
Frontiers in Medicine 01 frontiersin.org

Automated classification and 
explainable AI analysis of lung 
cancer stages using EfficientNet 
and gradient-weighted class 
activation mapping
Abdulmajeed Alqhatani 1, T. K. S. Rathish Babu 2, T. R. Mahesh 3, 
Surbhi Bhatia Khan 4,5*, Oumaima Saidani 6* and Mohammad 
Tabrez Quasim 7

1 Department of Information Systems, College of Computer Science and Information Systems, Najran 
University, Najran, Saudi Arabia, 2 Department of Computer Science and Engineering, SRM Institute of 
Science and Technology, Ramapuram, Chennai, India, 3 Department of Computer Science and 
Engineering, JAIN (Deemed-to-be University), Bengaluru, India, 4 School of Science, Engineering and 
Environment, University of Salford, Salford, United Kingdom, 5 Division of Research and Development, 
Lovely Professional University, Phagwara, India, 6 Department of Information Systems, College of 
Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, 
Saudi Arabia, 7 Department of Computer Science and Artificial Intelligence, College of Computing and 
Information Technology, University of Bisha, Bisha, Saudi Arabia

Precise classification of lung cancer stages based on CT images remains a significant 
challenge in oncology. This is vitally necessary for determining prognosis and creating 
practical treatment plans. Traditional methods mainly rely on human interpretation, 
which can be inconsistent and prone to fluctuation. To overcome these limitations 
an automated deep learning model based on the EfficientNet-B0 based architecture 
is proposed. Explainable AI features enhanced through Gradient-weighted Class 
Activation Mapping (Grad-CAM) help further boost this model. Training of the 
model was conducted with 1,190 CT scans from the IQ-OTH/NCCD dataset. All 
the images fell into the benign, malignant, and normal categories. The suggested 
technique performs remarkably well, reaching 99% accuracy, 99% precision, and 
recall rates of 96% for benign cases, 99% for malignant cases, and 100% for normal 
occurrences. Grad-CAM makes the model more interpretable and transparent by 
providing visual explanations of its results. It identifies the most important regions 
in the scans that significantly contribute to the classification results. Apart from 
contributing to the field of medical image analysis, accurate precision and complete 
explanations also bring automated diagnosis systems credibility and reliability.
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1 Introduction

Being the major cause of cancer-related mortality worldwide, lung cancer still presents a 
challenging problem in the field of oncology (1). The stage of the cancer discovery determines 
much the efficacy of treatment and patient prognosis (1). For best patient treatment, early 
detection and suitable staging of lung cancer by radiological imaging especially computed 
tomography are very vital (2). But the way radiologists interpret this imaging data primarily 
depends on their subjective view, which can vary widely even among experts. This variation 
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might result in unequal and maybe incorrect staging, therefore 
affecting treatment decisions and results (3).

Deep learning (DL) and artificial intelligence (AI) have 
opened fresh opportunities to increase diagnosis accuracy in 
medical imaging (4). With a degree of precision usually 
approaching human ability, DL models especially convolutional 
neural networks (CNNs) have shown the ability to identify and 
comprehend small patterns in picture data (5). Nevertheless, the 
intrinsic opacity of such models limits their application in clinical 
practice as the human users of artificial intelligence systems 
sometimes find their decision-making process unclear or 
interpretable (6). Figure 1 shows a range of CT scans from the 
IQ-OTH/NCCD dataset (7, 8), therefore illustrating the range of 
cases used to train and validate the proposed classification 
system. The pictures show the range of lung cancer phases: 
benign, malignant, and normal events. These illustrations provide 
a graphic summary of the kinds of data used in this work to 
evaluate the EfficientNet-B0 model and for training.

The major contributions of this research work are as follows:

	•	 The study introduces an automated deep learning model based 
on the EfficientNet-B0 architecture to classify lung cancer stages 
(benign, malignant, normal) from CT images, reducing 
dependence on subjective human interpretation.

	•	 The integration of Gradient-weighted Class Activation Mapping 
(Grad-CAM) provides clear visual explanations for the model’s 
decisions, increasing transparency and aiding clinical trust in 
AI outputs.

	•	 By combining strong classification performance with 
explainability, the approach supports the development of 
trustworthy and clinically viable AI systems for automated 
lung cancer diagnosis.

The objectives of this research can be summarized as follow:

	•	 Construct a deep learning model that can classify lung cancer 
stages from CT scans with high accuracy, leveraging the 
EfficientNet-B0 architecture.

	•	 Implement explainable AI techniques, specifically Grad-CAM, to 
make the model’s decision-making process accessible and 
interpretable to clinicians.

	•	 Assess the model’s performance in terms of accuracy, precision, 
and recall, comparing it against existing diagnostic standards to 
underscore potential improvements and identify any limitations.

This study is organized to first develop a complete overview of the 
present problems and advancements in lung cancer detection 
technology. Subsequently, it outlines the suggested methodological 
approach, utilizing both fresh and proven strategies to solve these 
issues. The analysis of the data is aimed at confirming the usefulness 
of the model in real-world scenarios, while the commentary aims to 
frame this work within the larger context of medical AI research. By 
boosting both the accuracy and transparency of lung cancer staging, 
this work contributes to the continuing attempts to incorporate AI 
into clinical practice, promising considerable gains in patient 
outcomes through better informed and timely decision-making.

2 Literature review

Over the past few years, lung cancer diagnosis has moved 
significantly from essentially symptom-driven diagnosis to 
sophisticated imaging-based early detection techniques (1). Because 
of the late start of symptoms, which severely limited treatment options 
and significantly affected patient outcomes, lung cancer was 

FIGURE 1

Representative sample of CT images from the IQ-OTH/NCCD dataset.
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historically typically found in later stages (2). Early 2000s low dose 
computed tomography (LDCT) debut was a breakthrough that 
allowed a method to detect lung nodules somewhat sooner than 
conventional radiography (2). By identifying the disease at a more 
curable stage, studies including the National Lung Screening Trial 
(NLST) have shown that LDCT screening can reduce lung cancer 
death (6). Though early identification has improved, the interpretation 
of imaging data remains a challenge, made worse by high rates of false 
positives and inter-observer variance in nodule evaluation.

Because CT imaging exactly shows lung anatomy, allowing the 
identification of tiny lesions not seen on conventional chest X-rays 
(2), it has become the standard for lung cancer screening and 
diagnosis. CT scan granularity lets one investigate nodule properties 
more fully, which is essential for determining cancer risk. Not only 
in the discovery but also in the stage of lung cancer, the imaging 
technologies guide biopsy operations and surgical planning. Though 
they have advantages, the interpretation of CT scans requires great 
expertise; hence, the little differences between benign and malignant 
nodules might result in different diagnosis among practitioners.

Table 1 explores the numerous research that are carried out in the 
area of lung cancer diagnosis and detection and builds a platform for 
why the research is essential in this field and what were the outcomes 
of the past research that were carried out in this field.

Most previous AI lung cancer detection models suffer from 
overfitting, poor interpretability, and high computational costs, which 
limit clinical deployment. The model presented here overcomes these 

shortcomings by combining EfficientNet-B0’s parameter-efficient 
backbone with strong regularization and Grad-CAM-based 
explainability. The architecture obtains high accuracy while keeping 
computation and transparency simple, specifically to fill gaps in 
previous models that usually utilize large, heavyweight architectures 
without interpretability.

In contrast to recent directions that promote ensemble and 
hybrid models for improved accuracy usually at the expense of 
higher inference time and complexity the presented work takes a 
lean, single-model architecture approach. EfficientNet-B0’s 
compound scaling strategy evenly apportions network depth, 
width, and resolution, producing state-of-the-art performance 
with less overhead in terms of computation. Grad-CAM also adds 
confidence by projecting onto areas impacting model predictions, 
enabling clinical verification.

By combining efficiency, accuracy, and interpretability, this 
approach presents a practical and scalable solution to real-world 
clinical lung cancer diagnosis over existing major hindrances of past 
deep learning methods.

3 Methodology

This section describes how to develop and evaluate the deep 
learning model that is based on CT scans to detect various phases of 
lung cancer.

TABLE 1  Review of recent studies.

Study Objective Result Remarks

Shah et al. (9) Develop an ensemble 2D CNN approach for detecting 

lung nodules in CT scans.

Achieved a combined accuracy of 95%. Utilized the LUNA 16 dataset.

Mikhael et al. (10) Predict future lung cancer risk from a single LDCT using 

a deep learning model.

AUC scores ranged from 0.86 to 0.94 across different 

validation sets.

Model runs in real-time, no 

additional data required.

Tran et al. (11) Summarize deep learning applications in lung cancer 

genomics for decision-making and therapeutics 

development.

Reviewed various genome-based models. Focused on omics data and AI 

integration.

Wankhade and 

Vigneshwari (12)

Propose a hybrid deep learning method for early lung 

cancer detection using neural networks.

Confirmed the viability of the hybrid model for early 

diagnosis.

Used LIDC-IDRI for image 

extraction.

Wani et al. (13) Develop an interpretable AI model for lung cancer 

detection using a hybrid deep learning approach.

Obtained high accuracy and explainability in 

predictions (accuracy: 97.43%).

Employed the Survey Lung 

Cancer dataset.

Guan et al. (14) Create an automated framework for PET image screening, 

denoising, and segmentation using deep learning.

Demonstrated good performance and time efficiency 

in tests on real medical PET images.

Focused on lesion tissue 

segmentation.

Said et al. (15) Develop a system for early lung cancer diagnosis using 

deep learning for CT scan image segmentation and 

classification.

Achieved state-of-the-art performance in 

segmentation and classification accuracy (97.83 and 

98.77%, respectively).

Used the Decathlon dataset for 

training.

Rajasekar et al. 

(16)

Analyze features from CT and histopathological images 

for lung cancer prediction using various deep learning 

algorithms.

Showed improved performance in detection accuracy 

compared to existing methods.

Highlighted the significance of 

combining multiple image types.

Ding et al. (17) Propose a deep-learning-based method for fast and 

accurate 3D CT deformable image registration in lung 

cancer treatment.

Achieved a high average SSIM score and good 3D 

Gamma passing rates, demonstrating accuracy and 

efficiency.

Implemented two different 

models for evaluation.

Zhang et al. (18) Use deep learning on histopathology images to predict 

prognosis and therapeutic response in small cell lung 

cancer.

Developed a pathomics signature with significant 

prognostic value for survival outcomes and 

chemoradiotherapy response prediction.

Utilized multicenter cohorts for 

validation.
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It comprises the utilized dataset, preprocessing methods, model 
development, training protocols, and the implementation of 
explainable artificial intelligence technologies. Figure  2 offers a 
comprehensive overview of methodological methods utilized in this 
experiment through the illustration of the entire pipeline from image 
preprocessing to model prediction and explanation. The process 
begins with preprocessing CT images and proceeds to using 
EfficientNet-B0 for the training of models. Grad-CAM is then utilized 
to present visually interpretable explanations of the results 
of classification.

Algorithm 1 describes the phases and approach for developing a 
deep learning model to identify lung cancer scans using the 
EfficientNet-B0 architecture, with specific focus on image preparation, 
model training, performance evaluation, and interpretability using 
Grad-CAM visualizations.

3.1 Dataset description

The study employed the lung cancer dataset from the Iraq-
Oncology Teaching Hospital (IQ-OTH/NCCD) of the National 
Center for Cancer Diseases (19). This dataset, which is divided into 
three categories benign, malignant, and normal contains 1,190 CT 
pictures from 110 people (19). The patients’ demographics included 
variations in gender, age, and country of origin. The cases were 
gathered in 2019 over a period of 3 months (19). Every image in the 
collection shows a different area of the human chest from many views 
and angles, making them essential for a thorough analysis (19). The 
dataset component utilized for the training is shown in Table 2.

3.2 Preprocessing steps

Preprocessing is necessary to correctly condition the data for 
interaction with deep learning models. For this study, a rigorous 
approach was used to ensure that the CT scans from the IQ-OTH/
NCCD lung cancer dataset were optimally prepared for processing by 
EfficientNet-B0 architecture. The initial size of CT scan pictures varies 
greatly due to their different source. Every picture was downsized to 
a standard resolution of 224 × 224 pixels to provide a uniform input 
size for the neural network. This size was selected to strike a 
compromise between the computational efficiency of processing 

smaller photos and the requirement to maintain enough image detail. 
Bilinear interpolation (Equation 1) was used to do the resizing. This 
technique estimates new pixel values by using the weighted average of 
the four nearest known pixels, which are positioned diagonally to a 
given pixel.

	 ( ) ( )( ) ( ) ( )= − − + − + − +00 10 01 11, 1 1 1 1I x y a b I a b I a bI abI 	 (1)

Where:

	•	 I(x,y) is the interpolated value at position (x,y).
	•	 I00, I10, I01, I11 are the pixel values of the four nearest pixels.
	•	 a and b are the distances from the pixel (x,y) to the nearest pixels 

in the x and y directions, respectively.

This process aids in the quality preservation of the image during 
resizing, an important factor in ensuring the integrity of medical images.

The pixel values of the CT images initially range over a large 
number, characteristic of medical imaging modalities, which can 
adversely affect the convergence behavior of deep learning models. To 
overcome this, the pixel values were normalized into 0 to 1 range. This 
normalization (Equation 2) was done by dividing the pixel values by 
255 (the largest possible pixel value in an 8-bit image).

	
=norm

max

pp
P 	

(2)

Normalization of the input data was used to alleviate internal 
covariate shift and hence speed up learning and encourage stable 
gradient updates during training. The technique minimizes the 
sensitivity of the model to the different scales of input features, thereby 
improving overall training efficiency.

Data augmentation methods such as rotation, zoom, and 
horizontal flip were chosen to mimic natural anatomical 
variability and symmetry commonly found in clinical CT 
imaging. These augmentations provide increased data diversity 
without adding synthetic artifacts that might affect model 
reliability. Contrast adjustment and noise injection augmentation 
techniques were specifically not used to avoid maintaining 
medically important pixel intensities required to accurately 
interpret clinically.

FIGURE 2

Workflow illustrating the automated classification and explainable AI analysis process for lung cancer staging.
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Even though the initial CT scans were captured in grayscale form, 
RGB conversion had to be  undertaken to meet the pretrained 
EfficientNet-B0 architecture requirements, which is three-channel 
input based on its initialization through ImageNet. The conversion, 
facilitated by duplicating the grayscale channel into all three RGB 
channels, allows for diagnostic integrity while facilitating successful 
transfer learning.

All the CT scan images were resized to 224 × 224 pixels to match 
the input size requirement by EfficientNet-B0. Fixing image size 
assists with reproducible feature extraction and enables effective 
batch processing. This resolution was chosen as a compromise 
between maintaining enough anatomical detail for reliable 
classification and keeping the computation requirements low. Bilinear 
interpolation was used for resizing, as it defines each output pixel 
based on a weighted average of its four closest input pixels, 
maintaining image smoothness and structural coherence (see 
Table 3).

Effective preprocessing such as resizing, normalization, and 
augmentation not only conditions the data for network input but 
also improves training stability and model performance. 
Normalization scales pixel values to a shared range, accelerating 
convergence and mitigating internal covariate shift. Augmentation 
adds diversity to the data, preventing overfitting and enhancing 

generalization. These sequential steps are essential in realizing high 
diagnostic performance with deep learning models such as 
EfficientNet-B0.

3.3 Model architecture

Proposed deep learning model is developed on top of 
EfficientNet-B0, which is very well known for its performance and 
efficiency in handling complex picture data across various fields, 
including medical imaging. EfficientNet-B0 was chosen as the 
platform due to its unique architecture, which produces convolutional 
neural networks (CNNs) more balanced in terms of depth, width, and 
resolution. This equilibrium avoids the exponential increase in 
processing costs associated with deeper or larger systems while 
enabling better performance. Depthwise separable convolutions of 
Equation 3 and pointwise in Equation 4, which split the convolution 
operation into two halves that are smaller in size, are important to the 
EfficientNet-B0 architecture. This approach reduces the computational 
expense and number of parameters significantly, making the model 
more efficient without sacrificing its ability to extract useful 
information from large, complex datasets.

ALGORITHM 1

Lung Cancer Classification Using EfficientNet-B0.

TABLE 2  Class distribution of dataset.

Class Number of images

Normal 416

Benign 120

Malignant 561

TABLE 3  Data split and preprocessing for lung cancer classification.

Parameter Training set Validation set Test set

Data split 60% of original 

data

20% of original data 20% of 

original data

Shuffle Yes Yes No

Subset Training Validation N/A
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+ + 
=       

 
∑ ,

,
Depthwise Convolution : , , · , ,,m n

i m j
y i j k x w m n kn k

	
(3)

	
= ⋅          ∑Pointwise Convolution : , , , , ,cz i j k y i j c w c k

	 (4)

where the convolutional kernel (w), the intermediate and output 
feature maps (y) and (z), respectively, are represented by the variables 
(x, y, and z).

Every convolutional block consists of batch normalization 
(Equations 5, 6) layers, which normalize and scale the activations. By 
guaranteeing a more stable and balanced distribution of non-linear 
inputs throughout the training process, this normalization aids in 
preventing internal covariate shift, a prevalent issue in deep 
network training.

	 σ

−µ
=

+∈2
Batch Normalizati : ˆon xx

	
(5)

	 = γ +βScaled and Shif ed : ˆt y x 	 (6)

where ( )µ  and ( )σ 2
 are the mean and variance of the batch, 

( )∈  is a small constant to avoid division by zero, and ( )γ  and ( )β  
are learned parameters.

Replacing the usual ReLU, EfficientNet-B0 incorporates the Swish 
activation function (Equation 7), which has been empirically proved 
to help in quicker convergence.

	 ( ) ( )σ=Swish ·x x x
	 (7)

where ( )( )σ x  is the sigmoid function.
The smooth structure of Swish, distinguished by its 

non-monotonic and dynamic gating mechanism, enables it to 
sustain activated neurons across the network, therefore facilitating 
the flow of gradients and lowering the chance of 
vanishing gradients.

EfficientNet-B0 base model is fine-tuned using pre-trained 
weights from the ImageNet dataset such that the network can 
benefit from learned features of a large and diverse set of generic 
images. Such transfer learning is particularly beneficial for medical 
imaging tasks in which labeled data may be sparse or expensive to 
obtain (20).

To customize the network for the objective of classifying lung 
cancer stages, unique layers are linked to the pre-trained foundation. 
These contain additional convolutional layers, global average pooling 
(Equation 8), and dense layers, culminating in a softmax classifier. The 
convolutional layer extensions are meant to augment feature maps 
produced by the underlying model, focusing on information vital to 
medical imaging. The addition of a Conv2D layer atop EfficientNet-B0 
allows the network to further adapt high-level features specifically for 
the lung cancer classification task, capturing domain-specific details 
absent from generic pretrained features.

Freezing the base EfficientNet layers prevents catastrophic 
forgetting of general image features and reduces the risk of overfitting 
given dataset size. While full fine-tuning may boost accuracy on larger 

or more diverse datasets, this strategy promotes better generalizability 
on smaller datasets and facilitates efficient training.

	 = =
=   × ∑ ∑1 1

1Global Average Pooling : ,H W
i jz y i j

H W 	
(8)

where ( )H and ( )W are the height and width of the feature map, 
and ( )y  is the feature map before pooling.

The Adam optimizer (Equation 9), with its adaptive learning rate 
feature, steers the learning process of the model by adjusting weights 
to minimize the loss function suitably. Table 4 provides information 
regarding model’s configuration and architecture.

	
+

η
θ = θ − ⋅

+
1Adam Update Rule : t t t

t
m

v  	
(9)

where ( )θt  represents the parameters, ( )η  is the learning rate, 
( )tm  and ( )tv  are the first and second moment estimates, and ( )  is a 
small constant.

This advanced architecture not only guarantees that the 
model attains high accuracy in classifying the stages of lung 
cancer from CT images but also computational efficiency, 
allowing its application in clinical environments where timely 
and accurate diagnosis is paramount. Table 5 offers a detailed 
description of the model architecture, layer types, output shapes, 
and the number of parameters for each layer.

The added Conv2D layer on top of EfficientNet-B0 enhances the 
extraction of features specific to lung cancer CT scans, beyond what 
is captured by the base model trained on natural images. The base 
layers were frozen during initial training to retain robust general 
features and prevent overfitting on the relatively small dataset. This 
strategy supports model generalizability, with plans for fine-tuning if 
larger datasets become available.

3.4 Training procedures

The model’s training schedule was carefully crafted to take use of 
the Adam optimizer’s advantages. This optimizer is well known for its 
ability to adaptively modify learning rates according to the first and 

TABLE 4  Model architecture and configuration for lung cancer 
classification.

Parameter Value

IMAGE_SIZE 256

TARGET_SIZE (224, 224)

NUM_CLASSES 3

BATCH_SIZE 32

EPOCHS 30

Dropout 0.5

Optimizer Adam

Loss FUNCTION Sparse Categorical Crossentropy

Metrics Accuracy
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second moments of the gradients; this feature greatly accelerates the 
model’s convergence rate and improves its overall training efficiency. 
This kind of feature is very useful for datasets that require a lot of 
computing, like those used in medical imaging applications.

For the loss function, Sparse Categorical Cross entropy was 
employed. This choice is particularly well-suited for multi-class 
classification scenarios where class labels are provided as integers, 
allowing for a more memory-efficient handling of label data 
compared to one-hot encoding.

In the proposed model, Dropout is applied before Batch 
Normalization as an empirical design choice. While it is more 
common to apply Batch Normalization first, placing Dropout before 
BatchNorm can, in some cases, encourage greater regularization by 
exposing the normalization layer to a wider distribution of activations. 
It was observed stable performance with this configuration, though 
both orders are valid and results may be data dependent.

The early stopping patience of five epochs was chosen empirically 
to balance between adequate learning and prevention of overfitting, 
as validated by the observed learning curves.

The model’s performance evaluation encompassed a 
comprehensive suite of metrics, including accuracy (Equation 10), 
precision (Equation 11), recall (Equation 12), F2 score (Equation 13), 
Matthews Correlation Coefficient (MCC) (Equation 14), and 
Cohen’s Kappa.

	
=

Number of Correct PredictionsAccuracy
Total Number of Predictions 	

(10)

	
=

+
Precision i

i
i i

TP
TP FP 	

(11)

where:

	•	 ( )iTP  is the number of true positives for class ( )i ,
	•	 ( )iFP  is the number of false positives for class ( ).i

	
=

+
Recall i

i
i i

TP
TP FN 	

(12)

where:

	•	 ( )iFN  is the number of false negatives for class ( ).i

	

× ×
=

× +
5 Precision RecallF2 Score
4 Precision Recall

i i
i

i i 	
(13)

	 ( )( )( )( )
× − ×

=
+ + + +

MCC TP TN FP FN
TP FP TP FN TN FP TN FN 	

(14)

where:

	•	 ( )TN  is the number of true negatives.

An Early Stopping callback was used, designed to stop the 
training should the validation loss not show improvement over 
five consecutive epochs, therefore preventing overfitting. This 
approach not only saves computer resources but also keeps the 
model from learning noise and pointless trends in the 
training data.

In the training stage, the Model Checkpoint callback was also 
rather important as it helped to store the model weights at the epoch 
with best validation accuracy. This assured that, independent of any 
possible performance drop in next epochs, the best performing model 
configuration was maintained.

Figure  3 depicts the model’s training and validation accuracy 
curves indicate robust learning with high final accuracy rates. The 
model exhibits consistent improvement in both training and 
validation accuracy, stabilizing at around 99% accuracy. The training 
loss steadily decreases, indicating the model’s learning progression, 
with minimal overfitting observed.

These strategies, when combined, form a robust framework for 
training deep learning models, specifically tailored to meet the high 
standards required in fields like medical imaging, where the accuracy 
and reliability of predictions can directly impact clinical outcomes.

3.5 Integration of explainable AI using 
gradient-weighted class activation 
mapping (grad-CAM)

Interpretability is a core expectation for AI-driven diagnostic 
instruments, especially for medical imaging, since it forms the basis 
for trustworthiness and clinical validity. To meet this requirement, 
Grad-CAM is incorporated into CNN models to enhance the 
transparency of their decision-making. Grad-CAM makes it possible 
to visualize the parts of an input image that contribute most to the 
predictions made by a model, thus revealing the features that the 
model weighs as a priority.

Applying Grad-CAM requires structural adjustments to the 
CNN. In particular, the model is trained to produce both the final 
convolutional layer’s activations and the probabilities of the predicted 
class. This two-output setup is critical for obtaining spatial feature 
maps and gradient calculations with respect to the target class, which 
in combination constitute the foundation for creating the 
Grad-CAM heatmap.

Preserving the outputs of the last convolutional layer retains 
important spatial information, and the prediction layer determines the 
target class to be  identified. The gradients are calculated by 
backpropagating the target class score through the network to these 
spatial features. The gradients provide the contribution of each spatial 

TABLE 5  Model summary of the lung cancer classification architecture.

Layer (Type) Output 
shape

Parameter

EfficientNet-B0 (Functional) (None, 8, 8, 1,280) 4,049,571

Top_Conv_Layer (Conv2D) (None, 8, 8, 32) 368,672

global_average_pooling2d_10 

(GlobalAveragePooling2D)

(None, 32) 0

dense_20 (Dense) (None, 128) 4,224

dropout_10 (Dropout) (None, 128) 0

batch_normalization_9 

(BatchNormalization)

(None, 128) 512

dense_21 (Dense) (None, 3) 387
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FIGURE 4

Classification report detailing the precision, recall, and F1-score across different lung cancer stages (benign, malignant, and normal cases).

location to the prediction, which are used as weights highlighting the 
most significant regions in the input image.

TensorFlow’s Gradient Tape is used as a tool for automatic 
differentiation to efficiently record these gradients in the forward and 
backward passes. This process enables accurate and flexible gradient 
information extraction, promoting solid heatmap generation. The 
generated heatmaps, overlaid on the input image, offer an easy-to-
understand visualization of the areas that inform the decision of 
the model.

Such visual explanations are especially important in medical 
imaging. Grad-CAM emphasizes diagnostically meaningful features, 
including tumors or lesions, so clinicians can check that the decisions 
of the AI system rely on medically significant regions and not on 

artifacts or inconsequential areas. This explainability improves clinical 
validation, helps identify possible model biases, and ultimately 
encourages trust and deployment of AI-supported diagnostic aids in 
clinical settings.

4 Results

The performance of the model in classifying lung cancer was 
evaluated both quantitatively and qualitatively, leading to a 
comprehensive understanding of its accuracy and reliability. The 
model had excellent quantitative performance with a Test 
Accuracy approaching near perfect, which implies perfect 

FIGURE 3

Training and validation accuracy and loss curves across 35 epochs.

https://doi.org/10.3389/fmed.2025.1625183
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alqhatani et al.� 10.3389/fmed.2025.1625183

Frontiers in Medicine 09 frontiersin.org

classification of all classes in the test dataset. This high level of 
accuracy was demonstrated by some of the key measures, 
including recall, precision, F1 and F2 scores, Matthews 

Correlation Coefficient (MCC), and Cohen’s Kappa. The 
model demonstrated perfect accuracy for benign, malignant, 
and normal instances, with 1.00 scores for both classes of 

FIGURE 5

Various metrics including F2 Score, Matthews Correlation Coefficient (MCC), and Cohen’s Kappa for the classification model.

FIGURE 6

Confusion matrix summarizing the model’s classification performance.
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FIGURE 7

Grad-CAM visualizations highlighting the regions within the CT images that most influence the model’s predictions.

instances and 0.98 for normal instances. This accuracy suggests 
that all the instances correctly predicted to belong to a specific 
class. All the recall scores of the model, varying between 0.96 to 
1.00 for benign, malignant, and normal examples, were quite 
excellent and proved that it had the ability to identify each 
instance of each class. The extremely high F1-scores (0.98 for 
benign, 1.00 for malignant, and 0.99 for normal cases) prove that 
the model had a good performance on classes and is a balance 
between accuracy and recall. The model’s bias towards avoiding 
false negatives, which is essential in medical diagnosis because an 
omission could have disastrous results, was revealed by the F2 

score, which emphasizes recall, and that was 0.9909. Here, highly 
accurate binary classifications translate very well into multiclass 
scenarios, as indicated by the MCC score of 0.9845. Figure  4 
illustrates the classification report wherein the model’s excellent 
performance at lung cancer stage classification is manifested 
through its excellent accuracy, recall, and F1-score over 
numerous classes.

Figure 5 also shows other performance metrics that reaffirm the 
model’s superior accuracy and reliability in determining lung 
cancer stages, including the F2 Score, MCC, and Cohen’s Kappa. 
The resilience of the model is also supported by the F2 value of 
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0.9909, which indicates superior predictive performance and class 
balanced accuracy.

The confusion matrix, which had additional decompositions 
showing that 23 predictions were correct for benign cases, 112 
correct for malignant ones, and 83 correct for normal conditions, 
further demonstrated the model’s superior dependability. 

The matrix merely presented a handful of errors: one benign 
occurrence was misclassified as normal, while one malignant 
instance was mistakenly identified as normal. These small 
imperfections reflect how precise the model is when it comes to 
separating benign, malignant, and normal events. The findings in 
classification are highlighted in detail within Figure  6’s 

FIGURE 8

Sample CT images showing true labels versus model predictions.

FIGURE 9

Examples of misclassified CT scans.
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TABLE 6  Comparison of the proposed model with existing models.

Study Technique Accuracy

Mohamed et al. (21) Hybrid CNN with Ebola Optimization Search Algorithm (EOSA) 93.21%

Parveen et al. (22) CNN with Watershed and SIFT for feature extraction and data augmentation 97%

Nigudgi and Bhyri (23) Hybrid-SVM with transfer learning using AlexNet, VGG, and GoogleNet 97%

Tasnim et al. (24) Deep Learning with advanced image preprocessing and classifiers like ResNet50 and InceptionV3 98%

Bagheri Tofighi et al. (25) MobileNetV2 with stacked GRU layers and explainable AI using Grad-CAM 96.83%

Patnaik et al. (26) Mask-EffNet using EfficientNet and masked autoencoder for feature extraction and classification 98.98%

Humayun et al. (27) Transfer learning approach with CNN and various preprocessing techniques 98.83%

Bangare et al. (28) CNN for computer-aided detection and classification of CT images 86.42%

Kumaran et al. (29) Ensemble transfer learning using VGG16, ResNet50, and InceptionV3 with Grad-CAM 98.18%

Ahnaf and Wahyuni (30) Comparative analysis using GLCM and LBP feature extraction with SVM and Gaussian Naive Bayes 93%

Proposed Model Modified EfficientNet-B0 with Extra Convolution Layer and Explainable AI 99%

confusion matrix, which further reflects the high recall and 
overall accuracy of the model. The matrix confirms that the 
model’s accuracy is extremely high and the misclassification rate 
very low when distinguishing between benign, malignant, and 
normal events.

Figure  7 shows the important areas leading the classification 
decisions, thereby highlighting the interpretability of the model using 
Grad-CAM images. These heatmaps increase the interpretability and 
dependability of the automated classification by revealing the areas the 
model regards as essential for decision-making.

5 Discussion

When comparing the recommended AI-driven diagnostic model 
for lung cancer with traditional diagnostic methodologies, certain 
gains show, with major downsides that demand thorough 
examination. Conventional diagnostic methods, such radiologists 
manually interpreting CT images, heavily depend on the skills and 
knowledge of medical experts. Although these methods have long 
served as the foundation of medical diagnostics, their diagnostic 
accuracy can vary, and they frequently involve laborious procedures. 
With accurate predictions for most cases in several categories, 
Figure  8 illustrates the model’s effectiveness in detecting lung 
cancer stages.

The risks associated with misclassification, particularly false 
negatives in malignant cases are significant in clinical settings. It 
is crucial that such tools are used as decision-support 
systems rather than standalone diagnostic solutions, and that 
their outputs are always interpreted by qualified clinicians. 
Transparent reporting of model performance and clear 
communication of its limitations are essential to minimize patient 
harm and uphold ethical standards in medical AI. Figure  9 
illustrates the instances when the model incorrectly classified 
benign and malignant cases as normal, thus indicating the need 
for further improvement in distinguishing between minor 
differences in CT scan images.

The AI model is special in its use of Grad-CAM, which visually 
stresses the CT scan areas affecting diagnosis decisions so increasing 

openness. Rather than a replacement, this ability provides clinicians 
with perceptive examination of the AI’s decision-making process, 
therefore enhancing traditional diagnostic techniques. To underline 
this fact, Table 6 demonstrates how the proposed model surpasses 
the present state of art models.

The achieved classification accuracy of 99% indicates substantial 
potential for reducing missed or incorrect lung cancer stage diagnoses. 
Enhanced diagnostic reliability can support timely clinical 
interventions, particularly in early-stage cases where therapeutic 
outcomes are most favorable. By decreasing human error and inter-
observer variability, the model may contribute to more consistent and 
effective patient management.

Despite these promising results, several limitations must 
be  addressed before clinical application (31). The potential for 
overfitting to a limited dataset, coupled with demographic and 
scanner-specific biases, constrains the model’s generalizability. The 
absence of external and prospective validation raises concerns 
regarding performance in real-world clinical settings, where variations 
in imaging protocols, patient populations, and unforeseen artifacts are 
common. Comprehensive multi-center validation and prospective 
clinical studies are therefore essential to establish clinical utility.

While the model demonstrates a high score of 0.98 for the normal 
class, even minor reductions in sensitivity or specificity could have 
significant clinical consequences. False positives may lead to 
unnecessary diagnostic procedures and patient anxiety, whereas false 
negatives risk delaying critical treatment. Maintaining high precision 
and recall across all classes is therefore imperative to minimize patient 
harm and resource misallocation.

Future work should prioritize robust validation strategies, 
including k-fold cross-validation and evaluation on independent 
external datasets from diverse institutions and populations. Such 
approaches are necessary to detect potential overfitting, enhance 
robustness, and more accurately estimate real-world performance. 
Additionally, prospective studies comparing model outputs with 
radiologist assessments within clinical workflows will be critical for 
regulatory approval and successful integration into routine practice. 
Despite the high performance observed, confirmation of model 
stability and effectiveness across larger, multi-institutional cohorts 
remains essential for widespread clinical adoption.
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6 Conclusion

The model created for lung cancer classification based on CT scans 
shows spectacular accuracy and dependability, ratifying the enormous 
potential of AI-driven medical diagnosis. Grad-CAM increases model 
transparency and certainty and allows it to provide high-accuracy 
diagnoses through visualization of its decision process. Explainable AI is 
also a critical aspect in clinical environments as it enables medical experts 
to comprehend and assess AI-produced results, thereby bridging the 
difference between state-of-the-art AI technology and realistic clinical 
use. Enhanced comprehension of medical picture processing and 
automation in general should be the major area of research in the future. 
This includes broadening the scope of AI applications to cover more 
advanced and varied medical conditions, enhancing the resilience of AI 
models against varied and multi-source data, and expanding the methods 
for explainable artificial intelligence to improve the capture of AI findings. 
Due to the relatively small size of the dataset, there is still the possibility 
of overfitting despite the very high performance noted. For wide 
applicability and generalizability, It is highly recommended future 
validation on larger independent datasets of different centers.
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