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TP53 expression in PCAT in
coronary artery disease combined
with type 2 diabetes mellitus and
its correlation with CCTA
radiomic features: novel imaging
biomarkers
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!Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumgji, China,
2Department of Pain Medicine, Midong District Hospital of Traditional Chinese Medicine, Urumd;,
China, *School of Basic Medical Science, Xinjiang Medical University, Urumgi, China

Aims: To explore the changes in differentially expressed genes in pericoronary
adipose tissue (PCAT) and serum from patients with coronary artery disease (CAD)
complicated with type 2 diabetes mellitus (T2DM) and to analyse its correlation
with PCAT radiomic features based on coronary CT angiography (CCTA).
Methods: Intersecting genes that were differentially expressed in both CAD and
T2DM patients were obtained from the GEO database and analyzed to obtain
candidate genes. PCAT and serum samples were collected from CAD patients
who underwent coronary artery bypass grafting (CABG) from May 2023 to January
2024. RT-gPCR was used to determine the expression of candidate differentially
expressed genesin PCAT, to search for genes related to patients with CAD combined
with T2DM, and to verify the protein expression levels by immunohistochemistry
(IHC). Enzyme-linked immunosorbent assays (ELISAs) were also used to determine
the expression of candidate differentially expressed genes in the serum. Finally, the
PCAT radiomic features of the right coronary artery in patients with CAD combined
with T2DM were extracted and correlated with the candidate genes.

Results: HLA-DRBI1, TP53, and CCR9 were screened from the GEO database.
RT—gPCR results revealed that TP53 expression was significantly increased in the
T2DM group compared with the control group (3.082 + 0.580 vs. 1.663 + 0.698,
p < 0.001). IHC results revealed that the area of positive expression around the
nucleus was increased in the fat cells of the T2DM group compared with those
of the control group, with increased perinuclear areas with positive expression
(0.521 + 0.082 vs. 0.327 + 0.074, p < 0.001), and 14 PCAT radiomic features in
CAD combined with T2DM patients correlated with TP53 (r; > 0.5, p < 0.05).
Conclusion: TP53 expression was significantly elevated in the PCAT of patients
with CAD combined with T2DM, suggesting that this molecule plays a role in the
development of this disease. Four first-order features and 10 texture features in
the PCAT radiomic features were associated with abnormal TP53 expression. The
association of radiomic features with TP53 suggests that CCTA-based radiomic
features can be used to predict abnormalities in differential gene expression,
thus providing a new way to noninvasively predict CAD combined with T2DM.

KEYWORDS

coronary artery disease, type 2 diabetes mellitus, pericoronary adipose tissue,
radiomics, TP53
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1 Introduction

According to the World Health Organisation, 17.9 million people
worldwide suffer from cardiovascular diseases. Coronary artery disease
(CAD) is the third most prevalent cardiovascular disease and is
increasing annually; thus, CAD is a serious threat to human life and
health (1, 2). Notably, a close pathophysiological link between CAD and
diabetes mellitus has been found, and the two share multiple risk factors,
including obesity, insulin resistance, and chronic inflammation, forming
a mutually reinforcing vicious cycle (3). Type 2 diabetes mellitus (T2DM)
accounts for 96% of all diabetes mellitus cases (4). The TP53 gene plays
a crucial role in diseases such as T2DM and CAD, primarily by inducing
inflammatory responses that influence the progression of atherosclerosis
(5). Therefore, elucidating the role of TP53 in these diseases may offer
new insights into the pathophysiological mechanisms underlying CAD
combined with T2DM. The comorbid state of CAD and T2DM
substantially exacerbates the clinical risk, and evidence-based medicine
has demonstrated that patients with CAD in combination with T2DM
are at increased risk for adverse cardiovascular events and have a worse
prognosis and a greater risk of death; CAD is also the leading cause of
death and disability (6). Therefore, early and precise treatment is
particularly important for patients with CAD combined with T2DM.

Currently, coronary computed tomography angiogram (CCTA)
has been used as a first-line imaging method for CAD (7, 8), and
CCTA-detected attenuation of coronary arteries in pericoronary
adipose tissue (PCAT) has been shown to reflect vascular inflammation,
which is a key factor in the formation, progression and rupture of
coronary atherosclerotic plaques (9, 10). Long-term glycaemic and
metabolic abnormalities in patients with T2DM lead to a long-term
inflammatory state in coronary blood vessels, and the release of free
fatty acids from PCAT increases, which further damages endothelial
cells and accelerates coronary atherosclerosis (11). The PCAT
attenuation index was found to be significantly greater in diabetic
patients than in nondiabetic patients (12). Therefore, this method can
be used to predict the occurrence of CAD combined with T2DM by
detecting changes in PCAT via CCTA. CCTA-based PCAT radiomic
features are able to mine quantitative features from images, reducing
the need for invasive diagnostics (13). Oikonomou et al. (14)
investigated the associations of CCTA-based PCAT radiomic features
with genes related to a high risk of perivascular structural remodelling
in CAD patients, confirming the adverse cardiovascular event risk of
fat radiomic features. Therefore, correlation analysis between radiomic
features and genes has potential for predicting CAD in combination
with T2DM and may provide new ideas for clinical decision-making.

In this study, PCAT was used as an entry point and combined
with gene bioinformatic analysis to screen key genes and perform
basic experimental validation. Moreover, a correlation analysis of gene
expression with PCAT radiomic features was performed to identify
new imaging biomarkers for the risk prediction of CAD combined
with T2DM.

2 Materials and methods

2.1 Study subjects

Pre-coronary artery bypass grafting (CABG) CAD patients
who underwent CCTA from May 2023 to January 2024 were
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prospectively and consecutively enrolled at the First Affiliated
Hospital of Xinjiang Medical University and grouped according to
whether they had T2DM. The study was approved by the Medical
Ethics Committee of the hospital (Ethics Approval No. 220120-02),
and the patients and their families signed an informed consent
form. The inclusion criteria were as follows: (1) age >18 years; (2)
definite clinical diagnosis of CAD; (3) CABG within 1 month after
CCTA examination; and (4) T2DM, defined as a known history of
previous diabetes, current use of medication for diabetes (oral or
injectable medication), and a glycated haemoglobin ratio
(HbAlc) > 6% for at least 1 month prior to study registration. The
exclusion criteria were as follows: (1) the samples were not frozen
in a liquid nitrogen tank for more than 10 min; (2) the RNA
concentration was too low; (3) the samples were from people with
serious illnesses such as tumours, blood and immune system
diseases; (4) the samples had artefacts in the image that could not
be used for diagnosis; (5) the samples were from patients with an
allergy to an iodine contrast agent; (6) the samples were from
patients with severe renal insufficiency; and (7) the samples were
from patients with incomplete clinical data.

In this study, six patients whose CCTA scans failed, two patients
whose clinical data were incomplete, and two patients whose serum
samples were not frozen in time were excluded; finally, PCAT,
peripheral blood and clinical data were collected from 40 patients
(Figure 1). The flow chart of the study is shown in Figure 2.

2.2 CCTA scanning scheme

CCTA examinations were performed using a 320-row detector
CT (Aquilion ONE Genesis Edition, Canon Medical Systems,
Otawara, Japan) with volumetric scanning, prospective acquisition
of multiphase images with 30%-80% R-R intervals, and scanning
ranging from 1 cm below the tracheal eminence to 1.5 cm below
the cardiac diaphragm. The scanning area ranged from 1 cm
below the tracheal eminence to 1.5cm below the cardiac
diaphragm. The tube voltage was 120 kV, the tube current value
was controlled by automatic exposure, the rotational speed of the
bulb tube was 0.275 r/s, the thickness of the layer was 0.5 mm, the
spacing of the layers was 0.25 mm, and the reconstruction matrix
was 512 x 512. The contrast injection scheme was based on the
regiment of interest (ROI) method: the ROI in the descending
aorta at the level of the centre of the heart was set as the threshold
monitoring point. When the descending aorta contrast
concentration reached 280 HU, the scan was automatically
triggered with a 1 s delay. During the enhancement scan, a
nonionic contrast agent (iohexol or iopamidol injection with an
iodine concentration of 370 mg/mL) was injected intravenously
through the elbow vein at a rate of 3.5-5.0 mL/s; 30 mL of saline
was injected at the same rate. Dose of iodine contrast (mL) = body
weight (kg) x 0.8 mL/kg (15).

2.3 Screening of candidate genes in
CAD-integrated T2DM

CAD datasets (GSE64554 and GSE120774) and T2DM datasets
(GSE16415 and GSE71416) were first downloaded from the GEO
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FIGURE 1
Flowchart of participant enrolment.

database,' and Sangerbox’ to merge, decatch and normalise the
datasets, the limma analysis tool for differentially expressed gene
analysis, and the Sangerbox Wayne plotting tool to obtain intersecting
genes that are differentially expressed in both CAD and T2DM were
used. The DAVID Functional Annotation Bioinformatics Microarray
Analysis website® was used for Gene Ontology (GO) functional
annotation with Kyoto Encyclopaedia of Genes and Genomes (KEGG)
analysis to obtain candidate genes.

2.4 RT—-gPCR analysis of candidate gene
expression in PCAT

The genes most relevant for CAD combined with T2DM were
identified via basic experimental validation. First, RT-qPCR
experiments were performed on PCAT samples from the T2DM group
and the control group. The collected adipose tissue samples were stored
at —80 °C, RNA was extracted via TRIzol (Thermo Fisher), RNA was
transcribed into cDNA via a cDNA reverse transcription kit (TaKaRa),
and the concentration of RNA was determined by a Thermo Fisher
Nanodrop 2000 at 260/280. Gene expression was determined via the
Quant Studio TM 6 real-time PCR system. f-actin was used as a
reference gene, and relative mRNA expression was determined by the

2°44¢ method. The primers used are shown in Table 1.

1 https://www.ncbi.nlm.nih.gov/gds
2 http://sangerbox.com/home.html
3 https://david.ncifcrf.gov/
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2.5 Immunohistochemistry (IHC) validation
of the expression of candidate genes in PCAT

Genes screened by RT-qPCR were validated at the protein level
(IHC). Frozen sections (10 mm) were air-dried for 15 min and then
immersed in xylene for 10 min. Subsequently, the sections were
rehydrated using gradient alcohol and stained with haematoxylin and
eosin. IHC was performed on selected serial sections using the
Universal Elite ABC Kit (Vector Laboratories) following the
manufacturer’s guidelines. The sections were treated with a methanol
solution of 0.3% H,O, for 30 min and then blocked with 5% horse or
goat serum. After PBS rinses, the sections were incubated with
primary antibody in a humidity-controlled chamber for 1 h. The slides
were incubated with secondary antibody for 30 min and then with
anti-biotin protein-biotin for another 30 min. Finally, the sections
were exposed to DAB and restained with haematoxylin. The antibody
used in the experimental procedure was TP53 (AF0879; Jiangsu
Pro-Tech Biological Research Centre, Inc.; dilution ratio: 1:100; China).

2.6 Enzyme-linked immunosorbent assay
(ELISA) for the validation of candidate
genes in serum

Validation of CAD-incorporated T2DM-associated candidate
genes at the serum level was conducted. Peripheral venous blood
samples (10 mL) were collected in pyrogen-free tubes (with EDTA as
an anticoagulant) prior to the start of somatic circulation. For serum
preparation, EDTA tubes were placed on ice and centrifuged at
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TABLE 1 Primer sequences.

Primer name Primer sequence (5" — 3')

F: ACAGCCTCAAGATCATCAGCAA
GAPDH
R: CCATCACGCCACAGTTTCCC
F: ACTGTGTATCCTTCAAAGACCCA
HLA-DRBI
R: CAATGCTGCCTGGATAGAAACC
- F: ACATTCTCCACTTCTTGTTCCCC
53
R: CCCCACAACAAAACACCAGT
CCR9 F: AAGAGTGAAGACCATGACCG
R: TTTCTCCCTCCAAGTATGTGC

1500 x g for 10 min at 4 °C within 20 min. The resulting sera were
aliquoted and stored at —80 °C for subsequent experimental assays.
The expression levels of factors (TP53, HLA-DRBI and CCR9)
associated with CAD combined with T2DM were determined using
ELISA kits (Shanghai Tongwei Technology Co., Ltd., China).

2.7 PCAT radiomic feature extraction

CCTA images of patients with CAD combined with T2DM were
subjected to ROI segmentation of PCAT by selecting a 40 mm long and
3 mm wide section from 10 to 50 mm below the opening of the right
coronary artery with a 1 mm gap around the coronary artery wall,
using a Hounsfield unit threshold of —190 HU to —30 HU and using
the centreline of the vessel as a baseline to ensure accurate segmentation
of the PCAT (16) (Figure 3). The Perivascular Fat Analysis Tool
software (UltraScholar, Shukun Technology Co., Ltd., Beijing, China)
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was used to extract the PCAT radiomic features of the right coronary
artery, which included first-order features, texture features, and shape
features, and then, the original image was processed with seven filters,
including the exponential, gradient, local binary (2D and 3D),
logarithmic square and wavelet modes. This analysis integrates a
comprehensive set of features. Features with the same radiomic feature
values are eliminated by feature preprocessing, and the remaining
features are subjected to feature preselection. Features with absolute
values of Pearson correlation coefficients > 0.9 were screened, and the
remaining features were retained for analysis of CAD combined with
PCAT radiomic features of T2DM patients for correlation analysis
with genes.

2.8 Statistical analysis

Statistical analyses were performed using SPSS Statistics 26.0, and
normality was first verified using the Shapiro-Wilk test for small
sample sizes, with measurements conforming to a normal distribution
expressed as the mean + standard deviation (x £s) and those not
conforming to a normal distribution as [M(Q1, Q3)]. Counts are
expressed as the number of cases and percentage. Two independent
samples were tested using the independent samples ¢-test and Mann-
Whitney U test on the basis of the normality of the results. Categorical
variables were compared between groups using the chi-square test
(). p<0.05 indicated a statistically significant difference. The
strength of the association between gene expression and radiomic
features conformed to a normal distribution according to Pearson’s
analysis and did not conform to normality according to Spearman’s
analysis. Manhattan plots were drawn using correlation p values [—
log10(p values)] via the R language (R4.1.2; http://www.R-project.org).

frontiersin.org


https://doi.org/10.3389/fmed.2025.1626390
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://www.R-project.org

Qietal 10.3389/fmed.2025.1626390
WW: 800 WL 200 WW 200 L 200
.
valve:0
WW 800 WL 200
FIGURE 3

Automatic drawing of PCAT.

3 Results
3.1 Patient characteristics

The clinical characteristics and medication data of all the study
subjects are shown in Table 2. The control group and the T2DM
group were predominantly male, and the CK values of the patients
with CAD combined with T2DM were significantly greater than
those of the patients with CAD (p = 0.040); otherwise, no significant
differences were found between the general clinical data of the
two groups.

3.2 Acquisition of candidate genes
associated with the occurrence of CAD
combined with T2DM

In the CAD datasets GSE64554 and GSE120774, the
differentially expressed genes were taken as intersections, and the
number of common genes was 788. In the T2DM datasets GSE16415
and GSE71416, 1,614 common genes were identified. The
differentially expressed genes of CAD and T2DM were intersected,
and GO enrichment analysis was subsequently performed to filter
out the eligible GO terms. A total of 180 KEGG pathways were
enriched. The intersection of the two groups of differentially
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expressed genes was taken, and 54 common genes were obtained.
Combined with GO functional annotation to select the differentially
expressed genes in the inflammation and glycolipid metabolism
categories, the genes obtained from the KEGG analysis were
intersected, and three candidate genes related to the occurrence of
CAD combined with T2DM were obtained: HLA-DRBI, TP53, and
CCR9 (Figure 4).

3.3 Gene-level validation of candidate
genes in PCAT

A comparison of the T2DM group with the control group
revealed that the relative expression of TP53 was significantly
upregulated in the T2DM group (3.082 + 0.580) compared with that
in the control group (1.663 + 0.698) (3.082 + 0.580 vs. 1.663 + 0.698,
p <0.001); the relative expression of HLA-DRBI in the T2DM
group (2.721 + 1.824) was compared with that in the control group
(1.804 + 1.273), and these values were not significantly different
between the two groups (2.721 + 1.824 vs. 1.804 + 1.273, p = 0.073);
and the relative expression of CCR9 in the T2DM group
(3.031 £ 0.970) was compared with that in the control group
(2.742 £ 0.851), and these values were not significantly different
between the two groups (3.031 £ 0.970 vs. 2.742 + 0.851, p = 0.324)
(Figures 5A-C).
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TABLE 2 Clinical data of the control group and T2DM group patients.

Control T2DM group
group (n =20)
(n =20)
Male (%) 18 (90.00%) 17 (85.00%) 0.633
Age (years) 60.00 £ 5.99 57.80+7.43 0.309
BMI (kg/m?) 25.70 £ 4.04 25.20 £3.59 0.712
TG (mmol/L) 1.31 (0.92,1.53) 1.63 (1.29,2.03) 0.076
TC (mmol/L) 3.41 (3.11,4.30) 3.18 (2.67,4.01) 0.277
HDL (mmol/L) 0.76 (0.69,1.01) 0.76 (0.60,0.90) 0.265
LDL (mmol/L) 1.85 (1.36,2.45) 1.76 (1.38,2.23) 0.659
ALT (U/L) 29.96 (18.00,32.75) 22.00 (18.10,27.22) 0.174
AST (U/L) 2779 (22.93,34.12) | 23.10 (20.61,27.62) 0.121
LDH (U/L) 146.16 146.11 0.738
(142.06,165.60) (138.67,175.14)
CK (U/L) 50.89 (32.62,59.95) 70.39 (49.70,81.16) 0.040*
Risk factor (%)
Hypertension 8 (40.00%) 11 (55.00%) 0.342
Smoking history 8 (40.00%) 10 (50.00%) 0.525
Drinking history 6 (30.00%) 3 (15.00%) 0.256
Cerebrovascular 0 (0.00%) 3 (15.00%) 0.072
history
Family history 3 (15.00%) 1 (5.00%) 0.292
Drug use (%)
Statins 14 (70.00%) 11 (55.00%) 0.327
Aspirin 13 (65.00%) 15 (75.00%) 0.490
Clopidogrel 6 (30.00%) 9 (45.00%) 0.327
hydrochloride

TG, triglyceride; TC, total cholesterol; HDLc, high-density lipoprotein cholesterol; LDLc,
low-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate
transaminase; LDH, lactate dehydrogenase; CK, creatine kinase; *p < 0.05.

3.4 Validation of TP53 at the protein level

On the basis of the RT-qPCR results, IHC was used to further
verify the expression of TP53 in PCAT. Image] analysis of the
percentage of positively stained areas revealed that the area of TP53
around the nucleus of adipocytes in the T2DM group was
0.521 + 0.035 and that of the control group was 0.327 + 0.074. The
positive area of TP53 around the nucleus of adipocytes in the T2DM
group was significantly greater than that in the control group
(0.521 + 0.035 vs. 0.327 + 0.074, p < 0.001) (Figure 6).

3.5 Validation of candidate genes at the
serum level by ELISAs

The results of the ELISA experiments revealed that the expression
of TP53 was 1285.11 (1143.21, 2201.46) pg/mL in the T2DM group
and 1381.43 (1315.19, 1730.82) pg/mL in the control group, and no
statistically significant difference in the expression of TP53 in the
serum of the two groups of patients (U = 172, p = 0.449) was found.
CCR9 expression was 59.76 (57.06, 69.02) pg/mL in the T2DM group
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and 58.32 (57.38, 59.85) pg/mL in the control group, and no
statistically significant difference in the expression of CCRY in the
serum of the two groups of patients (U = 228, p = 0.449) was found.
HLA-DRBI expression was 302.32 (256.24, 421.06) ng/L in the T2DM
group and 287.11 (224.61, 312.69) ng/L in the control group, and no
statistically significant difference in the expression of HLA-DRBI in
the sera of the two groups of patients (U = 262, p = 0.094) was found
(Figures 5D-F).

3.6 Morphological changes in PCAT
adipocytes

HE staining of PCAT in patients with CAD combined with T2DM
and Image]J software analysis revealed that the unit cell area of PCAT
adipocytes in the T2DM group was 6954.98 + 1716.99 pm2, the unit
cell area of PCAT adipocytes in the control group was
3278.15 + 488.31 pm2, and this value in the T2DM group was
significantly larger (6954.98 + 1716.99 pm2 vs. 3278.15 + 488.31 pm2,
P <0.001) than that in the control group (Figure 7).

3.7 PCAT radiomic features and TP53
correlation

A total of 1,688 PCAT radiomic features (first-order features,
shape features, and texture features) were extracted from CAD-merged
T2DM. There were 14 PCAT radiomic features that correlated with
TP53 (r,> 0.5, p < 0.05): four first-order features, 10 texture features,
and no morphological features. The first-order features were
wavelet-HLH_ firstorder_Mean, wavelet-LHH_firstorder_Skewness,
and wavelet-LHL_firstorder_
TotalEnergy, and the texture features were gradient_gldm_

wavelet-LHL_firstorder_Energy,
LargeDependenceHighGrayLevelEmphasis, original_glem_
ClusterProminence, original_glem_ ClusterTendency, original_gldm_
DependenceEntropy, original_glrlm_RunEntropy, original_glszm_
ZoneEntropy, wavelet-HHH_gldm_
wavelet-HLH_glcm_ ClusterShade,

GrayLevelNonUniformity, and wavelet-LLL_glcm_Idmn (Figure 8A

DependenceVariance,
wavelet-HLH_glszm_

and Table 3). There was no significant correlation between the
radiomic features and the relative serum expression of TP53
(Figure 8B). In summary, the combination of RT-qPCR and IHC
results indicated that some of the radiomic features were correlated
with TP53 expression.

4 Discussion

In this study, we screened the candidate genes HLA-DRBI, TP53,
and CCR9 by bioinformatics to investigate their roles in the occurrence
and development of CAD combined with T2DM. We found that high
expression of TP53 may play a role in the disease process of CAD
combined with T2DM. Comprehensive analyses showing the
association of the radiomic features of PCAT with the key gene TP53
in patients with CAD combined with T2DM can more
comprehensively and accurately assess the anatomical and functional
changes in coronary arteries in patients with CAD combined with
T2DM, which is valuable for accurately predicting the disease risk of
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CAD combined with T2DM and highlights the critical role of this
gene, which may provide clues for the discovery of new imaging
biomarkers. Although the study sample size was small and included
only patients who underwent CABG, the complexity and uniqueness
of the sample acquisition method warrant attention. This dataset offers
unique scientific insights, particularly in revealing significant
associations between PCAT radiomic features and TP53 expression
patterns, opening new perspectives for understanding the
pathogenesis of CAD combined with T2DM. However, the findings
should be regarded as preliminary evidence, and future validation
requires larger, multicentre cohort studies to assess
their generalizability.

The mechanism of CAD combined with T2DM is complex and
involves various biological processes, including the inflammatory
response, metabolic disorders, and apoptosis, amongst which the
inflammatory response plays a key role in the development and
progression of CAD and T2DM (17), leading to the coronary artery

stenosis of patients with CAD combined with T2DM being more
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severe (18). The pathological state of PCAT leads to the release of
proinflammatory mediators, which in turn trigger the recruitment of
inflammatory cells and promote the onset and progression of coronary
atherosclerosis (19, 20), in which changes in the expression of key
genes are thought to be important players. The results of our previous
study revealed a significant correlation between PCAT radiomic
features and gene expression in CAD patients, highlighting the
potential of CCTA-based radiomic features as a noninvasive CAD risk
assessment tool (21). With the development of radiomics,
inflammatory changes in PCAT can be detected by CCTA-based
radiomics. Currently, CCTA is used to quantify the risk of CAD by
measuring the perivascular fat attenuation index and epicardial
adipose tissue (EAT) density, thickness and volume. Inflammation in
coronary arteries releases signals to inhibit PCAT production, and
CCTA can observe the attenuation characteristics of PCAT, capture
dynamic inflammation in coronary arteries, and track changes in
coronary artery inflammation (14). Radiomic first-order features are
able to delineate and quantify each voxel of the region of interest in
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FIGURE 6
IHC results of TP53 in PCAT (magnification: 40x).

detail, reflecting the details of PCAT changes at the microscopic level
(22). Morphological features describe the structural morphology of
the overall region of interest to assess the inflammatory response of
the coronary arteries and their surrounding lipid alterations (23).
Texture features help to capture more complex organisational
information by analysing the 3D spatial structure from pixel to pixel
in the image, revealing the structural logic hidden in the spatial image
(24). By combining these three features, not only can the macroscopic
pixel spatial distribution of PCAT be meticulously analysed but also
the microscopic local details can be explored in depth, thus achieving
a comprehensive assessment of the heterogeneity of PCAT. Dong et al.
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(25) reported that radiomic features of PCAT based on CCTA provide
timely diagnostic tools for patients with CAD combined with T2DM
in the clinic and help reduce the risk of death due to
cardiovascular disease.

Gene-level validation of candidate genes in PCAT revealed
statistically significant differences for TP53 across both groups,
whereas HLA-DRBI and CCRY showed no such differences.
Previous research indicates that CCR9 and HLA-DRBI may play
crucial roles in CAD and T2DM progression by influencing
inflammatory responses and insulin resistance, respectively (26—
29). However, our findings indicate that these genes do not exhibit
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key expression characteristics in CAD combined with T2DM. The
specific mechanisms require further investigation through
expanded sample size studies to validate their roles in the
pathogenesis of CAD combined with T2DM. As an important
oncogene whose function involves cell cycle regulation, DNA
repair, and apoptosis, TP53 plays an critical role in various
pathological conditions, such as coronary heart disease and
inflammation (5). The inhibition of TP53 expression can slow the
process of coronary atherosclerosis (30). In this study, the unit cell
area of PCAT adipocytes was significantly larger in the T2DM
group than in the control group, and the expression level of TP53
in PCAT adipose tissue was significantly greater than that in the
control group, suggesting that the progression of lesions in the
coronary arteries of patients with CAD combined with T2DM is
more severe, the degree of coronary artery stenosis is more severe,
and TP53 is closely related to the occurrence of CAD combined
with T2DM. Previous reports have shown that TP53 expression is
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increased in the adipose tissue of T2DM model mice, that high
expression of TP53 may lead to an impaired insulin signalling
pathway, and that increased inflammation leads to insulin
resistance, which in turn exacerbates the pathological state of
T2DM (31, 32). Therefore, it is hypothesized that inflammatory
changes occur in the coronary PCAT of patients with CAD
combined with T2DM, with a significant increase in the expression
of TP53 in the PCAT, which favours an increased inflammatory
response and insulin resistance, leading to mitochondrial damage
and apoptosis; moreover, a tight bidirectional interaction was found
between the pathological state of the PCAT and the coronary wall
because the PCAT is much closer to the coronary arteries (19). High
expression of TP53 by PCAT around coronary arteries in patients
with CAD combined with T2DM counteracted the coronary
vasculature, exacerbated the existing inflammatory response of the
coronary vasculature, and thus further exacerbated the degree of
coronary atherosclerosis in patients with CAD combined with
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TABLE 3 Correlations between PCAT radiomic features and TP53.

Radiomics features ‘ R, ‘ p

First-order features

wavelet-HLH_firstorder_Mean 0.624 0.003
wavelet-LHH_firstorder_Skewness 0.603 0.005
wavelet-LHL_firstorder_Energy 0.530 0.016
wavelet-LHL_firstorder_TotalEnergy 0.530 0.016
Textural features

gradient_gldm_ 0.617 0.004
LargeDependenceHighGrayLevelEmphasis

original_glem_ClusterProminence 0.507 0.022
original_glem_ClusterTendency 0.504 0.023
original_gldm_DependenceEntropy 0.507 0.023
original_glrlm_RunEntropy 0.529 0.016
original_glszm_ZoneEntropy 0.561 0.010
wavelet-HHH_gldm_DependenceVariance 0.565 0.009
wavelet-HLH_glem_ClusterShade 0.569 0.009
wavelet-HLH_glszm_GrayLevelNonUniformity 0.534 0.015
wavelet-LLL_glem_Idmn 0.574 0.008

T2DM. TP53 may be a key gene in the disease process of CAD
combined with T2DM, and its role in inflammation and metabolic
dysfunction deserves further exploration.

This study observed higher CK levels in the CAD combined with
T2DM group compared to the CAD group alone, suggesting that
chronic hyperglycaemia may exert an additional effect independent of
traditional risk factors along the “creatine kinase-myocardial injury”
axis. Patients with T2DM exhibit chronic low-grade inflammation,
oxidative stress, and microvascular dysfunction. These factors not only
exacerbate myocardial ischemia but may also cause CK leakage from
cardiac and skeletal muscle by increasing cell membrane permeability
or directly damaging myocytes (33, 34). Future studies with larger
sample sizes are necessary to determine whether elevated CK truly
reflects myocardial injury.

PCAT exhibits major metabolic abnormalities in the pathological
process of patients with CAD combined with T2DM, releasing a variety
of bioactive mediators, including proinflammatory cytokines (IL-6),
adipokines (leptin), and vasoactive substances, through a paracrine
mechanism; these bioactive molecules locally build a unique pathological
microenvironment, which directly affects the coronary arterial wall
through the diffusion of vascular epithelial cell function (35). ELISAs of
the candidate genes HLA-DRBI, TP53, and CCR9 revealed that the
expression levels were not significantly different between the two groups,
suggesting that HLA-DRBI, TP53, and CCRY in the peripheral blood did
not significantly change during the pathological process of CAD
combined with T2DM and that serum gene testing alone could not
clearly differentiate the gene expression between patients with CAD and
those with CAD combined with T2DM. The role of HLA-DRBI, TP53,
and CCRY in predicting the risk of CAD combined with T2DM needs
to be analysed comprehensively at different levels. The serum protein
levels of HLA-DRBI and CCR9 have been less well studied, and their
pathological roles are more likely to involve local tissues or gene
polymorphisms. Notably, genetic polymorphisms in HLA-DRBI are
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more strongly associated with T2DM or CAD than are changes in serum
protein levels (36). CCR9 has been less well studied in CAD or T2DM,
and most studies have focused on immune cell surface receptor function
rather than its soluble form in serum (37). Some studies have shown that
serum levels of p53 antibodies may be elevated in patients with T2DM,
but this result has not been widely validated in patients with CAD
combined with T2DM, and the serological results of TP53 are
controversial in metabolic diseases and may vary depending on the stage
of the disease or the method of detection (38).

In this study, the first-order and textural features of PCAT
radiomics were closely related to the abnormal expression of TP53.
In CAD patients, the inflammatory response leads to a decrease in
adipocyte lipid accumulation and an increase in the aqueous phase
of PCAT (14, 39), and ultimately, adipocytes and other inflammation-
affected normal cell somatostatin were altered in the PCAT. Similarly,
the combination of CAD with T2DM increases the release of
proinflammatory mediators, thus leading to the alteration of first-
order features of PCAT. This change leads to alterations in the first-
order characteristics of PCAT. Patients with CAD may show
structural alterations of PCAT, with increased local density
asymmetry compared to unaffected adipose tissue, leading to spatial
distribution inhomogeneity (40), which is exacerbated by the
combination of T2DM, ultimately leading to alterations in the
textural features of PCAT. First-order features and texture features
can respond to changes in CAD combined with T2DM, and high
expression of TP53 can further exacerbate the degree of coronary
atherosclerosis in patients with CAD combined with T2DM. These
results suggest that the use of radiomic features can predict
abnormalities in differential gene expression. With advances in
radiomics, it is now possible to extract a large amount of quantitative
information from imaging data that cannot be recognised by human
readers, thereby identifying imaging patterns of significant clinical
value. Radiomic features can predict both potential tumour
phenotypes independently associated with tumour biology and
clinical prognosis (41) and be used for risk prediction for adipose
tissue fibrosis and microvascular remodelling (14). Linking features
of these imaging data to the expression status of potential tissue
biology gene markers could result in a more precise assessment of
disease activity in patients and may provide new insights into
disease mechanisms.

5 Limitations

Currently, this study faces several challenges and limitations. First,
as a single-centre study with a small sample size, its findings serve only
as preliminary evidence and may not fully represent broader
populations. Further multicentre studies and in-depth development
projects are needed to confirm the clinical utility of these imaging
biomarkers. Second, this observational study only demonstrates an
association between radiomic features and TP53 expression. Future
mechanistic studies, including in vivo and in vitro experiments, are
needed to elucidate the causal relationships and potential biological
pathways linking TP53, inflammation, insulin resistance, and PCAT
radiomic features. Finally, whilst the key gene TP53 and radiomic
features proposed in this study show promise, rigorous external
validation is required to obtain generalizable results before translating
them into clinical early warning models.
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6 Conclusion

In summary, the results of the present study demonstrated that
TP53 expression was significantly elevated in PCAT of patients with
CAD combined with T2DM, a finding that highlights the role of
TP53 in the disease progression of CAD combined with T2DM. The
radiomic features of PCAT in patients with CAD combined with
T2DM are closely correlated with aberrant expression of TP53,
suggesting the possibility of utilising radiomic features as predictive
indicators of gene expression and using imaging biomarkers as
predictive biomarkers for abnormal gene expression. This study
exploits the association between radiomic features and gene
expression by integrating them, which in turn offers the possibility
of noninvasive prediction of disease onset in CAD combined with
T2DM. We also provide a new perspective for the development of
noninvasive predictive models for a more comprehensive
understanding of the disease state and more accurate new imaging
biomarkers for early diagnosis and assessment of response to
therapy, as well as potentially contributing to the early identification
of high-risk patients with CAD combined with T2DM in
clinical practice.
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