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Context: Shenyuan Granules (SYG), a traditional Chinese medicine preparation, 
are clinically used for treating chronic kidney diseases. However, the role of 
Klotho in modulating cellular senescence via the p16/p21 pathway and its 
involvement in the therapeutic effects of SYG in diabetic kidney disease (DKD) 
remains unclear.

Objective: This study investigated the regulatory effects of SYG on the Klotho 
gene and their mechanisms in alleviating cellular senescence in DKD.

Materials and methods: Utilizing an adenine-induced DKD model in db/db 
mice and AGE-stimulated HK-2 cells, this research assessed renal tissue for 
cellular senescence and pathological changes. Techniques such as SA-β-Gal, 
HE, and PAS staining were employed to observe these changes. The study 
also measured the expression levels of senescence-associated and anti-
aging markers including Klotho, cyclin-dependent kinase inhibitor 2A (p16), 
cyclin-dependent kinase inhibitor p21 (p21), plasminogen activator inhibitor-1. 
Quantification of senescent cells was performed using SA-β-Gal staining, while 
mRNA and protein expressions were analyzed using immunofluorescence, real-
time PCR, and Western blotting.

Results: SYG treatment significantly improved renal function in db/db mice and 
alleviated histopathological lesions. SA-β-Gal staining demonstrated a marked 
decrease in senescent cell burden, while immunohistochemistry and Western 
blotting revealed downregulation of p16, p21, and PAI-1 and upregulation of 
Klotho expression (p < 0.05). In vitro, Klotho overexpression in AGE-stimulated 
HK-2 cells significantly suppressed senescence-associated markers and restored 
Lamin B1 expression. Similarly, treatment with SYG-containing serum effectively 
downregulated p16, p21, and PAI-1 while upregulating Klotho expression. These 
findings suggest that SYG attenuate renal cellular senescence by modulating the 
Klotho-mediated p16/p21 signaling pathway.

Discussion: This study highlights the potential of SYG to alleviate cellular 
senescence in DKD by targeting the Klotho-mediated p16/p21 pathway. These 
findings provide a foundation for developing senescence-focused therapies in 
chronic kidney disease management.
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1 Introduction

Diabetes mellitus (DM) is a chronic disease caused by metabolic 
and endocrine disorders, with high global prevalence and mortality 
(1, 2). Diabetic kidney disease (DKD), one of the most common 
chronic microvascular complications of DM, is also a leading cause of 
end-stage renal disease (ESRD) (3). The severity of DKD is strongly 
influenced by the duration of diabetes, glycemic control, and genetic 
predisposition (4). Clinically, DKD is characterized by renal 
dysfunction or elevated urinary albumin excretion, with some patients 
exhibiting both features. With the rising prevalence of diabetes, the 
incidence of DKD has also significantly increased. Nevertheless, 
effective treatment options for DKD remain limited, representing a 
major threat to public health and patient quality of life (5, 6).

Cellular senescence is defined as an irreversible cell cycle arrest 
induced by various stresses such as oxidative stress, DNA damage, or 
telomere shortening (7). While initially considered a protective 
mechanism against malignant transformation, abnormal or excessive 
senescence disrupts tissue homeostasis and promotes the development 
of chronic diseases (8). Recent studies have demonstrated that cellular 
senescence plays a critical role in the onset and progression of various 
kidney diseases, including DKD (9–11). Senescent cells are often 
accompanied by a senescence-associated secretory phenotype (SASP), 
characterized by the overexpression of proinflammatory cytokines, 
chemokines, and matrix metalloproteinases. These factors aggravate 
tubular injury and interstitial fibrosis, thereby amplifying renal 
damage (12). Therefore, targeting cellular senescence and its related 
pathways represents a promising strategy for the treatment of DKD.

The Klotho gene, a well-recognized anti-aging factor, is 
predominantly expressed in the distal renal tubules. Klotho functions 
through both its membrane-bound and secreted forms, playing 

essential roles in calcium-phosphorus homeostasis, oxidative stress 
resistance, and antifibrotic activity (13). Studies have shown that 
Klotho expression is significantly reduced in DKD patients and animal 
models, which correlates with renal dysfunction and structural 
damage (14, 15). Although Klotho has been identified as a potential 
biomarker and therapeutic target for kidney diseases, its precise 
involvement in cellular senescence and related signaling pathways 
remains to be fully elucidated (15).

A growing body of evidence suggests that traditional Chinese 
medicine (TCM) is widely used in the treatment of renal diseases, 
including DKD (16–19). Shenyuan granules (SYG), a TCM 
formulation clinically used for the treatment of chronic kidney 
diseases, are composed of Astragalus membranaceus (Fisch. ex Link, 
Fabaceae), Epimedium brevicornu (Maxim., Berberidaceae), and 
processed Rheum officinale (Baillon, Polygonaceae).

Previous studies have demonstrated that SYG can improve renal 
function and attenuate pathological injury (20, 21). Astragalus, rich in 
flavonoids and saponins, exerts antioxidative, anti-inflammatory, and 
immunomodulatory effects that alleviate hyperglycemia-induced 
renal dysfunction (22, 23). Icariin, the major active component of 
Epimedium, has been shown to delay endothelial cell senescence via 
the PI3K/Akt-eNOS signaling pathway (24). Moreover, anthraquinones 
in Rheum, such as emodin and chrysophanol, not only possess 
antifibrotic effects but also inhibit cellular senescence by modulating the 
p53 signaling pathway (25, 26). However, it remains unclear whether 
Klotho is involved in SYG-mediated regulation of cellular senescence via 
the p16/p21 axis in DKD.

In this study, a DKD mouse model was induced using an adenine-
containing diet, followed by intragastric administration of SYG. We aim 
to evaluate whether SYG can upregulate Klotho expression, mitigate 
renal damage, and delay cellular senescence. Furthermore, 
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AGE-induced HK-2 cells were employed to analyze changes in Klotho 
expression and key senescence-associated molecules, providing further 
mechanistic insight into the anti-senescence effects of SYG in DKD.

2 Materials and methods

2.1 Chemicals and reagents

SYG (20230501, an in-hospital preparation from Hubei Provincial 
Hospital of Traditional Chinese Medicine, China) were used in this 
study. Klotho-overexpressing lentivirus was packaged and constructed 
by GeneChem Co., Ltd. (Suzhou, China). Primary antibodies included 
Klotho (rabbit, 1:1000, ab181373, RRID:AB_3694098) and p16 
(rabbit, 1:1000, ab51243, RRID:AB_2059963) purchased from Abcam 
(Cambridge, MA, United  States). Additional antibodies were 
purchased from Proteintech (Wuhan, China), including Klotho 
(mouse, 1:2000, 67331-1-Ig, RRID: AB_2882590), PAI-1 (mouse, 
1:5000, 66261-1-Ig, RRID: AB_2881648), p16 (rabbit, 1:1000, 10883-
1-AP, RRID: AB_2078303; rabbit, 1:1000, 28416-1-AP, RRID: 
AB_3086048), p21 (rabbit, 1:1000, 10355-1-AP, RRID: AB_2077682; 
rabbit, 1:1000, 28248-1-AP, RRID: AB_2881097), Lamin B1 (mouse, 
1:5000, 66095-1-Ig, RRID: AB_11232208), β-actin (mouse, 1:20000, 
66009-1-Ig, RRID: AB_2687938), and KIM-1(rabbit,1:10030948-
1-AP, RRID: AB_3669790). The rabbit anti-β-actin antibody (1:10000, 
AF7018, RRID: AB_2839420) was purchased from Affinity 
Biosciences (Melbourne, Australia). Additionally, another Klotho 
antibody (rabbit, 1:100, CY7174, RRID: AB_3698752) was purchased 
from Abways (Shanghai, China) and used for immunohistochemical 
staining with improved specificity and clarity. For secondary 
antibodies, HRP-conjugated Affinipure Goat Anti-Mouse IgG (H + L) 
(1:5000, SA00001-1, RRID: AB_2722565) and HRP-conjugated 
Affinipure Goat Anti-Rabbit IgG (H + L) (1:5000, SA00001-2, RRID: 
AB_2722564) were obtained from Proteintech.

2.2 SYG in the treatment of 
adenine-induced DKD mice

Male C57BLKs/J db/db mice (34.51 ± 3.08 g, 7 weeks old) were 
purchased from GemPharmatech Biotechnology Co., Ltd. (Nanjing, 
Jiangsu, China, approval no. SCXK [Chuan] 2020-0034). The DKD 
model in db/db mice was established as described in previous 
publication (21). The db/db mice were randomly divided into three 
groups: DKD (model group), DKD + SYG-M (middle-dose SYG 
group, 3.0 g/kg/d), and DKD + SYG-H (high-dose SYG group, 6.0 g/
kg/d) (n = 8/group). Additionally, CTL (db/m mice, n = 8). The DKD 
and SYG groups were fed a 0.2% adenine-containing diet, while the 
CTL was fed a standard diet. Mice in SYG-M were administered a 
suspension of SYG at a dose of 3.0 g/kg, and those in SYG-H received 
a suspension of 6.0 g/kg. Both suspensions were delivered via 
intragastric gavage at a volume of 20 mL/kg once daily. Mice in DKD 
and CTL were gavaged with an equal volume of double-distilled water 
(20 mL/kg) once daily. The treatments were continued for 12 
consecutive weeks. After 12 weeks of administration, 24-h urine 
samples were collected from the mice using metabolic cages, during 
which the mice had free access to food and water. At the end of the 
study, mice were deeply anesthetized with 1.25% tribromoethanol 

(0.2 mL/10 g body weight) prior to collect blood and kidney tissues 
for subsequent experiments. Throughout the study, animal health was 
monitored daily, and humane endpoints were applied to minimize 
suffering, including euthanasia for mice with severe symptoms such 
as weight loss exceeding 20%, impaired mobility, or feeding difficulties. 
At the study endpoint, euthanasia was performed by cervical 
dislocation under deep anesthesia. All animal care and experimental 
procedures were approved by the Animal Ethics Committee of Hubei 
University of Chinese Medicine (approval no. HUCMS00304837).

2.3 Cell culture

HK-2 cells were obtained from the China Center for Type Culture 
Collection (CCTCC, GDC1502, China). The cells were cultured in 
DMEM-F12 medium containing 10% fetal bovine serum (FBS) 
(Gibco, Carlsbad, CA, United States) in a humidified incubator with 
5% CO₂ at 37°C.

2.4 SYG serum preparation

Twelve male Sprague–Dawley (SD) rats (aged 6 weeks) were 
purchased from Hunan Silaike Jingda Laboratory Animal Co., Ltd. 
(Changsha, Hunan, China, approval no. SCXK [Xiang] 2019-0004), 
and were then weighed and randomly assigned to three groups 
based on body weight: blank serum group, low-dose SYG group, and 
high-dose SYG group (n = 4/group). The dosages for the rats were 
calculated based on clinical doses for humans. For the low-dose 
group, 10 g of SYG were dissolved in 29.4 mL of distilled water, 
while for the high-dose group, 10 g of SYG were dissolved in 
14.7 mL of distilled water. The blank serum group received an 
equivalent volume of distilled water. All groups were administered 
10 mL∙kg−1 of the respective solutions via intragastric gavage once 
daily for 7 consecutive days. On the 7th day, 1 h after the final 
gavage, the rats were anesthetized via intraperitoneal injection of 
2.5% tribromoethanol at a dosage of 300 mg/kg body weight. Health 
monitoring was performed daily during the experiment, including 
assessments of body weight, food and water intake, activity, and 
physical appearance. If rats exhibited a weight loss greater than 20%, 
persistent anorexia, severe inactivity, or other signs of distress, 
humane endpoints would be applied. Blood samples (approximately 
10 mL) were collected from the abdominal aorta under deep 
anesthesia. Euthanasia was achieved by exsanguination under 
anesthesia, following ethical standards to minimize animal 
suffering. The collected blood samples were centrifuged to obtain 
serum, aliquoted, and stored at −80°C for future use. All animal 
care and experimental procedures were approved by the Animal 
Ethics Committee of Wuhan HuaLianKe Biotechnology Co., Ltd. 
(approval number: HLK-20230925-001).

2.5 Cell viability assay

The cell viability of HK-2 cells was assessed using the CCK-8 
assay kit (BS350A, Biosharp, Labgic Technology Co., Ltd., Beijing, 
China). HK-2 cells were seeded into 96-well white plates with a 
transparent bottom at a density of 104 cells per well. The cells were 
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divided into a control group and drug-containing serum groups 
with different serum concentrations (5, 10, 15, 20, 25, and 30%). 
After adherence, the cells were treated with serum-free medium for 
24 h to induce starvation. Subsequently, the medium was discarded, 
and the cells were treated according to the experimental design and 
incubated for 72 h. After incubation, 10 μL of CCK-8 reagent was 
added to each well and incubated for approximately 2 h. The 
absorbance (A) of each well was measured at 450 nm using a 
microplate reader (VersaMax, Molecular Devices, United States).

2.6 Klotho overexpression and silencing

HK-2 cells in the logarithmic growth phase were seeded into 6-well 
plates at a density of 1 × 105 cells per well. After attachment, cells were 
infected with lentivirus at a multiplicity of infection (MOI) of 5, with 
1:200 diluted Polybrene added to each well. The medium was replaced 
24 h post-infection. When cells reached approximately 80% confluency, 
they were trypsinized and transferred to 10 cm culture dishes. After 
attachment, 2 μg/mL puromycin (Beyotime, ST551, Shanghai, China) 
was added for selection, and cells were cultured for 3 weeks with 
medium changes every 2 days to eliminate uninfected cells.

When cell density reached approximately 70%, siRNA transfection 
was initiated. siRNA was diluted in serum-free medium, with 1.25 μL 
siRNA added to 125 μL medium (final concentration: 25 pmol), mixed 
thoroughly. Separately, 7.5 μL RNA transfection reagent was added to 
another 125 μL of medium and mixed. The siRNA and transfection 
reagent mixtures were combined at a 1:1 ratio, allowed to incubate for 
5 min, and then 250 μL of the mixture was added to each well. The 
cells were cultured for an additional 72 h before sample collection.

2.7 Cell treatment with advanced glycation 
end product (AGE) and SYG

Patients with DM exhibit elevated levels of AGE, which can directly 
damage renal cells and tissues (27). In this study, HK-2 cells were 
stimulated with 100ug/mL AGE in the presence or absence of drug-
containing serum from SYG. For mechanistic investigation, cells were 
divided into six groups: CTL, AGE, AGE + oe-NC, AGE + oe-Klotho, 
AGE + si-NC, and AGE + si-Klotho. For treatment evaluation, cells were 
grouped as follows: CTL, AGE + Blank Serum, AGE + SYG Serum, AGE 
+ Blank Serum + oe-NC, and AGE + Blank Serum + oe-Klotho. The 
treated HK-2 cells were collected for subsequent experimental analysis.

2.8 Senescence-associated β-galactosidase 
(SA-β-Gal) staining

2.8.1 Cell staining
The culture medium in the 24-well plate was discarded, and the 

cells were rinsed with PBS for 5 min. β-galactosidase staining fixative 
was added and incubated at room temperature for 15 min, followed by 
three washes with PBS, each for 5 min. After removing PBS, the staining 
working solution was prepared and added to the wells, ensuring the 
cells were fully covered. The cells were incubated in a 37°C incubator 
(without CO₂) overnight in the dark. After incubation, the staining 
solution was discarded, and the cells were gently rinsed twice with 
PBS. The staining results were observed and photographed for analysis.

2.8.2 Tissue staining
Frozen kidney sections were equilibrated to room temperature, 

washed, fixed for 20 min, and immersed in staining working solution. 
The sections were incubated at 37°C overnight in the dark and 
mounted for observation and imaging.

2.9 Biochemical index detection

Serum samples from each group of mice were collected, and 
serum creatinine (Creatinine (Cr) Assay kit (sarcosine oxidase), C011-
2-1) and blood urea nitrogen (Urea Assay Kit, C013-2-1) levels were 
measured according to the kit instructions. The kits were purchased 
from Nanjing Jiancheng Bioengineering Institute.

2.10 Light microscopy study

2.10.1 Hematoxylin and eosin (HE) staining
Kidney tissues were fixed in 4% paraformaldehyde overnight, 

followed by dehydration through a graded ethanol series, clearing in 
xylene, embedding in paraffin, and sectioning. Sections were dewaxed, 
rehydrated through a descending ethanol series, and stained with 
hematoxylin. After rinsing with running tap water, sections were 
differentiated in 1% hydrochloric acid ethanol, rinsed again, and 
returned to blue. Subsequently, sections were counterstained with 1% 
eosin, dehydrated in graded ethanol, cleared in xylene, and mounted 
with neutral resin. Renal morphology was observed under a 
light microscope.

2.10.2 Periodic acid-Schiff (PAS) staining
After fixation in 4% paraformaldehyde overnight, kidney tissues 

were dehydrated with a graded ethanol series, cleared in xylene, 
embedded in paraffin, and sectioned. Sections were dewaxed, rehydrated, 
and oxidized in 1% periodic acid for 15 min. After rinsing with distilled 
water, the sections were incubated with Schiff reagent for 20–30 min at 
room temperature in the dark. Following thorough washing in warm tap 
water, sections were counterstained with hematoxylin, dehydrated, 
cleared, and mounted with neutral resin. Renal basement membranes 
and glycogen deposition were evaluated under a light microscope.

2.11 Immunohistochemistry

Kidney tissues were washed with PBS and fixed with 4% 
paraformaldehyde. After antigen retrieval and PBS rinsing, the sections 
were incubated with the prepared primary antibody at 4°C overnight. 
Following extensive PBS washing, the secondary antibody was applied, 
followed by DAB staining. The tissues were then dehydrated through 
an ethanol gradient, cleared with xylene, and mounted with neutral 
resin. Finally, the stained sections were examined under a microscope.

2.12 Quantitative real-time polymerase 
chain reaction (RT-PCR) analysis

Total RNA was extracted using the Trizol method, and RNA 
concentration was measured before reverse transcription to 
cDNA. β-actin was used as the internal control. The amplification 
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conditions were as follows: initial denaturation at 95°C for 30 s, 
followed by 40 cycles of 95°C for 15 s and 60°C for 30 s. The relative 
expression levels were calculated using the 2^-ΔΔCt method. The 
premier used in this study included: human Klotho: forward 
5′-GGGAGGTCAGGTGTCCATTG-3′, reverse 5′-TGCTCTCGGG 
ATAGTCACCA-3′.human Lamin B1: forward 5′-CGCGTGCGT 
GTCTATGCTA-3′, reverse 5′-CCAACTGGGCAATCTGATCCT-3′.
human PAI-1: forward 5′-GCAAGGCACCTCTGAGAACT-3′, 
reverse 5′-GGGTGAGAAAACCACGTTGC-3′.human p21: forward 
5′-AGTCAGTTCCTTGTGGAGCC-3′, reverse 5′-CATTAGCGCAT 
CACAGTCGC-3′.human p16: forward 5′-CCGAATAGTTACGG 
TCGGAGG-3′, reverse 5′-CACCAGCGTGTCCAGGAAG-3′.human 
β-actin: forward 5′-CACCCAGCACAATGAAGATCAAGAT-3′, 
reverse 5′-CCAGTTTTTAAATCCTGAGTCAAGC-3′.

2.13 Western blotting analysis

Total protein was extracted from cells and kidney tissues using RIPA 
(R401-01; Vazyme, Nanjing, China) lysis buffer. After complete lysis, the 
samples were centrifuged at 12,000  rpm at 4°C for 15 min. Protein 
concentrations were determined using a BCA assay, and the samples 
were denatured at 98°C for 13 min in a metal bath. Proteins were 
separated using SDS-PAGE with stacking and separating gels. 
Electrophoresis was conducted at 90 V for the stacking gel and 120 V for 
the separating gel, followed by transfer onto a PVDF membrane. The 
membrane was blocked with 5% nonfat milk at room temperature for 
1 h and incubated with primary antibodies overnight at 4°C with gentle 
shaking. After recovering the primary antibodies, the membrane was 
washed three times with TBST. Secondary antibody incubation was 
performed at room temperature for 1 h, followed by TBST washes. 
Protein bands were visualized using ECL, and imaging was performed 
in a darkroom. The resulting images were analyzed using ImageJ software.

2.14 Statistical analysis

The results are expressed as the mean ± SEM. Statistical analysis 
was performed using SPSS 21.0 and GraphPad Prism 6.0 software. 
Experimental data conforming to a normal distribution were 
expressed as mean ± standard deviation (x̄ ± s). One-way analysis of 
variance (ANOVA) was used for comparisons among groups. If 
homogeneity of variance was met, post-hoc tests were conducted 
using the least significant difference (LSD) method; if not, the 
Tamhane’s T2 method was applied. p < 0.05 was considered significant.

3 Results

3.1 The protective effects of SYG on kidney 
injury in db/db mice

This study investigated the effects of different doses of SYG on 
kidney injury in db/db mice. The results showed that, compared with 
the DKD group, both doses of SYG significantly reduced random 
blood glucose levels in mice after 8 weeks of intervention (Figure 1A). 
Furthermore, both doses improved Scr and BUN levels, with the high-
dose group showing more pronounced effects (Figure 1B). HE and 
PAS staining revealed clear and intact glomerular and tubular 

structures in the control group, with no pathological changes 
observed. In contrast, the DKD group exhibited tubular vacuolar 
degeneration, increased glomerular mesangial matrix, thickened 
basement membranes, tubular atrophy, interstitial fibrosis, and 
inflammatory cell infiltration. SYG treatment ameliorated these 
pathological changes, particularly in the high-dose group (Figure 1C). 
These findings indicate that SYG effectively alleviate kidney injury in 
db/db mice.

3.2 SYG inhibit cellular senescence in the 
kidney tissues of db/db mice

SA-β-Gal staining revealed that SYG significantly reduced the 
proportion of senescence-positive cells in kidney tissues compared with 
the model group (Figure 1D). Immunohistochemical staining further 
confirmed that Klotho was predominantly expressed in distal tubular 
epithelial cells and was significantly decreased in the DKD group. SYG 
treatment restored Klotho expression levels, particularly in the high-
dose group (Figure 1E). Similarly, the expression of KIM-1, a marker of 
proximal tubular injury, was markedly elevated in the DKD group and 
was notably reduced following SYG intervention, indicating improved 
tubular integrity (Figure  1F). Additionally, SYG modulated the 
expression of senescence-related proteins by significantly 
downregulating the expression of p16, p21, and PAI-1 while upregulating 
the expression of Klotho (p < 0.05) (Figure  1G). In summary, SYG 
alleviated DKD progression by improving renal pathological damage 
and regulating cellular senescence-related signaling pathways.

3.3 Klotho overexpression alleviates 
AGE-induced senescence in HK-2 cells

Due to reduced Klotho expression in the kidneys of db/db mice, 
this study explored the effects of Klotho overexpression and silencing 
on AGE-induced senescence in HK-2 cells. The results demonstrated 
that Klotho overexpression significantly increased Klotho gene and 
protein levels in HK-2 cells (p < 0.05) (Figures 2A–C), while reducing 
the proportion of SA-β-Gal-positive senescent cells (Figure  2D). 
si-Klotho-mediated knockdown of Klotho expression led to a 
significant increase in senescence markers, further supporting the 
critical role of Klotho in the senescence process (Figures  2E–G) 
Additionally, Klotho overexpression downregulated p16, p21, and 
PAI-1 mRNA and protein levels while upregulating Klotho and Lamin 
B1 expression (p < 0.05) (Figures 3, 4). These findings indicate that 
Klotho mitigates AGE-induced HK-2 cell senescence by regulating 
senescence-associated signaling molecules.

3.4 SYG inhibit AGE-induced senescence in 
HK-2 cells by regulating klotho

This study explored the effects of drug-containing serum from 
SYG on AGE-induced senescence in HK-2 cells. CCK-8 analysis 
was used to determine the optimal concentration of drug-
containing serum, and 10% SYG serum was selected for subsequent 
experiments due to its appropriate cytocompatibility (Figure 5A). 
SA-β-Gal staining showed a significant increase in the proportion 
of senescence-positive cells in the model group compared to the 
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FIGURE 1

Renal protective effects of Shenyuan granules in adenosine-induced db/db diabetic kidney disease mouse model. (A) Effects of Shenyuan granules on 
blood glucose levels in different mouse groups (n = 8). (B) Levels of Scr and BUN across groups. (C) HE and PAS of kidney tissues from control, DKD, 
DKD + SYG-M, and DKD + SYG-H groups. (D) SA-β-Gal staining images showing senescent cells in kidney tissues across the groups. (E,F) 
Immunohistochemical detection of Klotho and KIM-1 expression in the kidneys of each group. (G) Quantitative analysis of protein expression levels of 
Klotho, PAI-1, p21, and p16 in kidney tissues in various groups. *P < 0.05, **P < 0.01 compared to the control group, #P < 0.05, ##P < 0.01 compared to 
the DKD group (n = 6).

https://doi.org/10.3389/fmed.2025.1627412
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Guo et al. 10.3389/fmed.2025.1627412

Frontiers in Medicine 07 frontiersin.org

control group, which was significantly reduced after treatment with 
drug-containing serum (Figure 5C). Fluorescence analysis indicated 
increased expression of p16, p21, and PAI-1 and decreased 

expression of Klotho and Lamin B1 in the model group (p < 0.05). 
Treatment with SYG serum reversed these changes by decreasing 
p16, p21, and PAI-1 expression while increasing Klotho and Lamin 

FIGURE 2

Validation of Klotho gene overexpression and silencing in AGE-induced HK-2 cells. (A) Changes in Klotho mRNA and protein expression in HK-2 cells 
following AGE stimulation. (B) Changes in mRNA and protein expression after Klotho overexpression in HK-2 cells. **P < 0.01 compared to the control 
group, ##P < 0.01 compared to the AGE group. (C) Klotho immunofluorescence images across the groups. (D) SA-β-Gal staining of the control, AGE, 
AGE + oe-NC, and AGE + oe-Klotho groups. (E) Changes in mRNA and protein expression in HK-2 cells following Klotho silencing. (F) Klotho 
immunofluorescence images across the groups. (G) SA-β-Gal staining and Klotho immunofluorescence images of various groups.
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B1 expression (p < 0.05) (Figures 5B,D,E). Consistent results were 
observed at the mRNA and protein levels: the model group 
exhibited elevated p16, p21, and PAI-1 mRNA and protein levels, 
along with reduced Klotho and Lamin B1 levels (p < 0.05). These 

changes were effectively reversed by SYG serum treatment 
(Figure  6). These findings demonstrate that SYG inhibit 
AGE-induced senescence in HK-2 cells by regulating Klotho and 
related senescence-associated molecules.

FIGURE 3

Klotho overexpression enhances Lamin B1 expression and inhibits PAI-1, p21 and p16 expression in AGE-induced HK-2 cells. (A) Immunofluorescence 
detection of Lamin B1, PAI-1, p21 and p16 expression in control, AGE, AGE + oe-NC, AGE + oe-Klotho, AGE + si-NC, and AGE + si-Klotho groups. 
(B) Quantitative immunofluorescence analysis of Lamin B1, PAI-1, p21 and p16 expression. *P < 0.05, **P < 0.01 compared to the control group, 
##P < 0.01 compared to the AGE group.
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4 Discussion

Renal fibrosis, characterized by glomerulosclerosis and tubular 
interstitial fibrosis, is a hallmark pathological feature of chronic kidney 

disease (28–30). Previous studies on the mechanism of DKD have 
primarily focused on glomerular damage, with microalbuminuria 
(MAU) long regarded as an early marker of glomerular injury (31). 
However, recent epidemiological data reveal that 20.5–63.0% of 

FIGURE 4

Klotho overexpression mitigates AGE-induced senescence in HK-2 cells. (A) mRNA expression levels of Klotho, Lamin B1, PAI-1, p21, and p16 in control, 
AGE, AGE + oe-NC, AGE + oe-Klotho, AGE + si-NC, and AGE + si-Klotho groups. (B) Protein expression of the same markers in the corresponding 
groups. (C) Detailed analysis of protein levels. *P < 0.05, **P < 0.01 compared to the control group, #P < 0.05, ##P < 0.01 compared to the AGE group.
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FIGURE 5

SYG enhance Klotho and Lamin B1 expression while inhibiting PAI-1, p21, and p16 expression in AGE-stimulated HK-2 cells. (A) Cell viability following 
treatment with varying concentrations of Shenyuan granules medicated serum (5–30%). (B) Quantitative immunofluorescence analysis of Klotho 
expression in control, AGE + Blank Serum, AGE + SYG Serum, AGE + Blank Serum + oe-NC, and AGE + Blank Serum + oe-Klotho groups. (C) SA-β-Gal 
staining of the same groups. (D) Immunofluorescence detection across the groups. **P < 0.01 compared to the control group, ##P < 0.01 compared to 
the AGE + Blank Serum group. (E) Quantitative immunofluorescence analysis of Lamin B1, PAI-1, p21 and p16 expression.
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diabetic patients experience renal dysfunction without MAU (32). 
Renal biopsy studies further suggest that tubular lesions in DKD are 
more prevalent and severe than glomerular damage (33–35). These 

findings underscore the need to reorient research efforts from 
glomerular to tubular mechanisms in diabetes-related kidney disease 
(36, 37).

FIGURE 6

SYG mitigates AGE-induced senescence in HK-2 cells by enhancing Klotho expression. (A) mRNA expression levels of Klotho, Lamin B1, PAI-1, p21, and 
p16 in control, AGE + Blank Serum, AGE + SYG Serum, AGE + Blank Serum + oe-NC, and AGE + Blank Serum + oe-Klotho groups. (B) Protein 
expression of Klotho, Lamin B1, PAI-1, p21, and p16 in the same groups. (C) Detailed analysis of protein levels. *P < 0.05, **P < 0.01 compared to the 
control group, #P < 0.05, ##P < 0.01 compared to the AGE + Blank Serum group.
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Cellular senescence has emerged as a critical pathological 
mechanism in DKD (38–40). It refers to a state of irreversible cell cycle 
arrest triggered by stressors such as DNA damage or oxidative stress 
(41, 42). Recent studies have highlighted the therapeutic potential of 
TCM components showed anti-aging effects (43–46). In 
hyperglycemic conditions, AGEs act as metabolic toxins, triggering 
oxidative stress and chronic inflammation that exacerbate renal 
damage (47).

The Klotho gene, a key anti-aging regulator, exerts protective 
effects against DKD through antifibrotic, antiinflammatory, and 
antioxidant pathways (48). Some studies reported that TCM 
improved Klotho expression in a variety of diseases (49–51). The 
molecular pathways regulated by p16INK4a/Rb and p53/p21 are 
pivotal in cellular senescence (52). p16, encoded by the CDKN2A 
gene, inhibits cell cycle progression and is closely associated with 
senescence (53). p21 negatively regulates the cell cycle by inhibiting 
CDK activity (54). In hyperglycemia, demethylation of the p21 
promoter accelerates its expression, triggering the SASP, 
characterized by increased inflammatory and chemokine factors, 
thereby impairing tubular repair and promoting interstitial fibrosis 
(55). PAI-1, a reliable marker of senescence, is associated with renal 
fibrosis, fibrin deposition, and cellular senescence, particularly in 
Klotho-deficient mice (56). Lamin B1, a nuclear lamina protein 
essential for nuclear integrity, is closely related to cellular senescence 
and DNA damage responses (57). This study demonstrated that 
Klotho overexpression significantly increased Lamin B1 levels, 
reduced p16, p21, and PAI-1 expression, and decreased the 
proportion of SA-β-Gal-positive cells in HK-2 cells exposed to AGE, 
underscoring Klotho’s protective role against senescence 
in hyperglycemia.

Accumulating evidence supports the application of TCM in 
treating various renal disorders, including DKD (58–62). Recent 
studies have highlighted the therapeutic potential of TCM components 
in improving DKD through anti-aging mechanisms (63). 
Astragaloside IV, a primary active component of Astragalus 
membranaceus, has been shown to upregulate Klotho expression by 
inhibiting the NF-κB/NLRP3 axis, thereby alleviating high-glucose-
induced podocyte injury and offering renoprotective effects in DKD 
(64, 65). Similarly, the combination of Astragalus and Rheum was 
demonstrated to improve DKD pathology through multi-target, 
multi-pathway interactions, providing evidence of their synergistic 
efficacy (66). Furthermore, Epimedium and its bioactive component, 
icariin, are known for their kidney-tonifying properties, which align 
with their potential to regulate cellular senescence and oxidative stress 
(67). These findings support the hypothesis that SYG, composed of 
Astragalus, Rheum, and Epimedium, may exert their anti-senescence 
and renoprotective effects in DKD by modulating the Klotho-
mediated p16/p21 signaling pathway, providing a mechanistic basis 
for their clinical use.

In recent years, senescence-targeted therapies have garnered 
increasing attention as potential interventions for chronic diseases and 
age-related pathologies. These therapeutic strategies are broadly 
classified into two categories: senolytics and senomorphics (68, 69).

Senolytics are agents that selectively induce apoptosis in senescent 
cells, thereby reducing their pathological burden. Representative 
compounds include dasatinib, a tyrosine kinase inhibitor, and 
quercetin, a plant-derived flavonoid. The combination of these two 

agents (D + Q) has been shown to effectively eliminate senescent 
endothelial cells, preadipocytes, and osteoblasts in vitro and in vivo 
(70). Notably, to date, D + Q remains the only senolytic combination 
that has demonstrated functional benefits in early-phase human 
clinical trials, including improved physical function in diabetic kidney 
disease (71). Other potent senolytics include navitoclax (ABT-263), 
which targets BCL-2/BCL-xL anti-apoptotic signaling, but it has 
shown dose-limiting thrombocytopenia in preclinical and early 
clinical trials (72–75).

Senomorphics, in contrast, do not eliminate senescent cells but 
instead suppress the SASP and modulate downstream signaling 
pathways. Agents like rapamycin, metformin, and JAK inhibitors 
have shown efficacy in reducing SASP-related inflammation and 
improving tissue function without inducing cell death (76, 77). 
However, most senomorphics exert broad signaling effects and 
may not selectively modulate aging-related pathways, raising 
concerns about off-target immunosuppression, metabolic 
disturbance, or long-term toxicity.

While these emerging agents hold promise, they remain largely in 
preclinical or early clinical stages, with limited long-term safety data 
and no approved senescence-targeting indication thus far. Importantly, 
senolytics often derive from anti-cancer drugs and exhibit significant 
toxicity, including hematologic suppression, hepatic impairment, and 
the risk of disrupting physiological senescence involved in wound 
healing and tissue remodeling (78, 79).

By contrast, SYG represent an already-approved clinical 
formulation with established safety and efficacy in traditional 
medicine practice. Our previous studies, together with current 
experimental findings, indicate that SYG may exert anti-senescent 
effects through endogenous pathways, particularly via the restoration 
of Klotho expression, a key anti-aging protein known to regulate 
oxidative stress, Wnt signaling, and cellular senescence (13, 20, 80, 81). 
Unlike senolytics that act through cytotoxicity or senomorphics that 
rely on broad pathway suppression, SYG may function through a 
gentler, homeostatic mechanism, enhancing intrinsic cellular 
resilience against stress-induced senescence. This unique mode of 
action suggests that SYG may offer a safer and more sustainable anti-
senescence strategy, particularly for long-term management of chronic 
conditions such as DKD.

Nevertheless, we  recognize that further comparative and 
mechanistic studies are needed to rigorously define the distinctions 
between SYG and conventional senotherapeutics, both in efficacy and 
safety profiles, and to elucidate the translational potential of SYG as a 
complementary or alternative approach to modulating 
cellular senescence.

5 Conclusion

In summary, SYG effectively improve renal function and delay 
cellular senescence, potentially through the Klotho-mediated p16/p21 
pathway. However, this study primarily analyzed protein, 
transcriptional, and pathological levels. Future research will explore 
genetic and metabolic dimensions to provide a more comprehensive 
theoretical basis for the prevention and treatment of DKD using 
TCM. Targeting senescent cells may offer a promising strategy for 
treating renal diseases and preventing DKD.
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