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Dry eye disease (DED) is a multifactorial ocular surface disorder characterized 
by ocular discomfort, visual disturbances, and potential structural damage. The 
heterogeneous etiology and symptomatology of DED pose significant challenges 
for accurate diagnosis and effective treatment. In recent years, artificial intelligence 
(AI), particularly deep learning (DL), has shown substantial promise in improving the 
objectivity and efficiency of DED assessment. This review provides a comprehensive 
synthesis of AI-assisted techniques for the quantification of key DED biomarkers, 
including tear film stability [e.g., tear meniscus height (TMH) and tear film break-
up time (TBUT)], meibomian gland morphology, and corneal epithelial damage. 
We discuss how these technologies enhance diagnostic accuracy, standardize 
evaluation, and support personalized treatment. Collectively, these advancements 
underscore the transformative potential of AI in reshaping DED diagnostics and 
management.
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1 Introduction

Dry eye disease (DED) is a multifactorial and increasingly prevalent ocular surface 
disorder characterized by insufficient tear production, excessive tear evaporation, or tear film 
instability (1). Epidemiological studies estimate that DED affects between 5 and 50% of the 
global population, with variations attributed to differences in diagnostic criteria and study 
population (2). While age is a well-established risk factor, modern environmental and 
behavioral factors—including prolonged screen exposure, air pollution, and widespread use 
of air conditioning—have contributed to increasing incidence rates among younger 
individuals (3).

DED presents with a wide range of symptoms, including ocular dryness, foreign body 
sensation, stinging or burning, photophobia, and blurred vision (2). These symptoms can 
impair daily functioning, reduce work productivity, and significantly diminish quality of life 
(2). Moreover, the chronic discomfort associated with DED can lead to psychological 
comorbidities such as anxiety and depression, further exacerbating the disease burden (4, 5). 
Despite its clinical significance, DED remains challenging to diagnose and monitor due to the 
heterogeneity of its presentation and the subjectivity of traditional diagnostic tools. Current 
evaluations rely heavily on subjective assessments—such as tear break-up time (TBUT), 
Schirmer’s test, ocular surface staining, and meibography—often depend on clinician 
expertise and patient cooperation, leading to poor reproducibility and limited diagnostic 
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accuracy (6, 7). Additionally, weak correlations between clinical signs 
and patient-reported symptoms hinder objective assessment of 
disease severity and treatment efficacy.

In response to these challenges, artificial intelligence (AI) has 
emerged as a transformative tool in ophthalmology (8). Advances in 
machine learning (ML) and deep learning (DL) have enabled an 
automated analysis of ocular imaging and clinical data, facilitating 
more objective and reproducible assessments (9, 10). Initially applied 
in retinal disease detection (11), AI technologies are currently 
increasingly adapted for anterior segment conditions. In the objective 
assessment of DED, AI technology can assist doctors in automating 
the identification and quantification of ocular surface abnormalities 
and reducing reliance on manual operation and subjective evaluations, 
thereby improving diagnostic efficiency (12–16) (Table 1). This review 
synthesizes current advancements in AI-assisted quantification of dry 
eye indicators and discusses their clinical implications, limitations, 
and future directions.

2 AI-driven quantification of DED 
biomarkers

2.1 Tear meniscus height (TMH)

The tear meniscus reflects the dynamic balance between tear 
production and drainage and can be used to quantify tear volume by 
measuring the height of the tear film at the lower eyelid margin (17). 
Traditionally, this measurement is performed manually under slit-
lamp microscopy, a method subject to considerable operator-
dependent variability and inefficiency (Figure  1). AI-based 
approaches have significantly improved the reliability and scalability 
of TMH assessment. Automated deep learning models enable high-
precision TMH quantification with minimal human intervention, 
ensuring greater diagnostic consistency. For example, Wang et al. (18) 
applied enhanced U-Net architectures to TMH segmentation and 
corneal boundary detection in images captured using oculus-
captured images, achieving a dice similarity coefficient (DSC) of 0.92 
and an intersection-over-union (IoU) of 0.86 for TMH detection, 
along with near-perfect corneal segmentation [dice similarity 
coefficient (DSC): 0.99, IoU: 0.98]. Similarly, Stegmann et al. (19) 
developed a DL-based segmentation technique for optical coherence 
tomography (OCT) images, reporting sensitivity above 96%, 
specificity over 99%, and Jaccard indices exceeding 93% across two 
segmentation strategies.

In an effort to enhance accessibility, researchers have explored 
mobile-compatible solutions. Nejat et  al. (20) introduced a DL 
algorithm for TMH measurement using smartphone-captured images, 
analyzing features such as iris diameter, eyelid position, and pupillary 
light reflex to achieve a dice coefficient of 98.68% and an overall 
accuracy of 95.39%. This development highlights the feasibility of 
AI-assisted, point-of-care DED screening in low-resource settings.

However, generalizability remains a concern in existing models, 
many of which rely on a single image modality and lack validation on 
external datasets. To address this, Wang et al. (21) proposed a two-stage 
DL framework that incorporates dual-modality data from a Keratograph 
5M (K5M) system. Their model achieved a mean intersection-over-union 
(MIoU) of 0.9578 for color images and 0.9290 for infrared images, 
demonstrating robust performance across imaging conditions.

2.2 Tear film break-up time (TBUT)

Tear film break-up time (TBUT) is a fundamental indicator of tear 
film stability and is widely used in the clinical diagnosis of dry eye 
disease. Based on the measurement technique, TBUT can be classified 
into fluorescein TBUT (FBUT) and non-invasive TBUT (NIBUT). In 
FBUT, fluorescein dye is instilled into the tear film, and the time from 
a complete blink to the first appearance of a dry spot is recorded. A 
TBUT of less than 10 s typically indicates tear film instability, which 
is a key feature of DED.

Although TBUT testing is simple and widely used, it is inherently 
subjective and sensitive to multiple variables, including examiner skill, 
lighting conditions, and patient cooperation. These limitations hinder 
reproducibility and restrict its use in standardized, large-scale screening. 
AI-based systems offer a promising solution by enabling automated 
TBUT measurement through video and image analysis. Deep learning 
algorithms can detect tear film break-up points, analyze blink dynamics, 
and predict instability using multimodal clinical data. These tools 
minimize observer bias, improve diagnostic consistency, and facilitate 
high-resolution, continuous monitoring of tear film behavior.

2.2.1 Video-based automated tear film break-up 
detection

Early efforts to apply AI in TBUT analysis demonstrated high 
diagnostic performance. Su et  al. developed a DL model capable of 
automatically identifying tear film break-up regions in slit-lamp video 
recordings from 80 participants, achieving an area under the receiver 
operating characteristic curve (AUROC) of 0.96, with 83% sensitivity 
and 95% specificity for DED detection (15). Expanding on this, Shimizu 
et al. (14) developed an AI algorithm using portable slit-lamp videos to 
measure TBUT, reporting an AUC of 0.813, a sensitivity of 77.8%, and a 
specificity of 85.7%. Kikukawa et al. (22) further optimized this approach 
by using a KOWA DR-1α device combined with convolutional neural 
networks (CNNs), yielding an AUC of 0.898, a sensitivity of 77.8%, and 
a specificity of 85.7%. More recently, Abdelmotaal et al. (23) utilized 
single-frame image analysis, where their CNN model achieved an AUC 
of 0.98 in identifying DED using single-frame images. Notably, their 
model identified the lower paracentral cornea as the most informative 
region for classification, as revealed through network activation maps.

FIGURE 1

Manual measurement of tear meniscus height.
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TABLE 1 Summary of artificial intelligence models across different indicators.

Type Quantitative 
indicators

Study Data type Sample 
size (N)

Methods Key findings Performance References

TF

TFBUT

Detection of DED via 

estimating tear film 

breakup time (TFBUT)

Smart eye camera 

(video recordable 

slit lamp device)

22,172 

frames from 

158 eyes

DL-central neural 

network (CNN)

The model displays high accuracy and AUROC in 

estimating tear film breakup time (TFBUT) using ocular 

surface videos

For estimating TFBUT: Acc = 78.9% 

AUROC = 0.877 F1 score = 0.74. For 

diagnosing DED using ADES criteria: 

Sens = 77.8% Spec = 85.7% AUROC = 0.813

Shimizu et al. 

(14)

Detection of TFBUT Tear film images

9,089 image 

patches from 

350 eyes

DL–CNN-

ResNet50

The model can detect TFBUT with high accuracy using 

tear film images taken by the non-invasive device

For classifying tear breakup or non-breakup 

group: Acc = 92.4% Sens = 83.4% Spec = 95.2%

Kikukawa et al. 

(22)

Prediction of unstable tear 

film from clinical data

Multimodal 

clinical data
432 patients

ML—

AdaBoostM1, 

LogitBoost, RF

The applied ML algorithms outperform the baseline 

classification scheme (i.e., ZeroR)
Average recall and precision > 0.74 Fineide et al. (24)

Incomplete blink 

frames

Detection of DED via 

blink analysis

Blink videos 

(collected via 

keratograph 5 M)

1,019 image 

sets
DL

The model can analyze blink videos with high accuracy 

and sensitivity. Incomplete blinking frequency was found 

to be closely associated with DED symptoms

For 30 FPS videos: balanced accuracy = 95.82% 

Sens = 99.38% IoU = 0.8868 Dice = 0.9251
Zheng et al. (25)

Tear film break-

up area (TFBA)

Detection of DED
Ocular surface 

videos
244 eyes

Deep transfer 

learning

Deep transfer learning model displays high accuracy in 

detecting DED from ocular surface video data. Lower 

paracentral cornea was identified as the most important 

region by the CNN model for the detection of DED

For discriminating DED and normal eyes: 

AUROC = 0.98

Abdelmotaal et al. 

(23)

Detection of fluorescent 

tear film break-up area
Slit-lamp data 50 subjects DL-CNN

The model achieves robust performance with good 

agreement with standard methods to measure tear film 

stability (i.e., TFBUT)

R = 0.9 between CNN-BUT and TFBUT test. 

As a metric, CNN-BUT is statistically 

significantly lower in patients with DED 

(p < 0.05). At a given cutoff of 5 s Sens = 83% 

Spec = 95% AUROC = 0.96

Su et al. (15)

PEE PEE
Grading punctate 

epithelial erosion (PEE)

Anterior slit-lamp 

images
1,046 images Deep NN

The model can grade PEE with good accuracy, illustrating 

its potential utility as a training platform

Segmentation performance: IoU = 0.937

Grading performance: Acc = 76.5% 

AUROC = 0.94

Qu et al. (13)

TM TMH

Measurement of tear 

meniscus height

Oculus camera 

photographs
510 images DL—CNN

The model demonstrates robust performance in 

segmenting, identifying, and quantifying the tear meniscus

For corneal segmentation task: Dice = 0.99 

IoU = 0.98 For tear meniscus detection: 

Dice = 0.92 IoU = 0.86

Wang et al. (16, 

18, 39)

Segmentation of lower tear 

meniscus images
OCT 6,658 images DL

The proposed approach displays robust segmentation and 

localization of the lower tear meniscus

Acc > 99.2% Sens > 96.3% Spec > 99.8% 

IoU > 0.931

Stegmann et al. 

(19)

Measurement of tear 

meniscus height

Smartphone 

images
1,021 images DL

The model demonstrates robust performance in automated 

tear meniscus height measurement for potential DED 

diagnosis

Dice coefficient = 0.9868; Acc = 95.39% Nejat et al. (20)

Measurement of tear 

meniscus height
Keratograph 5M 3,894 images ALNN

To propose an automatic measurement method for TMH 

based on convolutional neural networks to handle diverse 

datasets

Color image modality: average MIoU of 

0.9578; infrared image modality: average 

MIoU of 0.9290.

Wang et al. (21)

(Continued)
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Type Quantitative 
indicators

Study Data type Sample 
size (N)

Methods Key findings Performance References

MG

MG density

Segment and diagnose 

MGD via meibomian 

gland density

Infrared 

meibography

4,006 

meibography 

images

DL and TL
The model illustrates the utility of using meibomian 

density in improving the accuracy of meibography analysis

Segmentation performance: Acc = 92% and 

repeatability = 100%

MG density in total eyelids’ performance: 

Sens = 88%

Zhang et al. (31)

Regions of MG 

atrophy

Segment and quantify MG 

atrophy

Meibography 

images
706 images DL

The proposed DL can segment the total eyelid and 

meibomian gland atrophy regions with high accuracy and 

consistency. The model also achieves accurate Meiboscore 

grading accuracy, outperforming human clinical teams

Meiboscore grading: Acc = 95.6%. For eyelid 

segmentation: Acc = 97.6%; IoU = 95.5%. For 

atrophy segmentation: Acc = 95.4%; IoU = 66.7%; 

RMSD for atrophy prediction = 6.7%

Wang et al. (34)

Measure MG atrophy
Meibography 

images
497 images

DL—NPID, using 

the CNN 

backbone

The model can automatically analyze MG atrophy and 

categorize gland characteristics via hierarchical clustering 

with good performance, outperforming a human clinician 

in Meiboscore grading accuracy

Meiboscore grading accuracy with pretrained 

model = 80.9% Meiboscore grading accuracy 

without pretrained model = 63.6%

Yeh et al. (37)

Ghost glands
Quantification of MG 

morphology

Infrared 

meibography 

images

1,443 images DL

The model can automatically segment meibomian glands, 

identify ghost glands, and quantitatively analyze gland 

morphological features with good performance

Segmentation performance: IoU = 0.63

Identification of ghost glands: Sens = 84.4% 

Spec = 71.7%

Wang et al. (35)

MG

Development of an 

automated DL method to 

segment MG

Infrared 

meibography
728 images DL

The model demonstrates robust performance in 

segmenting MG

Segmentation performance: precision = 83% 

recall = 81% F1 score = 84% dice = 0.84 

AUROC = 0.96

Setu et al. (32)

Quantification of MG 

irregularities

Meibography 

images
90 images

ML—conditional 

generative 

adversarial 

network (cGAN)

The proposed technique outperforms state-of-the-art 

methods for the detection and analysis of the dropout area 

of MGD, as well as provides a notable improvement in 

quantifying the irregularities of infrared MG images

F1 = 0.825 average Pompeiu–Hausdorff 

distance = 0.664 Mean loss area = 30.1% 

R = 0.962 and 0.968 between automatic and 

manual analyses

Khan et al. (36)

MG, eyelid

Segment MG and eyelids, 

analyze the MG area, and 

estimate the Meiboscore

Meibography 

images
1,600 images DL—ResNet

The DL model demonstrates robust automated 

performance in the evaluation of MG morphology, 

ranging from segmentation to Meiboscore, comparable to 

human ophthalmologists

Meiboscore classification performance: 

Acc = 73.01% on the validation set
Saha et al. (33)

Others

Eyelid margin 

signs

Identification of lid 

margin signs for DED

Anterior segment 

images
832 images DL

The model can identify lid margin signs with high 

sensitivity and specificity

For posterior lid margin: AUROC = 0.979. For 

lid margin irregularity: AUROC = 0.977. For lid 

margin vascularization: AUROC = 0.98. For 

meibomian gland orifice (MGO) retroplacement: 

AUROC = 0.963. For MGO plugging: 

AUROC = 0.968. For posterior lid margin: 

Sens = 97.4% Spec = 93.8%.

Wang et al. (16, 

18, 39)

DED probability 

score, ASOCT

Evaluation of a DL 

approach to diagnose DED 

using AS-OCT images

AS-OCT

27,180 

images from 

151 eyes

DL—VGG19

The model displays robust performance in detecting DED, 

especially compared to the standard clinical DED test and 

similar to cornea specialists

Acc = 84.62% Sens = 86.36% Spec = 82.35% Chase et al. (38)

Corneal epithelial Detection of DED
OCT epithelial 

mapping
228 eyes ML—RF and LR

Inclusion of OCT corneal epithelial mapping can facilitate the 

diagnosis of DED with high sensitivity and specificity
Sens = 86.4% Spec = 91.7% AUROC = 0.87 Edorh et al. (40)

TABLE 1 (Continued)
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2.2.2 Multimodal data-driven prediction of tear 
film stability

Beyond image-based evaluation, multimodal data integration has 
further enhanced TBUT prediction. Fineide et  al. analyzed clinical 
datasets incorporating variables such as Schirmer test results, ocular 
surface staining (OSS), meibomian gland secretion quality (MQ), tear 
osmolarity, blink rate, and Ocular Surface Disease Index (OSDI) scores 
(24). Their model effectively predicted unstable tear film with average 
recall and precision exceeding 0.74 (24). Zheng et al. (25) proposed a 
novel approach that combined blink video analysis, symptom 
questionnaires, and ocular surface assessment data (via Keratograph 5 M) 
to train the DL system for real-time detection of incomplete blinking. 
Their system achieved outstanding performance with a balanced accuracy 
of 95.82%, a sensitivity of 99.38%, an IoU of 0.8868, and a dice coefficient 
of 0.9251 in 30 Frames Per Second videos, offering a high-precision tool 
for dynamic behavioral analysis. However, most current studies remain 
single-center and lack external validation. Broader, multicenter 
investigations are needed to confirm model generalizability and clinical 
utility across diverse populations and imaging devices.

2.3 Corneal fluorescein staining (CFS)

Corneal staining is a fundamental technique for evaluating epithelial 
damage on the ocular surface in patients with dry eye disease. Dyes such 
as fluorescein and lissamine green are commonly applied to identify 
devitalized or damaged epithelial cells, with fluorescein producing 
bright green fluorescence that highlights areas of disruption (26).

Traditional grading systems, including the Norn, Oxford, and 
National Eye Institute (NEI) scales, rely on clinician-dependent visual 
interpretation of staining patterns. These systems assess the density, 
area, and distribution of punctate epithelial erosions (PEEs). However, 
their subjective nature introduces significant variability, influenced by 
factors such as examiner experience and ambient lighting conditions. 
This lack of standardization often limits inter-observer consistency 
and diagnostic reliability.

Recent advances in AI and computer vision have addressed these 
limitations by enabling automated, pixel-level quantification of corneal 
staining. Deep learning algorithms can currently segment corneal 
regions, identify stained areas, and compute objective metrics such as 
lesion area, staining density, and topographic distribution. These 
methods enhance diagnostic reproducibility and reduce reliance on 
manual grading. For instance, Qu et al. (13) developed a deep neural 
network (DNN) framework that automatically segments corneal 
regions, extracts image patches, and grades PEEs. Their model achieved 
an IoU of 0.937 for corneal segmentation and an AUC of 0.940 for 
detecting punctate staining, thereby outperforming conventional 
grading reproducibility. Despite these promising developments, a 
major challenge remains: the coexistence of multiple grading schemes 
with differing criteria. The lack of a universally accepted standard 
hinders the development of unified AI models capable of cross-system 
compatibility. Continued research is needed to harmonize classification 
protocols and validate AI-based grading systems across diverse datasets 
and clinical workflows. Deng et  al. (27) built a new Fine-grained 
Knowledge Distillation Corneal Staining Score (FKD-CSS) with a dual-
decoder architecture to simultaneously detect kerato-corneal lesions 
and generate continuous scores from coarse-annotated data. Compared 
to ResNext and DenseNet, it achieves higher consistency and accuracy 

(r = 0.898, AUC = 0.881). However, widespread clinical adoption faces 
substantial barriers. Algorithm performance is highly dependent on 
consistent, high-quality image capture. Factors such as fluorescein 
concentration, instillation-to-imaging time, lighting, patient 
cooperation (blink artifacts), and camera settings introduce significant 
variability, challenging algorithmic robustness.

2.4 Meibomian gland morphology

Advanced imaging methods offer precise and detailed views of the 
meibomian glands, aiding in the diagnosis of evaporative DED caused 
by meibomian gland dysfunction (MGD) (28). MGD is a leading cause 
of evaporative DED, with gland morphology and atrophy severity 
directly linked to tear film instability (29). Traditional assessments rely 
on subjective interpretation of meibography images, often using semi-
quantitative grading systems that are time-consuming and susceptible 
to inter-observer variability (Figure 2). Recent developments in AI 
have enabled automated, high-precision methods for evaluating MG 
morphology, including segmentation, dropout quantification, and 
atrophy assessment (30). DL and generative adversarial network 
(GAN)-based models have demonstrated near-human performance 
in analyzing meibography images, enabling fast, scalable, and 
reproducible evaluations. Moreover, unsupervised learning 
frameworks are emerging to facilitate severity grading without the 
need for manually annotated datasets.

Zhang et al. (31) developed a transfer learning-based system for 
MG segmentation and density assessment, achieving 92% 
segmentation accuracy, 88% sensitivity, and 81% specificity for MGD 
diagnosis, with a processing speed of 100 ms per image. Setu et al. (32) 
utilized a U-Net model to segment MG in meibography images, 
reporting 83% segmentation accuracy and automated quantification 
of gland length, width, and curvature within 1.33 s per image. Saha 
et al. (33) introduced a DL model to quantify MG area, proportion, 
and Meiboscore (a standardized atrophy grading system), achieving 
73.01% classification accuracy on validation datasets.

Wang et  al. (34) proposed a DL framework for segmenting 
atrophic MG regions, achieving 97.6% eyelid segmentation accuracy, 
95.4% gland segmentation accuracy, and a root mean square deviation 
(RMSD) of 6.7% in atrophy percentage prediction. Their subsequent 
study on “ghost gland” detection (degenerated MG lacking visible 
structure) achieved 84.4% sensitivity and 71.7% specificity using a 
hybrid segmentation–classification model (35). Khan et al. (36) applied 
conditional generative adversarial networks (CGANs) to infrared 
meibography, achieving an F1 score of 0.825 and near-perfect 
correlation (r = 0.968) with manual analysis for atrophy quantification. 
To address the scarcity of annotated data, Yeh et al. (37) pioneered an 
unsupervised feature learning method to classify MG atrophy severity 
without annotated training data. Using hierarchical clustering, their 
model achieved 80.9% accuracy in Meiboscore grading, enabling 
phenotype-driven quantitative assessment. Despite these achievements, 
several challenges persist. The acquisition of high-quality, expert-
labeled meibography datasets remains resource-intensive. Additionally, 
the majority of current frameworks do not account for demographic 
and clinical covariates—such as age, sex, and ethnicity—which may 
influence MG morphology. Future research should integrate these 
variables to better understand population-specific risk factors for 
MGD and enhance the generalizability of AI-driven assessments.
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3 Emerging AI applications in 
multimodal and novel biomarker 
analysis

Beyond traditional biomarkers, AI is expanding the diagnostic 
landscape of DED by incorporating advanced imaging modalities 
and integrating multimodal data sources. Techniques such as 
AS-OCT, lid margin imaging, and corneal epithelial thickness 
mapping are currently being combined with functional parameters 
(e.g., blink rate, osmolarity, and OSDI scores). These integrated 
approaches offer a more holistic evaluation of ocular surface health 
and DED subtypes. Chase et  al. (38) pioneered a DL model to 
diagnose DED using AS-OCT images, generating a probability score 
based on corneal and conjunctival structural features. The model 
demonstrated an accuracy rate of 84.62%, a sensitivity of 86.36%, and 
a specificity of 82.35% outperforming traditional tests such as 
Schirmer’s test and corneal staining, while matching the diagnostic 
efficacy of TBUT and OSDI, highlighting AS-OCT’s potential as a 
standalone imaging-based diagnostic tool (38). Wang et al. (39) used 
ML to analyze slit-lamp images for lid margin abnormalities—a 
critical yet underutilized biomarker in DED. Their model achieved 
exceptional AUCs for detecting posterior lid margin features: 0.979 
(circular patterns), 0.977 (irregularities), and 0.980 (vascularization), 
demonstrating AI’s ability to extract subtle, clinician-overlooked 
signs with high precision (39). However, the study was limited by a 
relatively small dataset and low prevalence of positive cases (e.g., 
posterior lid margin rounding), which may bias model outputs and 
reduce generalizability. Edorh et al. (40) developed an AI-assisted 
scoring system integrating OCT-derived corneal epithelial thickness 
maps, which quantifies spatial epithelial heterogeneity to optimize 
DED diagnosis. The model achieved a sensitivity of 86.4% and a 
specificity of 91.7%, offering a novel objective framework that 
complements functional tear film assessments (40). Despite these 
promising results, OCT’s limited ability to distinguish between the 
precorneal tear film and the corneal epithelium introduces potential 
uncertainty in interpretation.

Collectively, these innovations highlight the growing role of AI in 
identifying novel DED biomarkers and enabling multimodal 
diagnostic strategies. By moving beyond conventional tear film 

metrics, AI-driven systems are poised to redefine clinical paradigms 
in dry eye diagnosis and personalized management.

4 Future prospects

The integration of AI into DED diagnostics and management 
holds transformative potential, yet several critical pathways must 
be  prioritized to bridge current advancements with real-world 
clinical utility. First, CNNs dominate perceptual vision tasks, LLMs 
redefine language capabilities, and traditional ML remains the 
pragmatic powerhouse for structured data analysis, especially under 
constraints. The optimal choice emerges from a careful evaluation of 
the specific application requirements against the inherent strengths 
and limitations of each paradigm. Future studies lie not only in 
advancing each paradigm but also in intelligently integrating them 
(e.g., using CNN/LLM features for traditional models, using 
traditional models to verify LLM outputs) to harness their combined 
strengths. Second, the “black-box” nature of complex models such as 
deep CNNs and LLMs remains a significant barrier to clinical 
adoption. Future studies must prioritize developing domain-specific 
interpretability techniques that provide clinically meaningful 
explanations for AI-driven diagnoses (e.g., highlighting lesion 
characteristics in images and identifying key phrases in clinical notes 
influencing a prediction). Techniques such as attention visualization 
and concept-based explanations need tailoring to medical contexts. 
Third, the push toward portable and decentralized solutions—such 
as smartphone-based TMH monitoring or home-use infrared 
meibography—will democratize access to early screening, particularly 
in underserved regions. Lightweight AI models (e.g., quantized 
neural networks) optimized for edge devices will be  essential to 
support real-time analysis without compromising accuracy. Fourth, 
addressing data heterogeneity through standardized imaging 
protocols and federated learning frameworks will enhance model 
generalizability across diverse populations and devices. Collaborative 
efforts to establish open-access, annotated datasets encompassing 
global demographics are urgently needed. Fifth, the ethical and 
regulatory landscape must evolve to ensure patient trust, emphasizing 
transparent AI decision-making (e.g., explainable heatmaps for 
clinicians) and robust data encryption for sensitive ocular biometrics. 
Finally, the transition from diagnostic AI to therapeutic AI—such as 
closed-loop systems linking real-time tear film assessments with 
automated drug delivery or neuromodulation—could revolutionize 
chronic DED management.

To fully realize this vision, interdisciplinary collaboration among 
ophthalmologists, data scientists, and regulatory bodies is imperative. 
Prospective multicenter trials validating AI tools against gold-
standard metrics, alongside cost-effectiveness analyses, will accelerate 
clinical adoption. As AI continues to unravel novel biomarkers and 
redefine diagnostic thresholds, it promises not only to enhance 
precision medicine but also to reshape global DED care paradigms 
from reactive treatment to proactive, patient-centered prevention.

5 Conclusion

In conclusion, AI has shown considerable potential in the 
quantitative evaluation and management of dry eye disease 

FIGURE 2

Manual segmentation of the meibomian gland.
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DED. AI-driven technologies, such as machine learning algorithms 
and advanced imaging techniques, offer more accurate and efficient 
diagnostic capabilities, which facilitate early disease detection and the 
development of personalized treatment plans. These innovations are 
expected to enhance clinical decision-making, reduce the burden on 
healthcare providers, and improve patient outcomes. However, to fully 
leverage the advantages of AI in the field of DED, it is essential to 
address challenges such as data privacy issues, the need for large-scale 
validation studies, and the integration of AI technologies into 
clinical workflows.
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