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Kidney diseases, including acute kidney injury (AKI) and chronic kidney

disease (CKD), pose growing global public health challenges. With the

emergence and expanding understanding of the “microbiota–gut–kidney

axis,” increasing evidence indicates that intestinal barrier disruption, abnormal

microbial metabolite production, and intestinal mucosal immune dysregulation

play critical roles in the pathogenesis of various kidney diseases. Therapeutic

modulation of the gut microbiota through probiotics, prebiotics, synbiotics, and

natural products has shown potential for slowing kidney disease progression.

Fecal microbiota transplantation (FMT), a direct method of reconstructing

gut microbial communities, has demonstrated promise in CKD by targeting

mechanisms such as inhibition of the renin–angiotensin system (RAS),

attenuation of inflammation and immune activation, and restoration of intestinal

barrier integrity. Although FMT has not yet been applied to AKI, its use in

CKD subtypes, such as diabetic nephropathy, IgA nephropathy, membranous

nephropathy, and focal segmental glomerulosclerosis, has shown encouraging

preclinical and preliminary clinical results. This review systematically summarizes

the current research on FMT in the context of kidney disease, evaluates its

therapeutic mechanisms and feasibility, and highlights its limitations. Most

studies remain in the preclinical stage, while available clinical trials are limited

by small sample sizes, heterogeneous designs, and lack of standardization. To

enhance the translational potential of FMT in nephrology, future studies should

incorporate artificial intelligence for personalized intervention strategies and

establish standardized protocols to ensure safety, efficacy, and reproducibility.

KEYWORDS

acute kidney injury, chronic kidney disease, gut microbiota, microbial-derived
metabolites, fecal microbiota transplantation

1 Introduction

Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease
(CKD), are characterized by abnormalities in kidney function or structure (1, 2). Based on
the anatomical regions affected, kidney diseases can be classified into glomerular diseases,
tubular disorders, interstitial nephritis, and renal vascular lesions (3–5). AKI commonly
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occurs in critically ill patients and extremely low birth weight
neonates and is often accompanied by multi-organ dysfunction.
It is associated with poor in-hospital outcomes (6, 7), increased
mortality, and an elevated risk of progression to CKD (8, 9). AKI
resulting from glomerular, tubular, and interstitial damage may lead
to persistent renal impairment, ultimately advancing into CKD (10,
11). Epidemiological data indicate that the global burden of CKD
is increasing, with a reported global prevalence of approximately
10% (12, 13). In China, the Sixth National Chronic Disease and
Risk Factor Surveillance reported a CKD prevalence of 8.2% (14).
CKD is projected to become the fifth leading cause of death
worldwide (15).

Current management strategies for kidney diseases focus
on treating the underlying etiology, preventing and managing
complications, implementing lifestyle modifications, and
controlling risk factors, such as hypertension, hyperglycemia,
and dyslipidemia (16–18). Although these interventions offer
some therapeutic benefits, limitations persist in achieving optimal
clinical outcomes. Therefore, novel therapeutic approaches are
urgently required for the prevention and treatment of CKD. In
recent years, the concept of the “microbiota–gut–kidney axis” has
received increasing attention. Emerging evidence suggests that
gut microbiota plays a critical role in the pathogenesis of various
kidney diseases (19–22). As such, identifying differences in gut
microbial composition between patients with kidney disease and
healthy individuals may offer new insights into disease mechanisms
and inform future therapeutic strategies.

2 The physiological role of gut
microbiota

As one of the largest human organs interfacing with the
external environment, the gut is colonized by a vast and dense
microbial community, constituting the most populous and diverse
microbial niche in the human body (23). The surface area of
a healthy adult gut is approximately 200 square meters and
supports between 500 and 1,000 bacterial species, making it the
organ with the greatest microbial abundance and diversity in
both quantity and variety (24). The advent of high-throughput
next-generation sequencing and other advanced biotechnologies
has greatly facilitated systematic characterization of the gut
microbiome, including its species composition, relative abundance,
community diversity, and functional capacity (25). Although
individual microbiota profiles differ owing to factors such as
genetics, enterotype, body mass index, exercise frequency, lifestyle,
and cultural or dietary habits (26, 27), studies have demonstrated
substantial commonality in microbial taxa among individuals (28).
Analyses based on bacterial 16S ribosomal RNA (16S rRNA) gene
sequencing have indicated that the gut microbiota may include
over 160 bacterial species. The dominant phyla are Bacteroidetes
and Firmicutes, which together account for more than 90% of the
microbial population, whereas Proteobacteria and Actinobacteria
also constitute major components (25, 29).

Microbial homeostasis in the gut is maintained through a
balance between symbiotic and antagonistic interactions between
its inhabitants (30, 31). This balance contributes to host health
through multiple mechanisms, including nutrient metabolism,

immune regulation, and defense against pathogens (32). The
primary physiological functions of the gut microbiota include:
(1) regulation of nutrient and energy metabolism, aiding in the
digestion and absorption of carbohydrates, contributing to the
synthesis of amino acids and vitamins, and maintaining essential
nutrient balance (33); (2) gut barrier protection, strengthening
epithelial tight junctions to preserve mucosal homeostasis,
competitively inhibiting pathogen colonization, and mitigating
hypersensitivity to food and environmental antigens (34); and
(3) production of bioactive metabolites, such as short-chain fatty
acids (SCFAs), primarily acetate, propionate, and butyrate (35,
36). A growing body of evidence suggests that SCFAs have
therapeutic potential in kidney diseases of various etiologies (37,
38). Other important microbial metabolites include bile acids (39),
trimethylamine N-oxide (TMAO) (40), and branched-chain amino
acids (41); and (4) modulation of the immune system, which
promotes immune cell differentiation, supports immune tolerance,
and enhances host defense against pathogens (42, 43).

3 The relationship between gut
microbiota dysbiosis and kidney
disease

The symbiotic relationship between the gut microbiota and
host represents a double-edged sword. Although microbiota
supports numerous physiological functions, its balance is
susceptible to disruption by various internal and external factors.
Host genetic background, early-life microbial colonization, dietary
habits, smoking, alcohol intake, antibiotic and proton-pump
inhibitor use, and underlying disease conditions can all contribute
to gut microbiota dysbiosis (43, 44). This ecological imbalance
has been implicated in the pathogenesis of multiple diseases,
including inflammatory bowel disease (45), obesity (46), CKD
(47, 48), atherosclerosis (49), cancer (50, 51), depression (52), and
type 2 diabetes (48, 53). In recent years, accumulating evidence
has demonstrated that the gut microbiota, through its structural
composition, metabolic products, and derived molecules, plays
a pivotal regulatory role in the development and progression of
various kidney diseases (54–56). Dysbiosis is closely associated with
disruption of the intestinal epithelial barrier, altered production
of microbial metabolites, and dysregulated intestinal mucosal
immune responses, all of which can exert direct detrimental effects
on renal function (57).

3.1 Disruption of the intestinal barrier

The normal gut microbiota plays a vital role in preserving the
structural and functional integrity of the intestinal mucosa. AKI
triggers systemic inflammatory responses and fluid overload, which
alter the permeability of the mesenteric vascular bed and contribute
to intestinal edema, ultimately resulting in secondary damage to
the intestinal epithelial barrier (58). Histological analyses of the
small intestine following AKI have revealed apoptosis of the deep
villous capillary endothelial cells, increased vascular permeability,
and epithelial necrosis (59). Tang et al. reported that patients
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with immunoglobulin A nephropathy (IgAN) exhibit significant
gut microbiota dysbiosis and elevated levels of biomarkers
indicative of intestinal mucosal barrier injury, including diamine
oxidase, soluble intercellular adhesion molecule 1 (sICAM-1),
d-lactate, and lipopolysaccharide (LPS) (60). Similarly, in CKD, the
intestinal barrier is compromised due to disruption of epithelial
tight junction proteins, leading to increased permeability and
translocation of bacteria and endotoxins, such as LPS, into the
systemic circulation (61). Tang et al. also observed elevated
levels of intestinal permeability markers, such as LPS, sICAM-
1, and D-lactate, in IgAN mouse models (62). Yang et al.
demonstrated that in 5/6 nephrectomized mice, gut microbiota
dysbiosis was positively correlated with the severity of intestinal
barrier impairment and aberrant mucosal immune responses (63).
These findings suggest that disruption of the intestinal barrier may
play a critical role in the pathogenesis and progression of CKD (61).

3.2 Abnormal production of metabolites

A growing body of evidence has confirmed that kidney diseases
are associated with distinct alterations in metabolic profiles,
with numerous metabolites being significantly linked to renal
function decline (64–69). Gut microbial metabolites have been
described as multiple biochemical intermediates (70). Dysbiosis
of the gut microbiota can lead to abnormal accumulation of gut-
derived uremic toxins such as indoxyl sulfate (IS). Clinical studies
have demonstrated that elevated IS levels in patients with AKI
are closely associated with poor prognosis. Under pathological
conditions, these toxins compromise the intestinal mucosal barrier,
exacerbating endotoxemia and systemic inflammation (71).

In CKD, metabolic disturbances impair protein digestion and
absorption, contributing to microbial dysbiosis and increased
production of protein-derived metabolites, such as p-cresol, indole,
phenol, and trimethylamine. These compounds serve as precursors
for hepatic synthesis of uremic toxins, including p-cresol sulfate
(PCS), IS, phenyl sulfate (PS), and TMAO, which are strongly
correlated with deteriorating renal function (72–76). Although
partially excreted by the kidneys and intestines, these metabolites
exert nephrotoxic effects and are classic uremic toxins. They can
activate signaling pathways involved in inflammation and fibrosis,
promoting renal inflammation, fibrotic progression, and functional
decline (77, 78). The accumulation of uremic toxins can injure renal
tubular cells, accelerate glomerulosclerosis and tubulointerstitial
fibrosis, and ultimately lead to end-stage renal failure (79).

In addition to protein metabolites, bile acids synthesized from
cholesterol via hepatic enzymes also play a role in kidney pathology.
This process is regulated by gut microbiota such as Bacteroides,
Bifidobacterium, and Lactobacillus (80, 81). Elevated bile acid levels
have been identified as an independent risk factor for adverse renal
outcomes in diabetic nephropathy (DN) (82). TMAO, which is
derived from the microbial degradation of dietary choline and
carnitine, is another key metabolite implicated in renal disease.
Clinical studies have shown significantly higher TMAO levels in
patients with DN than in those with diabetes alone, with a positive
correlation between TMAO concentration and the urine protein-
to-creatinine ratio (83, 84).

Indole-3-propionic acid, a gut-derived tryptophan metabolite,
is significantly reduced in both the gut and serum of patients with

IgAN, likely because of the decreased abundance of Bacteroides
(85). Microbial community profiles also differ across kidney
diseases. For example, patients with membranous nephropathy
(MN) and IgAN exhibit higher levels of Megasphaera and
Bilophila and lower levels of Megamonas, Veillonella, Klebsiella, and
Streptococcus than those with MN (86). In end-stage renal disease,
nearly 190 operational taxonomic units (OTUs) show altered
abundance relative to that in healthy controls (87). Experimental
studies have demonstrated that gut microbiota depletion via
antibiotic administration reduces TMAO levels and attenuates the
transition from AKI to CKD (88). Moreover, supplementation with
SCFAs in IgAN mouse models decreased IgA deposition, mesangial
proliferation, and proteinuria levels (89). These findings highlight
the critical role of gut microbiota dysbiosis and its metabolites in
the pathogenesis of kidney disease, highlighting their potential as
novel diagnostic biomarkers and therapeutic targets.

4 Kidney disease treatment by
regulating gut microbiota

Given the close relationship between gut microbiota and the
pathogenesis of various kidney diseases, modulation of the gut
microbiome has emerged as a promising therapeutic strategy
for preventing or slowing disease progression. In this context,
the use of microbiota-targeted interventions such as probiotics,
prebiotics, synbiotics, and natural products has shown potential in
ameliorating renal dysfunction and improving patient outcomes.

4.1 Probiotics

Probiotics are live microorganisms that, when administered
in adequate amounts, confer health benefits to the host (90).
These organisms exert their effects by correcting gut microbial
imbalances, producing antimicrobial compounds that inhibit
pathogenic bacteria, and enhancing the integrity of the intestinal
barrier (90–92). Probiotics also contribute to the restoration
of the normal gut pH, suppress the overgrowth of harmful
bacteria, promote the production of SCFAs, and maintain
gastrointestinal homeostasis.

A clinical study investigating probiotic supplementation
in patients with sepsis-induced AKI reported no significant
improvement in renal function recovery; however, a downward
trend in mortality was observed in the intervention group
(93). In a mouse model of ischemia-reperfusion injury (IRI)-
induced AKI, Yang et al. demonstrated that Bifidobacterium
bifidum (BGN4) enhanced microbial evenness and inhibited
the proliferation of hallmark AKI-associated taxa, such as
Enterobacteriaceae and Bacteroidaceae. BGN4 administration also
significantly reduced neutrophil and macrophage infiltration,
and lowered renal interleukin-6 mRNA expression levels. Ikeda
et al. identified two novel probiotic strains isolated from
fruits and vegetables and found that their supplementation
alleviated oxidative stress and AKI by increasing the abundance
of Akkermansia muciniphila (94). In a study by Miao et al.,
the taxonomic lineage Bacilli–Lactobacillales–Lactobacillaceae–
Lactobacillus–Lactobacillus johnsonii were found to be strongly
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associated with CKD progression, with a significant reduction in
L. johnsonii abundance observed in rats with adenine-induced
CKD. Supplementation with L. johnsonii mitigated renal injury
(95). The relative abundance of L. johnsonii was significantly
decreased with progressive CKD in rats with adenine-induced
CKD. L. johnsonii supplementation attenuates renal damage (95).
Ranganathan et al. demonstrated that treatment with Bacillus
pasteurii and Lactobacillus sporogenes effectively slowed CKD
progression in a rat model (96). Similarly, Zhou et al. found
decreased levels of Bacteroides fragilis in both patients with
CKD and unilateral ureteral obstruction (UUO) mice. Oral
administration of activated B. fragilis mitigated renal fibrosis in
UUO and adenine-induced models, possibly through mechanisms
involving decreased LPS levels and increased concentrations of
1,5-anhydroglucitol (97). Moreover, probiotic therapy has shown
beneficial effects in patients undergoing peritoneal dialysis (PD),
improving treatment outcomes and offering a potential adjunctive
approach in PD management (98). These findings suggest that
probiotic supplementation is a promising therapeutic option for
kidney disease as it modulates the composition and function of
the gut microbiota.

4.2 Prebiotics

Prebiotics are defined as non-viable microbial components or
substrates selectively utilized by host microorganisms to confer
health benefits (99). Compared to live probiotics, prebiotics offer
improved stability and safety profiles, making them suitable
for various clinical applications (91, 100). These compounds
are typically fermentable organic substances that selectively
stimulate metabolism and proliferation of beneficial gut bacteria,
contributing to host health. Common prebiotics include inulin,
fructooligosaccharides (FOS), galactooligosaccharides (GOS),
polyphenols, and lactulose (101). While most studies on prebiotics
have focused on their effects on CKD, few studies have investigated
their role in AKI (101). In a clinical trial by Esgalhado et al.,
patients with CKD undergoing dialysis were administered resistant
starch and compared with a placebo group. The intervention
group showed a significant reduction in circulating inflammatory
markers and uremic toxins (102). Similarly, in an animal study,
CKD rats receiving a diet supplemented with lactose exhibited
improved blood urea nitrogen and serum creatinine levels along
with reduced tubulointerstitial fibrosis (103).

Multiple studies have demonstrated that prebiotic
supplementation can exert renoprotective effects by modulating
the gut microbiota composition and restoring intestinal barrier
function. This, in turn, helps prevent bacterial translocation and
systemic dissemination of harmful microbial metabolites. However,
emerging evidence also highlights the potential risks. For instance,
a study reported that approximately 40% of TLR5-knockout mice
fed a diet containing inulin developed hepatocellular carcinoma,
which was associated with a marked increase in Proteobacteria
and Clostridium in the gut microbiota. In contrast, wild-type mice
with intact gut microbiota do not develop liver tumors under the
same dietary conditions (104). These findings suggest that, while
prebiotic intake may improve renal function and inflammation
in CKD patients with pre-existing gut dysbiosis, the potential

for adverse effects, particularly under conditions of impaired
microbial-host immune signaling, warrants careful evaluation and
further investigation.

4.3 Synbiotics

Synbiotics are defined as combinations of probiotics
and prebiotics. Several studies have shown that synbiotic
supplementation can positively modulate gut microbiota
composition in patients with CKD, including an increase in
Bifidobacterium and a reduction in Akkermansia muciniphila
abundance (105, 106). In addition, synbiotics have been reported
to reduce serum levels of p-cresol sulfate in both patients with
CKD and those undergoing hemodialysis, although they do not
appear to significantly affect the serum levels of indoxyl sulfate
in CKD patients.

In a clinical trial involving 60 hemodialysis patients,
Haghighat et al. demonstrated that synbiotic supplementation
significantly reduced serum LPS levels. Moreover, levels of
systemic inflammatory markers, including C-reactive protein
(CRP), interleukin-6 (IL-6), and anti-heat shock protein 70, were
significantly lower in the synbiotic group than in the probiotic and
placebo groups (107). These findings suggest that synbiotics may
help restore intestinal barrier function, inhibit the overgrowth of
gram-negative bacteria, reduce LPS translocation into systemic
circulation, alleviate microinflammation, and potentially slow
the progression of kidney disease. However, the current evidence
on the efficacy of synbiotics in renal disease is limited, and the
overall quality and quantity of supporting clinical studies remain
relatively low. Further well-designed randomized controlled trials
are needed to confirm their therapeutic potential and to establish
clinical guidelines for their use in kidney disease management.

4.4 Natural products

A growing body of research has demonstrated that natural
products exhibit promising clinical efficacy for the treatment of
various kidney diseases (108–114). The bioactive components
of these natural products can modulate the composition and
abundance of the gut microbiota in a holistic manner, alleviating
kidney disease progression and renal fibrosis through microbiota-
targeted interventions (115–120).

Recent studies have shown that resveratrol significantly
reduced serum urea and 24-h urinary protein levels in db/db mice.
Additionally, it increases the abundance of beneficial gut bacteria,
such as Bacteroides, Lachnospiraceae, and Faecalibacterium,
which are associated with anti-inflammatory effects (121). These
findings suggest that resveratrol, known for its anti-inflammatory,
antioxidant, and anti-glycation properties (122), has therapeutic
potential in both AKI (123) and DN treatment (124).

Curcumin, a natural polyphenol and principal renoprotective
constituent of turmeric, has also shown beneficial effects (125).
In a study by Shi et al., treatment with a docosahexaenoic
acid-conjugated curcumin diester significantly reduced the serum
levels of blood urea nitrogen, creatinine, LPS, and TMAO
in an AKI model. It also decreased malondialdehyde (MDA)
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concentrations in renal tissues, increased glutathione levels, and
altered kidney fatty acid composition, indicating that curcumin
effectively suppressed inflammation, oxidative stress, and apoptosis
(126). Similarly, Lyu et al. found that astragaloside IV restructured
the gut microbiota of DN mice by decreasing the relative
abundance of Firmicutes and increasing Bacteroidetes, Akkermansia
muciniphila, Lactobacillus, Ligilactobacillus, Mucispirillum, and
Sphaerochaeta. Conversely, it reduced the abundance of pro-
inflammatory taxa such as Lachnospiraceae_NK4A136_group,
Lachnospiraceae, and Streptococcus. These microbial changes are
associated with decreased LPS levels, improved intestinal mucosal
barrier integrity, and reduced renal inflammation (127). In
addition, other natural compounds, such as fucoidan (128), peony
bark polysaccharide (129), and total alkaloids from mulberry
branches (130) have been reported to modulate gut microbiota
composition, regulate microbial metabolites, reduce intestinal
permeability and systemic inflammation, and attenuate renal
pathological damage.

Despite encouraging findings, most current studies on natural
products are preclinical and rely heavily on animal models.
Few studies have directly correlated microbial changes with
renal outcomes in humans. Therefore, future research should
emphasize well-designed clinical trials and employ metagenomic
or multi-omics approaches to comprehensively elucidate the
microbiota-mediated mechanisms by which natural products exert
renoprotective effects.

4.5 Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is a therapeutic
approach that involves transferring functional gut microbiota
from the feces of a healthy donor into the gastrointestinal
tract of a recipient via various delivery routes. It is aimed
to reconstitute the recipient’s gut microbial community and
achieve therapeutic benefits. FMT is considered one of the
most direct and effective strategies for restoring gut microbial
balance (131, 132). Compared with targeted interventions,
such as probiotics, prebiotics, and synbiotics, FMT offers
a comprehensive method for eliminating uremic toxins by
introducing a diverse and functional microbial ecosystem.
Through the introduction of hundreds of commensal microbial
species, FMT facilitates intestinal barrier repair, promotes
systemic immune modulation, and reestablishes gut–kidney
axis homeostasis.

While natural products can exert anti-inflammatory and
microbiota-regulating effects via multi-target mechanisms, their
clinical application is limited owing to the complex chemical
composition and challenges in standardization. In contrast,
FMT has shown promise in addressing persistent infections, a
major clinical challenge in patients with advanced uremia and
those undergoing dialysis. FMT can eliminate multidrug-resistant
bacterial colonization through ecological competition, offering
long-term control of resistant infections (133). Given its broad-
spectrum regulatory capacity, FMT has recently gained attention
as a potential therapeutic strategy for the treatment of various
kidney diseases. This may represent a promising alternative for
protecting renal function by directly modulating the gut microbiota
and reducing the inflammatory and toxic burden.

4.5.1 Development and current status of FMT
The concept of FMT dates back to the 17th century,

when Italian surgeon Acquapendente reportedly transferred
gastrointestinal contents from healthy animals to sick animals, a
technique that was later widely adopted in veterinary medicine
(134, 135). In the 20th century, FMT was introduced into modern
clinical practice, with early reports documenting the use of fecal
enemas to treat conditions such as pseudomembranous and
ulcerative colitis (136). The early 21st century marked a pivotal
moment in the development of FMT. A clinical trial involving the
administration of fecal suspension via nasogastric tubes to patients
with recurrent Clostridium difficile infections (CDI) reported a
cure rate of nearly 90% in 18 participants, highlighting FMT as
a promising therapeutic approach for CDI (137). In 2013, the
first randomized controlled trial of FMT for recurrent CDI was
published (138), and later, FMT was officially incorporated into
the clinical guidelines for CDI management. The U.S. Food and
Drug Administration (FDA) also announced that human feces
could be regulated as a drug product, significantly elevating the
clinical and regulatory visibility of FMT (139). In 2018, FMT was
formally included in the Chinese Consensus on the Diagnosis and
Treatment of Inflammatory Bowel Disease, further supporting its
clinical application.

In recent years, as research on the gut microbiota has deepened,
its role in diverse medical disciplines, including gastroenterology,
neurology, immunology, metabolism, and nephrology, has become
increasingly evident. FMT, as a potent method for modulating the
gut microbiota, has expanded applications across these domains
and is progressively demonstrating its therapeutic maturity and
translational potential.

4.5.2 Implementation process of FMT
The implementation of FMT involves several key steps,

including donor and recipient selection, preparation of fecal
microbiota suspension, administration of the suspension, and
monitoring through gut microbiota analysis. These procedures are
essential to ensure the safety, efficacy, and reproducibility of FMT
in both the clinical and research settings (Figure 1).

4.5.2.1 Donor selection
To minimize the risk of cross-infection and immune rejection

in allogeneic FMT, strict donor screening criteria have been
internationally established. According to the Chinese Expert
Consensus on the Clinical Application Management of FMT
(2022 Edition), donor eligibility is determined by a comprehensive
assessment of age, general health status, blood and stool test
results, medical history, medication use, psychological status, and
gut microbiota profile. Donor sustainability, that is, the ability
to repeatedly provide samples over time, is also considered an
important selection criterion.

From an ethical and regulatory standpoint, China has more
stringent age restrictions than other countries, typically requiring
donors to be between 18 and 30 years old. In preclinical and
mechanistic studies, fecal material may also be collected from
laboratory animals (140), such as rats, mice, or livestock (e.g.,
cattle, horses, sheep). These animal-derived microbiota samples
can be collected from feces or directly from intestinal contents,
and are widely used in research on disease pathogenesis and
drug development.
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FIGURE 1

Operation procedure of fecal bacteria transplantation. This figure provides a comprehensive description of the process by which fecal microbiota
transplantation (FMT) is applied in animal models for the simulation and treatment of diseases. In the upper half of the figure, fecal samples were
obtained from healthy volunteers, and the microbial communities were introduced into germ-free (GF) or specific pathogen-free (SPF) mouse
models using FMT technology. An antibiotic pretreated (AP) group was also established to mimic various intestinal environments. Subsequently,
changes in microbial communities were evaluated using 16S rRNA gene sequencing, and significant improvements in the health status of the model
mice were observed, validating the role of FMT in disease treatment. The lower half of the figure illustrates the process of obtaining fecal samples
from patients and introducing their microbial communities into GF or SPF mouse models using FMT, with the establishment of the AP and normal
control (normal) groups. Changes in microbial communities were assessed using 16S rRNA gene sequencing, and the manifestation of disease
symptoms in the model mice was observed, confirming the potential application of FMT in disease model establishment. Note: The figure was
drawn using Figdraw.

4.5.2.2 Recipient selection
Prior to undergoing FMT, human recipients are generally

advised to discontinue antibiotic use at least 3 days before the
procedure and to undergo bowel cleansing with polyethylene glycol
to enhance colonization efficacy (141). In experimental settings,
germ-free (GF) mice are commonly used as recipients because
of their sterile gastrointestinal environment, which minimizes
microbial competition and facilitates the engraftment of donor
microbiota (142). However, GF animals have limitations, including
high maintenance costs, increased risk of infection, and potential
developmental or physiological abnormalities resulting from
long-term microbial deprivation. To address these challenges,
some studies have utilized animals pretreated with antibiotics
or laxatives to partially deplete native gut microbiota and
improve the success rate of FMT while reducing the drawbacks
associated with GF models.

4.5.2.3 Preparation of fecal microbiota suspension and
administration methods

In preparing fecal microbiota suspensions for FMT, studies
have shown that there is no significant difference in clinical efficacy
between fresh and frozen fecal samples (143). However, repeated

freeze–thaw cycles can significantly reduce microbial viability,
and consequently, the therapeutic effectiveness of FMT (144). To
preserve microbial activity during storage, it is recommended to
add 10% glycerol to the fecal suspension and store it at −80◦C
(145). Given that the gut microbiota is predominantly composed
of anaerobic bacteria, the preparation process must be conducted
in an anaerobic environment to ensure microbial viability. Fresh
fecal samples were promptly transferred to anaerobic containers
after collection and transported to the FMT laboratory under
controlled conditions.

Common techniques for preparing fecal suspensions include
simple filtration, low-speed centrifugation, or a combination of
both methods to enrich the microbial content while removing
particulate matter (146). In recent years, fecal suspensions have
also been formulated into encapsulated preparations for oral
use to enhance patient compliance and facilitate administration.
In clinical settings, the main routes of FMT administration
include upper gastrointestinal tract delivery (via a nasogastric
tube or gastroscopy), lower gastrointestinal tract delivery (via
colonoscopy or retention enema), and oral capsule administration.
To date, no definitive evidence has established the superiority of
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any single administration route in terms of therapeutic efficacy
(147). Therefore, physicians are advised to tailor the route of
administration according to each patient’s clinical condition,
disease severity, and tolerance. In preclinical animal studies,
oral gavage is the most commonly used method for delivering
fecal suspensions, whereas rectal administration is employed
less frequently.

4.5.2.4 Detection of gut microbiota

In clinical settings, the efficacy of FMT is primarily evaluated
based on improvements in clinical symptoms. In basic and
translational research, microbial engraftment is typically
monitored using molecular techniques such as 16S ribosomal
RNA (16S rRNA) sequencing and metagenomic analysis.
These approaches allow for a comprehensive assessment of
donor microbiota colonization and engraftment, enhancing
the reliability and reproducibility of research findings (148).
Studies on the duration of microbial engraftment have suggested
that the number of donor-derived strains tends to decline over
time. While some strains may persist for several months to
a few years post-transplantation, most strains demonstrate a
gradual decrease in abundance (149). Despite these insights,
current data on the long-term persistence and stability of the
engrafted microbiota remain limited. Thus, future large-scale
longitudinal studies are needed to further clarify the dynamics
of microbial colonization and its association with sustained
therapeutic efficacy.

4.5.3 Potential molecular mechanisms of FMT on
kidney disease

The therapeutic effects of FMT in kidney diseases are
mediated by multiple molecular pathways. One of the most
critical mechanisms involves modulation of the renin–angiotensin
system (RAS), which serves as a vital link between gut
microbiota dysbiosis and renal pathology (150, 151). Miao
et al. demonstrated that Sirtuin 6 (SIRT6) inhibits the Wnt1/β-
catenin signaling pathway, downregulating RAS activity and
protecting podocytes from injury (152). In a separate study,
FMT significantly ameliorated the premature aging phenotype
in SIRT6 knockout mice by reducing inflammation and cellular
senescence (153). These findings suggest a potential synergistic
effect of FMT and SIRT6 in mitigating renal tissue damage by
suppressing RAS activation.

Moreover, gut-derived uremic toxins, such as indoxyl sulfate,
p-cresyl sulfate, and TMAO, have been shown to activate RAS,
exacerbating renal injury and fibrosis (154). FMT has been
reported to reduce circulating levels of these toxins, leading to
the attenuation of RAS-mediated fibrotic pathways and subsequent
protection of renal function (155, 156). This detoxifying effect
is widely recognized as a key mechanism by which FMT exerts
renoprotective effects (157). In addition to RAS modulation,
FMT contributes to renal protection by restoring immune and
metabolic homeostasis in recipients. It alleviates inflammation
and corrects metabolic disturbances, slowing progression of
kidney damage (158, 159). For instance, Lauriero et al. found
that transplantation of healthy human microbiota into an
IgAN mouse model reduced renal inflammation and improved
glucose tolerance. This effect was attributed to decreased IS

levels and increased production of SCFAs which possess anti-
inflammatory and renoprotective properties (160). Furthermore,
FMT enhances intestinal barrier integrity by downregulating tumor
necrosis factor-alpha (TNF-α) expression in intestinal epithelial
cells, upregulating tight junction proteins, and reducing LPS
translocation. These actions restore intestinal permeability and
mitigate systemic inflammation, contributing to the preservation
of renal function (161).

Based on current evidence, this review provides a
comprehensive summary of the applications of FMT in kidney
disease treatment. We highlighted its mechanistic pathways,
including RAS inhibition, uremic toxin reduction, metabolic
reprogramming, anti-inflammatory effects, and intestinal barrier
restoration. We hope that this overview will offer theoretical
guidance and support the development of future clinical
applications of FMT in nephrology.

5 Application of FMT in kidney
diseases

FMT is an emerging therapeutic strategy that optimizes the
structure and composition of the recipient gut microbiota. By
rebalancing microbial communities, FMT reduced the production
of gut-derived uremic toxins, mitigated systemic low-grade
inflammation, alleviated renal injury, and slowed the progression
of CKD (162). This approach has demonstrated potential in the
treatment of various kidney diseases.

5.1 Diabetic nephropathy

Diabetic nephropathy (DN) is one of the most common
microvascular complications of diabetes and is characterized by
a range of pathological changes, including mesangial matrix
expansion, excessive extracellular matrix deposition, podocyte
effacement, glomerulosclerosis, and tubulointerstitial fibrosis,
largely driven by persistent hyperglycemia (163). Accumulating
evidence indicates that the gut microbiota of patients with DN is
significantly altered (164).

Proteinuria is a hallmark of DN. One study demonstrated
that differences in gut microbiota might influence renal function
in DN mouse models depending on the sequence of FMT and
streptozotocin (STZ) administration (133). In this study, severe
proteinuria (SP) and mild proteinuria (MP) mouse models were
established via intraperitoneal injection of STZ. Microbiota analysis
revealed that the Firmicutes/Bacteroidetes ratio was higher in
the MP group than that in the SP group. At the genus level,
Allobaculum and Anaerosporobacter were enriched in the SP group,
whereas Blautia was more abundant in the MP group.

FMT experiments have also demonstrated that inulin-type
fructans (ITFs) may prevent the development of DN by modifying
the gut microbial composition and enhancing SCFA production,
as confirmed by FMT-based verification (165). Similarly, Lu et al.
reported that FMT from healthy donors significantly improved
podocyte insulin sensitivity, alleviated glomerular injury, and
reduced proteinuria in DN rats (166). Shang et al. conducted
in vivo experiments in which DN mice were first treated with
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broad-spectrum antibiotics to eliminate endogenous microbiota,
followed by FMT in healthy donors. The study found significant
differences in fecal microbiota composition between the FMT
group and the untreated DN model group, confirming that FMT
can modulate microbial communities and improve the metabolic
phenotype of DN mice (167). Additionally, Cai et al. transplanted
fecal microbiota from resveratrol-treated donors into db/db mice
and found that FMT not only restored the gut microbial balance
but also significantly reduced inflammatory responses (121). This
result further supports the role of the microbiota–gut–kidney axis
in the protective effects of resveratrol against DN. Similarly, a study
involving astragaloside IV (AS-IV) demonstrated that FMT using
microbiota from AS-IV-treated donors reshaped gut microbial
composition, improved intestinal permeability, and attenuated
renal dysfunction in db/db mice (127). Although numerous animal
studies have confirmed the beneficial effects of FMT in DN models,
clinical trials are scarce. Therefore, further research, particularly
well-designed human studies, are warranted to explore the clinical
applicability of FMT in DN treatment.

5.2 IgA nephropathy

Although the precise etiology and pathogenesis of IgAN remain
incompletely understood, accumulating evidence has revealed a
strong association between gut microbiota dysbiosis and the
development and progression of the disease (168). In one study,
fecal, urinary, and serum samples from patients with IgAN were
analyzed and compared with those of healthy controls, revealing
marked differences in gut microbial composition and associated
metabolites (169).

Zhao et al. reported the first case study on the use of FMT in two
patients with refractory IgAN unresponsive to immunosuppressive
therapy (170). The patients underwent regular FMT via an
endoscopic intestinal tube over a 6–7 month period. Follow-up
results showed that 24-h urinary protein excretion was reduced
to less than 50% of the baseline values, achieving partial clinical
remission without any adverse events. Prior to treatment, both
patients exhibited reduced microbial diversity and altered gut
microbiota composition, which were significantly corrected after
FMT. Similarly, Zhi et al. described a case of IgAN in which oral
administration of fecal microbiota capsules led to clinical symptom
improvement. A six-month follow-up revealed no serious adverse
events (171). To further assess the safety and efficacy of FMT in
IgAN, Zhi et al. conducted a clinical observational study involving
15 patients (172). Urinary protein levels, gut microbiota profiles,
and fecal metabolomic data were analyzed before and after FMT.
The study found significant alterations in microbial composition
and metabolites. The relative abundances of Phocaeicola_vulgatus,
Bacteroides_uniformis,Prevotella_copri,Parabacteroides_distasonis,
Phocaeicola_dorei,Bacteroides_sp._HF-162, Bacteroides_ovatus,
Bacteroides_xylanisolvens, Bifidobacterium_pseudocatenulatum
and Bifidobacterium_longum changed after FMT, indicating
successful microbiota reconstruction and suggesting a link between
these changes and improved renal function.

In mechanistic studies, Zhu et al. demonstrated that gut
microbiota dysbiosis can stimulate the overproduction of galactose-
deficient IgA1 (Gd-IgA1), a key pathogenic molecule in IgAN,

via the Toll-like receptor 4 (TLR4) signaling and B-cell activation
pathways (173). Lauriero et al. further observed elevated levels
of Gd-IgA1 and serum B-cell-activating factor in patients with
IgAN. In an IgAN mouse model, FMT from healthy human donors
significantly reduced proteinuria and renal inflammation (160).
These findings suggest that reshaping gut microbiota through FMT
may modulate immune responses and renal injury in IgAN.

These studies highlight the therapeutic potential of FMT in
IgAN by restoring the gut microbial balance, altering metabolite
profiles, and modulating key pathogenic pathways. However,
further clinical trials are needed to establish the efficacy, safety, and
standardized treatment protocols for FMT in IgAN management.

5.3 Membranous nephropathy

Membranous nephropathy is the most common pathological
subtype of nephrotic syndrome among adults. It is primarily
characterized by the deposition of immune complexes on the
outer aspect of the glomerular basement membrane, leading to
diffuse thickening (174). The standard treatment strategies for MN
include supportive care, corticosteroids, and immunosuppressive
agents (174). In recent years, increasing attention has been given
to the gut–kidney axis in MN, with studies revealing significant
differences in gut microbiota composition between patients with
MN and healthy individuals (175, 176). Shang et al. analyzed
825 fecal samples collected from patients with MN and healthy
controls across Central, East, and South China using 16S rRNA
gene sequencing. The study reported markedly reduced microbial
diversity and richness in MN patients compared to healthy
individuals, and subsequently developed a non-invasive diagnostic
model based on these microbial differences (177). Furthermore,
the role of gut microbiota in MN pathogenesis was investigated
using a rat model. Elimination of the gut microbiota in MN
model rats prevented disease onset, whereas FMT restored the
proteinuria phenotype, suggesting a causal role of gut dysbiosis
in MN development. In a related study, Shi et al. collected fecal
samples from 82 individuals with idiopathic MN and healthy
volunteers. They identified 20 characteristic microbial biomarkers
that were significantly correlated with the clinical features of MN
and constructed a predictive diagnostic model with an accuracy
of 93.53%. FMT experiments in MN model mice showed that
dysbiosis leads to impaired intestinal permeability and activation of
renal NOD-like receptors, contributing to MN pathogenesis (175).
Zhou et al. reported a clinical case of successful MN treatment
using FMT (178). After stringent donor screening, fecal microbiota
were obtained from a 14-year-old male donor and prepared
for transplantation. The patient underwent two FMT procedures
1 month apart. Following treatment, improvements were observed
in serum albumin and total protein levels, and 24-h urinary
protein excretion significantly reduced. A transient low-grade fever
occurred after the first FMT, but resolved spontaneously, suggesting
a generally favorable safety profile.

While these findings indicate the potential of FMT as a novel
biological therapy for MN, further validation is necessary. Large-
scale clinical trials and mechanistic studies are needed to better
establish the therapeutic efficacy, mechanisms, and safety of FMT
for MN management.
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5.4 Focal segmental glomerulosclerosis

Focal segmental glomerulosclerosis (FSGS) is a common and
treatment-resistant form of nephrotic syndrome, characterized
by effacement of podocyte foot processes and, under electron
microscopy, thickening of the glomerular basement membrane
and mesangial expansion in sclerotic regions. Zhi et al. reported a
case in which FMT using fecal microbiota capsules led to clinical
improvement in a patient with FSGS (179). The patient had
previously required glucocorticoid maintenance to control serum
creatinine levels. Following FMT, renal function remained stable
despite glucocorticoid tapering, and reductions were observed
in proteinuria and triglyceride and cholesterol levels, ultimately
achieving complete clinical remission. This case suggests that
FMT may serve as a potential adjuvant therapy for FSGS by
reconstituting the gut microbiota to improve renal function
and prevent metabolic abnormalities. However, no randomized
controlled trials have defined the specific or long-term efficacy of
FMT for FSGS. Therefore, further clinical research is essential to
evaluate its safety, therapeutic value, and mechanisms of action
in this context.

6 Limitations and future
perspectives of FMT in kidney
diseases

6.1 Limitations of FMT in kidney diseases

Although FMT represents an innovative therapeutic strategy
for kidney disease, its application remains largely confined to
preclinical research. Existing clinical trials are limited by small
sample sizes and short follow-up periods, and the long-term efficacy
and safety of FMT in larger patient populations have yet to be
fully established.

6.1.1 Limited clinical evidence
As an emerging treatment for kidney diseases, current clinical

studies on FMT are generally limited by their small sample sizes and
short follow-up durations. Consequently, the long-term benefits of
FMT in larger patient populations remain unclear.

6.1.2 Insufficient monitoring of microbiota
stability

Most current studies do not adequately monitor the stability
of gut microbiota following FMT. It is recommended that follow-
up assessments extend for at least 4 weeks and, when feasible,
incorporate microbiomic analyses to dynamically track changes in
microbial composition and function.

6.1.3 Unexplored diseases
The pathogenesis of certain kidney diseases, such as lupus

nephritis, Henoch-Schönlein purpura nephritis, and sepsis-
associated acute kidney injury, has been proven to be related
to the gut microbiota. However, research on FMT in these
diseases is lacking.

6.1.4 Limited evaluation of adverse effects
Current studies on the adverse effects of FMT are limited.

Future studies should strengthen the assessment of these effects
and develop scientific treatment guidelines to standardize the
risk management of FMT, balancing its therapeutic benefits and
potential risks.

6.2 Future perspectives

With ongoing advances in biological research, studies
investigating the role of FMT in kidney diseases, particularly
through modulation of the “microbiota–gut–kidney axis,” are
becoming increasingly comprehensive. Strengthening research
on gut microbiota is critical for the prevention and treatment
of kidney diseases. Thus, the application of FMT in this field
holds considerable promise. Future research directions may
include the following.

6.2.1 Integration with AI
Leveraging AI technologies may enable the development of

personalized FMT treatment strategies, optimize donor–recipient
matching, streamline implementation protocols, and enhance post-
transplantation monitoring. However, practical frameworks for
integrating AI into FMT workflows remain to be established and
warrant further investigation.

6.2.2 Specific microbiota donors
Emerging evidence suggests that certain microbial strains in the

gut exert disease-specific therapeutic effects. Future research may
explore whether individuals with distinctive microbiota profiles
beyond those of healthy donors could serve as optimized donors for
targeted FMT, enhancing therapeutic outcomes in specific kidney
disease subtypes.

6.2.3 Dietary interventions
Diet is one of the most direct and influential factors affecting

the composition of the gut microbiota. Future studies should
investigate whether specific dietary interventions can support the
engraftment of donor microbiota following FMT and modulate
microbial metabolism to sustain therapeutic efficacy in kidney
disease management.

6.2.4 Ethical and legal considerations
As a form of “organoid transplantation,” FMT raises important

ethical and legal concerns. Future efforts should ensure rigorous
compliance with donor screening and processing standards,
while safeguarding the privacy and informed consent of both
donors and recipients.
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