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Introduction: Metabolic dysfunction-associated steatohepatitis (MASH) is 
a significant liver disease that can lead to cirrhosis and liver cancer. Accurate 
assessment of liver fibrosis is crucial for diagnosis, prognosis, and informed 
treatment decision-making. Staging of liver fibrosis in MASH is based on 
Kleiner’s score, which categorizes fibrosis based on its location within the liver 
as observed microscopically. This scoring system is part of a standard clinical 
research network and relies heavily on the expertise of pathologists.

Methods: This study utilized Sirius Red-stained whole slide images of liver tissue 
obtained from various MASH animal models to develop deep learning (DL) 
models for scoring liver fibrosis, with a focus on the criteria outlined in Kleiner’s 
score. We created a trainable and testable dataset of whole-slide images of the 
liver, consisting of 999,711 patch images derived from 914 whole-slide images. 
The performance of the multi-class classification model was evaluated using 
the kappa statistic, area under the precision-recall curve (AUPRC), area under 
the receiver operating characteristic curve (AUROC), and Matthews correlation 
coefficient (MCC).

Results: To address challenges in clinical subclassification, a 5-class classification 
model was initially applied; the model achieved moderate agreement. A more 
refined 7-class model was subsequently developed, which outperformed the 
5-class classification model. The enhanced subclassification significantly 
improved classification performance, as evidenced by the superior AUROC and 
AUPRC values of the 7-class model.

Discussion: This study highlights that DL models for scoring liver fibrosis can 
support expert pathologists in staging liver fibrosis in preclinical animal studies.
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1 Introduction

Metabolic dysfunction-associated steatohepatitis (MASH), 
previously referred to as nonalcoholic steatohepatitis (NASH), is a 
subtype of metabolic dysfunction-associated steatotic liver disease 
(MASLD), also known as nonalcoholic fatty liver disease. These 
conditions can develop despite the absence of significant alcohol 
consumption. MASH is recognized as the hepatic manifestation of 
metabolic syndrome due to its association with insulin resistance, 
obesity, type II diabetes, and hyperlipidemia (1). Although liver 
steatosis is often not severe, approximately 25% of patients with 
MASH may progress to chronic cirrhosis, which can ultimately lead 
to hepatocellular carcinoma or liver cancer. In the United States, the 
incidence of MASLD-related cirrhosis between 2006 and 2010 was 
approximately twice as high as that of chronic hepatitis C (2).

Although MASLD refers to nonalcoholic fatty liver disease, MASH 
specifically denotes a distinct histological pattern of liver disease. 
MASH is the most common form of histologically advanced MASLD, 
typically involving a certain degree of fibrosis (1). It is characterized by 
hepatocellular ballooning, lobular inflammation, and steatosis, with or 
without fibrosis. The progression of fibrosis to cirrhosis in MASH is 
slow and unpredictable; however, advanced fibrosis is associated with 
an increased risk of liver-related morbidity and mortality, as well as 
serving as a major driver of cardiovascular comorbidity (3). Drugs 
targeting liver fibrosis in MASH may improve mortality independently 
of reducing the incidence of liver-related diseases (4).

The Food and Drug Authority currently recommends that 
sponsors focus drug development on non-cirrhotic MASH with 
fibrosis, an area of significant potential impact on human health and 
one of the greatest unmet medical needs (5). MASH pathology does 
not completely overlap between humans and mice due to differences 
in genetic or protein profiles. However, histopathology-confirmed 
consistent fibrosis in obese MASH mouse models has relatively high 
clinical translatability to humans. Accordingly, MASH mouse models 
are increasingly used for the preclinical efficacy evaluation of liver 
histological responses to test articles, as human MASH is highly 
reproducible in mouse models of MASLD (3). Biochemical parameters 
of the liver, histopathological scoring of liver sections by experienced 
pathologists using the MASH Clinical Research Network (CRN) 
system, and quantitative analysis of liver sections are frequently used 
to assess efficacy in MASLD/MASH. However, although the 
histopathological scoring method is globally recognized and widely 
adopted, it relies on subjective interpretation by expert pathologists, 
rendering the results subjective, time-consuming, and susceptible to 
interobserver variation among different pathologists (6).

Lee et  al. (7) and other pathologists showed that the primary 
histological characteristic of MASH is the presence of fibrosis in liver 
biopsy specimens. Based on Kleiner’s CRN scoring system, three fibrosis 
subclasses (i.e., scores 1A, 1B, and 1C from score 1) can be considered as 
major criteria, combined with inflammation and steatosis, to diagnose 

“not-MASH,” “borderline,” or “MASH.” In MASLD, fibrosis typically 
begins with deposition around the central veins, presenting as a 
centrilobular or perisinusoidal pattern, which corresponds to stage 1A 
or 1B fibrosis. As the improvement, stabilization, and progression of 
fibrosis are major endpoints in the transition from MASLD to its 
progressive form, MASH, accurate staging of fibrosis based on its 
architecture is essential (8). Several digital pathology techniques utilizing 
computer software have been used to quantify fibrosis (9–13). Masson’s 
trichrome and Sirius Red are the most commonly used histochemical 
stains that highlight collagen (14) and are used to assess the extent of 
staining. Both Masson’s trichrome and Sirius Red have been used for 
computer-assisted morphometric analysis of liver fibrosis. However, 
Sirius Red demonstrates superior performance due to its higher 
sensitivity in detecting early-stage perivascular or pericellular fibrosis 
(15, 16), which is particularly useful for staging fibrosis based on 
Kleiner’s CRN scoring system. Further, Masson’s trichrome requires 
careful optimization to prevent over- or understaining, which can 
compromise the evaluation of fibrosis. In contrast, Sirius Red provides 
consistent and interpretable results without the need for extensive 
protocol optimization (17). However, accurate analysis of individual 
structural components remains unattainable (9). ImageJ (National 
Institutes of Health, MD, USA), one of the simpler digital pathology 
methods (13, 18), does not conform to the criteria of Kleiner’s scoring 
system as it solely quantifies the amount of fibrosis. Furthermore, the 
representativeness of the entire slide is questionable, given that it only 
analyzes a randomly assigned region of interest selected by the analyst 
rather than the whole-slide image (WSI). Analyzing a sufficiently large 
number of regions of interest to replace the WSI on a single slide would 
be time-consuming. In contrast, the deep learning (DL)-based model 
we have developed is designed to analyze the WSI and classify fibrosis 
based on a standardized scoring system.

Farzi et  al. (19) has introduced Liver-Quant, an open-source 
Python-based software, for quantifying fibrosis using Masson’s 
trichrome-, Sirius Red-, and Van Gieson-stained WSI in 
MASLD. Liver-Quant measures the collagen proportionate area (CPA) 
based on the morphological features and staining color to estimate the 
extent of fibrosis. The CPA values demonstrate a moderate correlation 
with pathologist assessment. However, CPA has limited capability to 
provide detailed insights into the morphological and 
pathophysiological aspects of liver fibrosis as it does not reflect the 
liver architecture or the spatial distribution of fibrosis. Furthermore, 
the substantial overlap in CPA values across different semi-quantitative 
fibrosis stages may reduce its accuracy in grading fibrosis severity.

Recent studies have designed and validated digital pathology and 
DL-based methods to quantify fibrosis and other histological features of 
MASH, including ballooning degeneration, lobular inflammation, and 
steatosis (13, 18, 20–22). In these studies, ballooning degeneration, 
lobular inflammation, steatosis, and fibrosis were scored based on the 
extent of the affected area in liver sections, which could be effectively 
quantified using DL methods. For fibrosis, Heinemann et  al. (21) 
suggested that distinguishing between fibrosis scores 0 and 1 using 
CPA-based analysis can be challenging as early-stage fibrosis does not 
significantly alter the collagen-stained area. In contrast, artificial 
intelligence-based analysis can detect subtle fibrotic alterations, 
successfully differentiating score 1 from score 0. However, Kleiner’s 
fibrosis scoring system is based on the amount of fibrosis and its 
microanatomical location. Gawrieh et  al. (8) developed DL-based 
methods that incorporated CPA-based quantification alongside 

Abbreviations: AUPRC, area under the precision-recall curve; AUROC, area under 

the receiver operating characteristic curve; CPA, collagen proportionate area; 

CRN, Clinical Research Network; DL, deep learning; HFD, high-fat diet; MASH, 

metabolic dysfunction-associated steatohepatitis; MASLD, metabolic dysfunction-

associated steatotic liver disease; MCC, Matthews correlation coefficient; WSI, 

whole slide image.
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annotations of fibrosis architectural patterns, including perisinusoidal, 
periportal, bridging, and nodular fibrosis. This model showed high 
accuracy in detecting its liver architecture and quantifying fibrosis. 
However, the model had more challenges detecting perisinusoidal and 
periportal patterns (corresponding to stage 1 fibrosis) than bridging or 
nodular patterns (corresponding to stage 3 or 4 fibrosis, respectively). This 
reflects real-world pathological practice where advanced fibrosis is more 
readily recognized and has higher inter- or intra-observer consistency.

Although these studies have successfully quantified fibrosis, none of 
them have used a standardized scoring classification method that 
subdivides a fibrosis score of 1 into scores 1A, 1B, and 1C, which are 
based on the location of the affected fibrosis. Hence, the current study 
focused on DL-based fibrosis quantification, specifically subclassifying a 
score of 1 into scores 1A, 1B, and 1C, which could ultimately be applied 
in both preclinical and clinical settings.

2 Materials and methods

2.1 Animal models

Liver tissue sections from previous animal studies conducted 
between 2018 and 2023 were reanalyzed. C57BL/6 J mice and Wistar rats 
of various ages were obtained from OrientBio (Seongnam, Korea) and 
Charles River (Sulzfeld, Germany). The animals were maintained in 
accordance with the guidelines set forth by the Institutional Animal Care 
and Use Committee of Asan Medical Center (IACUC number 2019–14-
123, 2020–02-234 and 2021–02-029) and other facilities. The disease 
models used included established methods, such as carbon tetrachloride, 
thioacetamide, choline-deficient L-amino acid-defined high-fat diet 
(HFD), a methionine-choline deficient-HFD, and streptozotocin-
induced hepatitis (STAM). These methods resulted in varying degrees of 
morphological changes that correlated with MASH. The methionine-
choline deficient-HFD mouse model was induced by feeding a diet 
containing 40% sucrose and 10% fat without methionine and choline 
(Research Diets, A02082002BR) for 8 weeks. The STAM mouse model 
was induced by a single subcutaneous injection of 200 μg streptozocin 
(S0130, Sigma-Aldrich, MO, USA) 2 days after birth, followed by feeding 
with a 60 kcal% fat diet (Research Diets, D12492) starting at age 4 weeks. 
Liver slides were obtained from different facilities that had established 
carbon tetrachloride, thioacetamide, and CDA-HFD MASH mouse 
models for their respective efficacy studies.

2.2 Histopathological examination

The animals were housed at Asan Medical Center and euthanized 
under isoflurane-induced anesthesia. Liver tissues obtained during 
necropsy were preserved in 10% neutral-buffered formalin for over 24 h. 
The tissues were routinely processed, embedded in paraffin, sectioned, 
and stained using the Picrosirius Red stain kit (24901–500, Polysciences, 
Inc., PA, USA) before being examined microscopically. In addition, 
Sirius Red-stained slides of carbon tetrachloride, thioacetamide, and 
choline-deficient L-amino acid-HFD mice models were obtained from 
other facilities. WSIs of liver sections intended for DL-based analysis 
were scanned using the Motic EasyScan Pro 6 (Motic, Vancouver, 
Canada). Histopathological scoring was conducted by an experienced 
veterinary pathologist utilizing the MASH CRN system (Table 1).

2.3 DL-based approach for fibrosis stage 
scoring

This study proposes two DL models for classifying stages of liver 
fibrosis. The first model categorizes fibrosis into 5 classes based on a 
scoring system (0, 1, 2, 3, or 4). The second model further subdivides 
score 1 into 7 subclasses (0, 1A, 1B, 1C, 2, 3, or 4). These subclasses are 
determined by histological differences observed in the central vein, 
portal triad areas, and fibrosis patterns, which are known to be clinically 
challenging to differentiate. Our approach offers the advantages of 
reproducibility and quantification in classification, adhering to the 
clinically established fibrosis stages for patients with MASH (23).

2.4 Patch-wise image preprocessing

All WSIs were saved in Aperio format (SVS) and imported 
into OpenSlide Python for subsequent processing (24). Due to the 
large size of WSIs, a set of non-overlapping patches measuring 
1,024 × 1,024 pixels was extracted from a WSI scanned at 
40 × magnification. To maintain consistent physical dimensions 
of tissue between 20 × and 40 × scanning magnifications, patches 
measuring 512 × 512 pixels were extracted from a WSI scanned at 
20 × magnification. The patches, each measuring 0.27 × 0.27 mm2, 
were utilized in training the classification model. Patch-wise 
preprocessing was conducted to exclude background patches and 
resize the selected patches. To eliminate background patch images, 
the patch images were converted to grayscale and binarized to 
differentiate between tissue and background using manual 
thresholding of pixel values. Only those patch images containing 
at least 75% tissue were used for training and validation. A set of 
WSI patch images was selected, as described above. To utilize 
computing resources efficiently, the selected WSI patch images 
were downsampled to 256 × 256 pixels. Ultimately, the dataset 
comprised 999,711 patch images derived from 914 WSIs.

2.5 Class distribution and dataset splitting

The distribution of liver fibrosis scores from 917 WSIs is provided 
in Table 2. Each score category contained over 100 WSIs, with score 0 
comprising 20% of the entire dataset. The score 1 subclass accounted 
for over 40% of the total, including more than 100 WSIs for each 
subclass. This allowed for individual evaluation of subclass 

TABLE 1 Fibrosis histopathological scoring system based on Kleiner et al. 
(23).

Score Definition

0 None

1A Mild, zone 3, perisinusoidal

1B Moderate, zone 3, perisinusoidal

1C Portal/periportal

2 Zone 3, perisinusoidal and portal/periportal

3 Bridging fibrosis

4 Cirrhosis
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classification. A 5-fold cross-validation was conducted to assess our 
methodology. The complete set of WSIs was divided into five subsets, 
each maintaining the same distribution of scores as the overall dataset. 
One subset was designated for validation, while the remaining four 
subsets were utilized for training the model. This process was repeated 
five times, with different training and validation sets in each iteration.

2.6 Patch-level model training

Our deep convolutional neural network for multi-class 
classification was based on the ResNet34 architecture (25). The final 
layer of the network was modified to predict a fibrosis score from a 
512-dimensional feature vector extracted by the residual layers from 
a patch image. The patch images were assigned labels corresponding 
to fibrosis scores derived from WSIs (Figure 1a).

The network is trained to reduce a cross-entropy loss between the 
predicted score and the true score of the patch:
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The RAdam optimizer (26) was used to update the network 
using mini-batches of 128 patches, with a learning rate set at 
0.001, beta set at 0.9–0.999, and epsilon set at 1e-8. Model training 
was iterated until the Matthews correlation coefficient (MCC) and 
Kappa from the validation results exceeded 0.8, completing the 
process within 50 epochs. In addition, image preprocessing and 
data augmentation techniques were applied to these tissue patches 
during training. Image preprocessing of the patches was 
performed using the heuristic pixel thresholding in Hue, 
Saturation, and Value color space to highlight collagen fibers 

stained by Picro Sirius Red (19). Data augmentations on the 
preprocessed images were performed. These augmentations 
included a combination of affine transformations (e.g., random 
rotation, horizontal and vertical flipping) and color space 
manipulations (e.g., random changes in brightness and contrast; 
random gamma correction; and random adjustments to hue, 
saturation, and value). Finally, the image was normalized to a 
value between 0 and 1 for use as input for training the model.

2.7 Hyperparameter tuning

To assess the influence of hyperparameter settings on model 
performance, a limited grid search was conducted, focusing 
primarily on the learning rate of the RAdam optimizer. Two 
learning rates, 1e-3 and 1e-4, were evaluated while keeping other 
optimizer parameters fixed. Each configuration was trained for 
100 epochs using the training and validation datasets, and 
performance was measured using the MCC and Cohen’s 
Kappa score.

A learning rate of 0.001 combined with 50 training epochs was 
ultimately selected, as this configuration consistently yielded 
MCC and Kappa values exceeding 0.8 while maintaining stable 
convergence and minimizing overfitting. Additionally, the impact 
of patch size was explored as a secondary factor. Input patches of 
1,024 × 1,024 pixels and 2,048 x 2,048 pixels were both resized to 
256 × 256 pixels before being fed into the model. Among these, 
the model trained on 1,024 × 1,024 patches demonstrated superior 
performance with respect to MCC and Kappa, suggesting that this 
resolution preserved sufficient contextual and structural 
information to support accurate classification under consistent 
training conditions.

2.8 WSI-level model inference

The models described above were validated using 5-fold cross-
validation with WSIs from the validation dataset. After 
aggregating all patch predictions for a WSI, the most frequently 
predicted class was designated as the fibrosis stage for that WSI 
(Figure 1b).

The identical image preprocessing applied during model 
training was applied to the validation dataset, except for 
data augmentation.

The performance of the proposed models was evaluated using 
metrics commonly used in multi-class classification tasks. Cohen’s 

TABLE 2 WSI dataset and patch images divided by score.

Score 0 1 2 3 4 Total

1A 1B 1C

Number of WSIs 187 146 121 113 133 108 106 914

Ratio of WSI 20.5% 16.0% 13.2% 12.4% 14.6% 11.8% 11.6% 100%

Number of patch images 173,598 116,566 171,051 74,433 166,974 148,739 148,350 999,711

Ratio of the patch image 17.4% 11.7% 17.1% 7.5% 16.7% 14.9% 14.8% 100%

36.2%

WSI, whole-slide image.
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Kappa coefficient (Kappa) indicated the level of agreement 
between the predicted and actual fibrosis scores for WSIs, with a 
value >0.75 signifying excellent agreement (25). Additionally, 
linear- and quadratic-weighted Kappa values were considered, as 
the agreement in higher fibrosis score classifications was deemed 
more significant. In comparison to accuracy, MCC offers a more 
informative evaluation in scenarios with class imbalance (27, 28).

The receiver operating characteristic curve illustrated the 
relationship between the true positive rate and the false positive 
rate, while the precision-recall curve depicted the relationship 
between precision and recall. Both curves were generated using 
the ratio of predicted classes from patches of WSIs. For multi-class 

classification, the area under the receiver operating characteristic 
curve (AUROC) and area under the precision-recall curve 
(AUPRC) were calculated using the one-vs-rest technique, 
comparing WSIs with the target fibrosis score against those with 
other scores. This strategy transformed a multi-class classification 
into a binary classification for each class. It was determined that 
a designated class label would be positive while all other class 
labels would be negative. Finally, the average AUROC and AUPRC 
were computed to provide a comprehensive evaluation across all 
classes and folds. The AUPRC is particularly sensitive to class 
imbalances between the dataset of the target class and the 
other classes.

FIGURE 1

Pipeline of the proposed approach for classifying fibrosis stages. (a) Patch-level training involves collecting patches from WSIs and training the model 
to classify the fibrosis score derived from these WSIs. (b) WSI-level inference entails collecting patches from new WSIs, predicting the scores of these 
patches, and determining the overall fibrosis score as the most frequently occurring score among the patches within the WSI.
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FIGURE 2

ROC curve and PR curve (blue solid line) represent the averaged curves from each fold (colored dotted lines) obtained through 5-fold cross-validation. 
(A) ROC curve and (B) PR curve for 5-class classification. (C) ROC curve and (D) PR curve for 7-class classification.

TABLE 3 Result of the 5-class classification model.

Fold Kappa L-Kappa Q-Kappa MCC AUROC AUPRC

0 0.815 0.873 0.912 0.815 0.982 0.949

1 0.869 0.909 0.937 0.871 0.979 0.927

2 0.793 0.785 0.770 0.794 0.968 0.914

3 0.732 0.784 0.812 0.735 0.941 0.826

4 0.808 0.851 0.880 0.810 0.959 0.913

Average 0.803 0.840 0.862 0.805 0.966 0.906

AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; L-Kappa, linear Kappa; MCC, Matthews correlation coefficient; Q-Kappa, 
quadratic Kappa.

TABLE 4 Result of the 7-class classification model.

Fold Kappa L-Kappa Q-Kappa MCC AUROC AUPRC

0 0.801 0.814 0.820 0.803 0.981 0.916

1 0.814 0.850 0.877 0.817 0.985 0.929

2 0.808 0.822 0.819 0.811 0.973 0.904

3 0.807 0.861 0.895 0.809 0.984 0.930

4 0.806 0.869 0.908 0.807 0.967 0.887

Average 0.807 0.843 0.864 0.809 0.978 0.913

AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; L-Kappa, linear Kappa; MCC, Matthews correlation coefficient; Q-Kappa, 
quadratic Kappa.
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3 Results

The proposed models were trained to predict fibrosis scores 
ranging from 0 to 4 for WSIs. The results are detailed in Tables 3, 
4. As a result of 5-fold cross-validation, the models were trained 
and validated for a maximum of 50 epochs each. The best 
validation performance was achieved at the 37th epoch for the 
5-class classification model and at the 34th epoch for the 
7-class model.

Using 5-fold cross-validation, the 5-class model achieved an 
average Kappa of 0.803, indicating moderate agreement between 
the predicted and true fibrosis scores. The weighted Kappa values 
(linear: 0.840, quadratic: 0.862) suggested a higher level of 
agreement. An MCC of 0.805 indicated good performance for 
classification tasks despite a score of 1, which constituted over 
40% of the entire dataset. By averaging the results from the 
one-vs-rest technique for each fold, the average AUROC was 
0.966, demonstrating excellent performance. Additionally, the 
AUPRC was 0.906, which accounted for the class imbalance 
between the target scores and others. The 7-class model achieved 
unweighted, linear, and quadratic values of 0.807, 0.843, and 
0.864, respectively; an MCC of 0.809; AUROC of 0.978; and 
AUPRC of 0.913, showing slightly superior performance compared 
to the 5-class model. Figure 2 illustrates the ROC curve and PR 
curve from the 5-fold cross-validation process.

Figure  3 shows a heatmap visualization of the predicted 
scores (0, 2, 3, 4) for various patches extracted from a WSI. Each 
color in the heatmap corresponds to a specific score predicted 
by the model for a particular image patch. The most frequent 
score is visually emphasized by a distinct color in the  
heatmap.

Figure  4 shows a heatmap comparing the scores of 1 with 
subclasses (1A, 1B, and 1C). Figure  5 illustrates the results of 
patch-level inference using a 7-class classification model. The 
patches were extracted from a box of WSIs, as shown in Figure 4. 

Each image displays the original patches (left) and the color-
overlayed patches (right). Background patches were excluded 
from the inference process.

FIGURE 3

WSI and heatmaps for fibrosis scores (0, 1, 2, 3, and 4). The scores for 
the patch images derived from WSI are predicted using a 5-class 
classification model, and the scores for the patches are represented 
on a color map.

FIGURE 4

WSI and heatmaps for fibrosis scores (0, 1A, 1B, 1C, 2, 3, and 4). The 
scores for the patch images derived from WSI are predicted using a 
7-class classification model, and these scores are mapped onto a 
color gradient. To illustrate the process of patch-level inference, a 
specific area in the image and heatmap is selected for closer 
examination in Figure 5.

FIGURE 5

Example of patch-level inference results from the 7-class 
classification model. The original patches (left: zoomed) are selected 
from a box of WSIs in Figure 4. Background patches are excluded 
due to the absence of tissue. The patch-level inference results are 
mapped onto the patches using a color map (right: predictions).
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FIGURE 6

ROC curve and PR curve (blue solid line) represent the average of the curves for each class (colored dotted lines) obtained from 5-fold cross-
validation. (A) ROC curve and (B) PR curve for 5-class classification. (C) ROC curve and (D) PR curve for 7-class classification.

4 Discussion

Liver fibrosis is a crucial parameter for diagnosing, evaluating 
prognosis, and assessing drug responsiveness in chronic liver 
diseases. Grading liver fibrosis in biopsy specimens is considered 
the gold standard in both clinical practice and animal models of 
MASH (29–32). In a retrospective study of patients with MASLD, 
among the histological features of the disease, only the fibrosis 
stage was directly associated with overall mortality and prognosis 
(33). However, grading liver fibrosis has the limitation of relying 
on the subjective interpretation of experienced pathologists.

Heinemann et al. (6, 21) introduced a DL-based model for 
scoring fibrosis stages that utilized a convolutional neural network 
architecture to extract features from WSIs. Our approach involved 
modifying a convolutional neural network architecture, 
specifically ResNet34, which is commonly used in classification 
tasks. Heinemann et  al. (21) applied an additional model to 
categorize the WSI-level score based on the feature map generated 
by the convolutional neural network. In the current study, the 
WSI-level fibrosis score was determined by identifying the most 
frequent scores from patches classified by our model. This method 

was predicated on carefully balancing the number of samples 
across different fibrosis stage scores to facilitate subclassification. 
To enhance the generalizability of the dataset, liver sections with 
varying staining intensities and patterns were collected from 
multiple testing facilities and MASH models. Furthermore, 
weights assigned to each class were incorporated into the 
calculation of the cross-entropy loss during the training process 
to address the imbalance in the number of patches extracted from 
the WSI.

The multi-class classification model was evaluated using the 
kappa statistic (6, 21), along with metrics derived from the 
confusion matrix. Hameed et al. (34) and Yu et al. (20) used the 
AUPRC and AUROC for each class. In the current study, the MCC 
and AUPRC were used to evaluate an imbalanced dataset in 
conjunction with the kappa statistic and AUROC. Our 5-class 
classification model demonstrated strong agreement.

Unlike previous studies, the current study developed a 7-class 
classification model to address the significant clinical challenge of 
distinguishing between subclasses. Our 7-class classification 
model exhibited superior performance compared to the 5-class 
classification model. The subclass classification enhanced the 
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overall classification performance, as evidenced by the differences 
in AUROC and AUPRC between the two models (Figure 6).

The heatmaps of WSIs for fibrosis scores displayed mixed-
colored patches rather than a uniform color. This variation 
suggests that multiple fibrosis features may coexist within a single 
liver tissue sample, potentially leading to inter-observer variability 
among pathologists. An example of patch-level inference is 
illustrated in Figure 5. In score 1A, mild fibrosis is evident in the 
central vein. A score 0 patch, indicating an area with no fibrosis, 
could be seen around the portal. However, score 1C or score 3 
patches were also observed, representing periportal fibrosis or 
bridging fibrosis, respectively, likely due to false-positive 
predictions. Furthermore, as depicted in Figure 5, score 1C shows 
collagen fibers extending from certain portal tracts or central 
veins, which may be classified as score 2 or as colored patches 
corresponding to scores 1A or 1B. These collagen fibers are 
normal structures found in healthy blood vessels that have been 

stained with Sirius Red and can be  misinterpreted as fibrosis. 
However, in cases with a severe degree of MASH progression, 
ballooning degeneration and lipid droplets associated with 
steatosis can be  mistaken for blood vessels, causing score 1B 
patches to appear. Moreover, liver fibrosis initially develops 
around the central vein and subsequently extends to the portal 
tract due to their physiological characteristics (35). In advanced 
stage of fibrosis, fibrotic changes around the central vein and 
portal areas are often intermingled, such that score 1B and score 
2 patches are frequently observed together. Similarly, score 3 
exhibits a score 0 patch in an area devoid of bridging fibrosis. In 
score 2, fibrosis is present in both the central vein and portal tract, 
and the prediction of colored patches aligns with the pathologist’s 
score. Score 4 is predicted as patches that are consistent with the 
pathologist’s score due to the characteristic appearance of liver 
cirrhosis; however, certain areas exhibit attenuated fibrosis 
resembling bridging fibrosis, which are predicted as score 3.

Artifact is a broad term that refers to alterations in the 
components of tissue structure caused by extraneous factors, such 
as biopsy, fixation, processing, sectioning, and staining. These 
factors can lead to improper tissue preparation (35). Figure  7 
shows overstaining artifacts leading to false-positive fibrosis 
predictions. Experienced pathologists often exclude these artifacts 
when reading and scoring slides; however, DL algorithms may 
misrepresent artifacts in inaccurately scored heatmaps, which can 
adversely affect overall score predictions.

A previous study (36, 37) attempted to detect and identify 
these potential artifacts in the inference process. The study 
focused on the detection of artifacts present on the slide, with the 
understanding that hematoxylin and eosin-stained slides were 
typically used in such cases. Future studies must consider 
incorporating an artifact detection process into the preprocessing 
pipeline. The challenge is to collect artifacts on Sirius Red-stained 
slides. Furthermore, an artifact dataset from a hematoxylin and 
eosin slide can be converted into a universal artifact dataset by 
applying stain normalization between different stain protocols.

Further research may be necessary to develop a pathologist-
like scoring or staging system for DL, which should include 
additional annotations of vessels, portal tracts, bile ducts, and 
artifacts that can result in inaccurate predictions. Moreover, the 
clinical application of our study is limited because we  have 
exclusively focused on DL methods for detecting fibrosis. The 
integration of DL methods for assessing ballooning degeneration, 
lobular inflammation, and steatosis is expected to be  widely 
adopted in the routine pathological grading of MASLD/MASH 
(21). Despite these limitations, our study is significant in 
subdividing fibrosis score 1 into advanced stages, which may 
enhance the assessment efficacy of MASH treatments in 
preclinical studies, particularly those targeting fibrosis, and assist 
specialized pathologists in their evaluations.
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FIGURE 7

Example of error in patch-level inference due to artifacts that occur 
during the preparation of the liver slide. (a) Left: original WSI; right: 
WSI-level inference result. (b) Zoomed image from a section of the 
image in Panel a. (c) Left: original WSI; right: WSI-level inference 
result. (d) Zoomed image from a section of the image in Panel c.
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