, which
in combination constitute the foundation for creating the
Grad-CAM heatmap.

Preserving the outputs of the last convolutional layer retains
important spatial information, and the prediction layer determines the
target class to be identified. The gradients are calculated by
backpropagating the target class score through the network to these
spatial features. The gradients provide the contribution of each spatial
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Training and validation accuracy and loss curves across 35 epochs.
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FIGURE 4
Classification report detailing the precision, recall, and F1-score across different lung cancer stages (benign, malignant, and normal cases).

location to the prediction, which are used as weights highlighting the
most significant regions in the input image.

TensorFlow’s Gradient Tape is used as a tool for automatic
differentiation to efficiently record these gradients in the forward and
backward passes. This process enables accurate and flexible gradient
information extraction, promoting solid heatmap generation. The
generated heatmaps, overlaid on the input image, offer an easy-to-
understand visualization of the areas that inform the decision of
the model.

Such visual explanations are especially important in medical
imaging. Grad-CAM emphasizes diagnostically meaningful features,
including tumors or lesions, so clinicians can check that the decisions
of the AI system rely on medically significant regions and not on
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artifacts or inconsequential areas. This explainability improves clinical
validation, helps identify possible model biases, and ultimately
encourages trust and deployment of Al-supported diagnostic aids in
clinical settings.

4 Results

The performance of the model in classifying lung cancer was
evaluated both quantitatively and qualitatively, leading to a
comprehensive understanding of its accuracy and reliability. The
model had excellent quantitative performance with a Test
Accuracy approaching near perfect, which implies perfect
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Confusion matrix summarizing the model’s classification performance.

classification of all classes in the test dataset. This high level of =~ Correlation Coefficient (MCC), and Cohen’s Kappa. The
accuracy was demonstrated by some of the key measures, model demonstrated perfect accuracy for benign, malignant,
including recall, precision, F1 and F2 scores, Matthews and normal instances, with 1.00 scores for both classes of
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Grad-CAM visualizations highlighting the regions within the CT images that most influence the model's predictions.
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instances and 0.98 for normal instances. This accuracy suggests
that all the instances correctly predicted to belong to a specific
class. All the recall scores of the model, varying between 0.96 to
1.00 for benign, malignant, and normal examples, were quite
excellent and proved that it had the ability to identify each
instance of each class. The extremely high Fl-scores (0.98 for
benign, 1.00 for malignant, and 0.99 for normal cases) prove that
the model had a good performance on classes and is a balance
between accuracy and recall. The model’s bias towards avoiding
false negatives, which is essential in medical diagnosis because an
omission could have disastrous results, was revealed by the F2

Frontiers in Medicine

score, which emphasizes recall, and that was 0.9909. Here, highly
accurate binary classifications translate very well into multiclass
scenarios, as indicated by the MCC score of 0.9845. Figure 4
illustrates the classification report wherein the model’s excellent
performance at lung cancer stage classification is manifested
through its excellent accuracy, recall, and Fl-score over
numerous classes.

Figure 5 also shows other performance metrics that reaffirm the
model’s superior accuracy and reliability in determining lung
cancer stages, including the F2 Score, MCC, and Cohen’s Kappa.
The resilience of the model is also supported by the F2 value of
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Sample CT images showing true labels versus model predictions.
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0.9909, which indicates superior predictive performance and class
balanced accuracy.

The confusion matrix, which had additional decompositions
showing that 23 predictions were correct for benign cases, 112
correct for malignant ones, and 83 correct for normal conditions,
further demonstrated the model’s superior dependability.
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The matrix merely presented a handful of errors: one benign
occurrence was misclassified as normal, while one malignant
instance was mistakenly identified as normal. These small
imperfections reflect how precise the model is when it comes to
separating benign, malignant, and normal events. The findings in
classification are highlighted in detail within Figure 6%

frontiersin.org


https://doi.org/10.3389/fmed.2025.1625183
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Alghatani et al.

TABLE 6 Comparison of the proposed model with existing models.

10.3389/fmed.2025.1625183

Study Technique Accuracy
Mohamed et al. (21) Hybrid CNN with Ebola Optimization Search Algorithm (EOSA) 93.21%
Parveen et al. (22) CNN with Watershed and SIFT for feature extraction and data augmentation 97%
Nigudgi and Bhyri (23) Hybrid-SVM with transfer learning using AlexNet, VGG, and GoogleNet 97%
Tasnim et al. (24) Deep Learning with advanced image preprocessing and classifiers like ResNet50 and InceptionV3 98%
Bagheri Tofighi et al. (25) MobileNetV2 with stacked GRU layers and explainable AI using Grad-CAM 96.83%
Patnaik et al. (26) Mask-EffNet using EfficientNet and masked autoencoder for feature extraction and classification 98.98%
Humayun et al. (27) Transfer learning approach with CNN and various preprocessing techniques 98.83%
Bangare et al. (28) CNN for computer-aided detection and classification of CT images 86.42%
Kumaran et al. (29) Ensemble transfer learning using VGG16, ResNet50, and InceptionV3 with Grad-CAM 98.18%
Ahnaf and Wahyuni (30) Comparative analysis using GLCM and LBP feature extraction with SVM and Gaussian Naive Bayes 93%
Proposed Model Modified EfficientNet-BO0 with Extra Convolution Layer and Explainable AI 99%

confusion matrix, which further reflects the high recall and
overall accuracy of the model. The matrix confirms that the
model’s accuracy is extremely high and the misclassification rate
very low when distinguishing between benign, malignant, and
normal events.

Figure 7 shows the important areas leading the classification
decisions, thereby highlighting the interpretability of the model using
Grad-CAM images. These heatmaps increase the interpretability and
dependability of the automated classification by revealing the areas the
model regards as essential for decision-making.

5 Discussion

When comparing the recommended AI-driven diagnostic model
for lung cancer with traditional diagnostic methodologies, certain
gains show, with major downsides that demand thorough
examination. Conventional diagnostic methods, such radiologists
manually interpreting CT images, heavily depend on the skills and
knowledge of medical experts. Although these methods have long
served as the foundation of medical diagnostics, their diagnostic
accuracy can vary, and they frequently involve laborious procedures.
With accurate predictions for most cases in several categories,
Figure 8 illustrates the model’s effectiveness in detecting lung
cancer stages.

The risks associated with misclassification, particularly false
negatives in malignant cases are significant in clinical settings. It
is crucial that such tools are used as decision-support
systems rather than standalone diagnostic solutions, and that
their outputs are always interpreted by qualified clinicians.
Transparent reporting of model performance and clear
communication of its limitations are essential to minimize patient
harm and uphold ethical standards in medical Al. Figure 9
illustrates the instances when the model incorrectly classified
benign and malignant cases as normal, thus indicating the need
for further improvement in distinguishing between minor
differences in CT scan images.

The AI model is special in its use of Grad-CAM, which visually
stresses the CT scan areas affecting diagnosis decisions so increasing

Frontiers in Medicine

12

openness. Rather than a replacement, this ability provides clinicians
with perceptive examination of the AT’s decision-making process,
therefore enhancing traditional diagnostic techniques. To underline
this fact, Table 6 demonstrates how the proposed model surpasses
the present state of art models.

The achieved classification accuracy of 99% indicates substantial
potential for reducing missed or incorrect lung cancer stage diagnoses.
Enhanced diagnostic reliability can support timely clinical
interventions, particularly in early-stage cases where therapeutic
outcomes are most favorable. By decreasing human error and inter-
observer variability, the model may contribute to more consistent and
effective patient management.

Despite these promising results, several limitations must
be addressed before clinical application (31). The potential for
overfitting to a limited dataset, coupled with demographic and
scanner-specific biases, constrains the model’s generalizability. The
absence of external and prospective validation raises concerns
regarding performance in real-world clinical settings, where variations
in imaging protocols, patient populations, and unforeseen artifacts are
common. Comprehensive multi-center validation and prospective
clinical studies are therefore essential to establish clinical utility.

While the model demonstrates a high score of 0.98 for the normal
class, even minor reductions in sensitivity or specificity could have
significant clinical consequences. False positives may lead to
unnecessary diagnostic procedures and patient anxiety, whereas false
negatives risk delaying critical treatment. Maintaining high precision
and recall across all classes is therefore imperative to minimize patient
harm and resource misallocation.

Future work should prioritize robust validation strategies,
including k-fold cross-validation and evaluation on independent
external datasets from diverse institutions and populations. Such
approaches are necessary to detect potential overfitting, enhance
robustness, and more accurately estimate real-world performance.
Additionally, prospective studies comparing model outputs with
radiologist assessments within clinical workflows will be critical for
regulatory approval and successful integration into routine practice.
Despite the high performance observed, confirmation of model
stability and effectiveness across larger, multi-institutional cohorts
remains essential for widespread clinical adoption.
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6 Conclusion

The model created for lung cancer classification based on CT scans
shows spectacular accuracy and dependability, ratifying the enormous
potential of AI-driven medical diagnosis. Grad-CAM increases model
transparency and certainty and allows it to provide high-accuracy
diagnoses through visualization of its decision process. Explainable Al is
also a critical aspect in clinical environments as it enables medical experts
to comprehend and assess Al-produced results, thereby bridging the
difference between state-of-the-art Al technology and realistic clinical
use. Enhanced comprehension of medical picture processing and
automation in general should be the major area of research in the future.
This includes broadening the scope of Al applications to cover more
advanced and varied medical conditions, enhancing the resilience of Al
models against varied and multi-source data, and expanding the methods
for explainable artificial intelligence to improve the capture of Al findings.
Due to the relatively small size of the dataset, there is still the possibility
of overfitting despite the very high performance noted. For wide
applicability and generalizability, It is highly recommended future
validation on larger independent datasets of different centers.
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