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Background: Percutaneous coronary intervention (PCI) has become a crucial 
method for the treatment of acute coronary syndromes (ACS), which includes 
ST-segment elevation myocardial infarction (STEMI), non-ST-segment elevation 
myocardial infarction (NSTEMI), and unstable angina (UA). However, contrast-
induced acute kidney injury(CI-AKI) is one of its serious complications. A growing 
number of models have been used to predict ACS patients undergoing coronary 
angiography (CAG) or PCI, but the predictive efficacy of these models is unclear.
Methods: We systematically searched PubMed, Web of Science, The Cochrane 
Library, and Embase from the inception to May 18, 2024. This study excluded 
non-English studies to reduce potential language bias. The Prediction Model 
Risk of Bias Assessment Tool (PROBAST) was used to evaluate bias risk and 
applicability of the studies in the prediction model, and the area under the curve 
(AUC) values of the models were meta-analyzed by Stata 15.0 software.
Results: 13,834 articles were retrieved, and 16 studies were finally included after 
screening. The incidence of CI-AKI in patients with ACS underwent PCI or CAG 
ranged from 4.66 to 19.85%. The developed models exhibited a pooled AUC 
of 0.804 (95% CI: 0.772–0.836), while the validation models demonstrated a 
pooled AUC of 0.785 (95% CI: 0.747–0.823). However, significant heterogeneity 
was observed in both the development and validation cohorts (89.7 and 84.8%, 
respectively), along with publication bias (p < 0.05). All included studies were 
assessed as having a high risk of bias, mainly due to inappropriate data sources 
and bias in statistical analysis.
Conclusion: No existing model for CI-AKI after CAG or PCI can currently 
be recommended for routine use due to the high risk of bias and the lack of 
external validation. Researchers should follow PROBAST and use a prospective 
design with a large sample size to improve the quality of prediction models and 
provide better clinical value.
Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD42024573128.
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1 Introduction

Globally, it is Acute coronary syndromes(ACS) has estimated 
that more than 7 million people are diagnosed with ACS each 
year (1). It constitutes a major public health challenge, 
characterized by high morbidity and mortality, and encompasses 
three types: ST-segment elevation myocardial infarction 
(STEMI), non-ST-segment elevation myocardial infarction 
(NSTEMI), and unstable angina (UA) (2, 3). With the 
advancement in current diagnostic and therapeutic technology, 
coronary angiography(CAG) and percutaneous coronary 
intervention (PCI) have emerged as pivotal methods for treating 
ACS, while simultaneously serving as the key strategies to 
decrease mortality rates. Both procedures necessitate the 
administration of contrast agents: the former serves to visualize 
coronary artery lesions, and the latter entails interventional 
therapy for said lesions. However, a serious complication known 
as contrast-induced acute kidney injury (CI-AKI) may occur 
following CAG or PCI. CI-AKI is the third leading cause of 
hospital-acquired renal insufficiency (4). Some studies have 
shown that the incidence of CI-AKI ranges from 5.1 to 10.5% in 
patients who underwent CAG or PCI (5, 6).

Acute myocardial infarction (AMI), including STEMI and 
NSTEMI, as the most severe type of ACS, requires particular 
attention regarding subsequent risk of CI-AKI. This is not only due 
to hemodynamic instability but also because the systemic 
inflammatory response triggered by AMI and the unique clinical 
phenotypes of patients collectively create a high-risk internal 
environment prone to kidney injury (7, 8).

CI-AKI is associated with an increased risk of mortality, 
cardiovascular events, hemodialysis, renal failure, and prolonged 
hospitalization (9, 10). This imposes a heavy economic burden 
on patients and society. Brinjikji et al.’s (11) and Tian et al.’s (12) 
studies conducted systematic reviews and meta-analyses on 
CI-AKI, but did not focus on ACS patients and were also 
unrelated to the predictive models. Both the Mehran score (13) 
and the score (14) based on the data from the National 
Cardiovascular Data Registry Cath-PCI registry were validated 
to have good predictive performance, but neither of them can 
be  used to identify high-risk patients (such as patients with 
chronic renal insufficiency). Subsequently, some researchers have 
further developed prediction models. However, the majority of 
current prediction models are designed for subtypes of ACS, such 
as STEMI or NSTEMI, while prediction models that focus on 
ACS as a whole are relatively rare. Although David et al. (15) 
conducted a systematic review and meta-analysis of the 
prediction models for CI-AKI, they not only failed to focus on 
patients with ACS but also did not apply Prediction Model Risk 
of Bias Assessment Tool (PROBAST), which was developed in 
2019 and is now widely used. Moreover, the current CI-AKI 
prediction models lack of methodological standardization in 
model construction and validation.

Therefore, this study aimes to screen and systematically 
review existing CI-AKI risk prediction models developed and 
published for patients with ACS, and conduct a meta-analysis. It 
will provide a valuable reference for clinical application and 
future research.

2 Manuscript formatting

2.1 Methods

This study followed the guidelines for Preferred Reporting Items 
for Systematic reviews and Meta-Analyses (PRISMA). The Prediction 
Model Risk of Bias Assessment Tool(PROBAST) was used to assess 
the risk of bias in the mode. The study protocol was registered on 
PROSPERO (registration number: CRD42024573128).

2.1.1 Search strategy
We searched the English databases, including PubMed, Web of 

Science, The Cochrane Library and Embase, which were searched 
from the inception of the databases until May 18, 2024. The search 
strategy combined the use of MeSH terms and free words, with the 
words connected by the logical operators”AND” and “OR.” The 
keywords including: “acute coronary syndrome,” “percutaneous 
coronary intervention,” “acute kidney injury,” “contrast-induced acute 
kidney injury,” “predictive model*,” “risk factor*,” and so on. Detailed 
strategies for searching can be found in the Supplementary materials.

We utilized the PICOTS system, recommended by the Critical 
Appraisal and Data Extraction for Systematic Reviews of Prediction 
Modeling Studies (CHARMS) checklist for the systematic review. The 
key items of our systematic review are described as follows:

P (Population): Patients with ACS and underwent PCI or CAG.
I (Intervention model): Developed and published risk prediction 

models for CI-AKI in patients with ACS (predictors ≥ 2).
C (Comparator): No competing model.
O (Outcome): The findings focused on CI-AKI, rather than 

its subgroups.
T (Timing): The outcome was predicted after evaluating basic 

information at admission, clinical scoring scale results, and 
laboratory indicators.

S (Setting): The purpose of the risk prediction model is to predict 
the occurrence of CI-AKI after PCI or CAG in patients with 
ACS, to facilitate the implementation of preventive measures 
and prevent the occurrence of adverse events.

2.1.2 Inclusion and exclusion criteria
The inclusion criteria for studies were: (1) studies involving 

patients with ACS (including STEMI, NSTEMI and UA) and 
underwent PCI or CAG; (2) an observational study design; (3) 
reported a prediction model; (4) the outcome of interest was CI-AKI.

The exclusion criteria were: (1) studies that did not develop a 
predictive model; (2) outcome of CI-AKI appeared in subgroups; (3) 
non-English studies were excluded to avoid translation bias and ensure 
accurate information extraction; (4) the full text could not be retrieved; 
(5) conference abstracts, letters, gray literature; (6) unable to extract data.

2.1.3 Study selection and screening
The selection process for the study was conducted independently 

by two researchers. Firstly, duplicate studies, conference abstracts and 
letters were removed. Secondly, the remained studies were assessed 
based on their titles and abstracts to determine their eligibility. Then 
the full text of the inclusion and exclusion criteria was reviewed after 
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they were applied. Finally, studies with inconsistent patients and 
outcomes were removed, and 16 studies were included. When there 
are differences in the screening results, the three researchers will 
discuss and negotiate together to reach a consensus.

2.1.4 Data extraction
Two researchers independently screened the search results, 

extracted data and cross-checked the results. Disagreements were 
resolved through discussion with a third researcher.

The information extracted from the remained studies was 
categorized into two parts: (1) Basic information: author, title, year of 
publication, research design, participants, interventional procedure 
type, data source, study period, hydration protocol, contrast protocol, 
country, sample size and cases. (2) model information: missing data 
handling, variable selection method, model development method, 
calibration method, validation method, final predictors, model 
performance (If more than one model was established, the optimal 
AUC was extracted.), model presentation and clinical application. The 
above information was extracted by one person and checked by 
another person to ensure the accuracy and consistency of the results.

2.1.5 Quality assessment
To assess the potential risk of bias in the included predictive 

model studies, the Prediction Model Risk of Bias Assessment Tool 
(PROBAST) was applied, which was developed in 2019, including bias 
risk assessment and applicability assessment (16, 17). It includes four 
domains: participants, predictors, results, and analysis. Each is rated 
as “low,” “high,” or “unclear” risk of bias based on two to nine signature 
questions answered with “yes/probably yes,” “no/probably no,” or “no 
information.” A domain is rated “high” if any signature question is 
“no/probably no”; “low” if all are “yes/probably yes”; and “unclear” if 
at least one is “no information” and the rest are “yes/probably yes.” 
According to the evaluation results of each field, the bias risk and 
applicability of the prediction model are obtained. The evaluation of 
PROBAST is carried out independently by two researchers, and in 
case of disagreement, a third party was consulted.

2.1.6 Data synthesis and statistical analysis
A meta-analysis of the area under the curve (AUC) values from 

the validated models was conducted using Stata 15.0, with specific 
values and 95% confidence intervals (CI) provided. An AUC range of 
0.7 to 0.9 indicates moderate predictive accuracy, while an AUC > 0.9 
suggests high diagnostic accuracy. Heterogeneity was tested using the 
I2 index and Cochrane Q test. If p > 0.05 and I2 ≤ 50%, the 
heterogeneity is considered acceptable, and a fixed-effect model is 
used; otherwise, a random-effects model is employed to combine the 
effect sizes. A p < 0.05 is considered statistically significant. Funnel 
plot and Egger’s test were used to identify publication bias, with 
p > 0.05 indicating a low likelihood of publication bias. If there was a 
potential bias, the trim-and-fill method was used to reassess.

2.2 Results

2.2.1 Study screening
The Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) 2020 is illustrated in Figure 1, describing the 
comprehensive search process and results.

A total of 13,834 publications were retrieved from the systematic 
search in four databases. After the 3,551 duplicate records identified in 
all databases were removed, the remaining 10,283 were screened by 
reading titles and abstracts. After the selection, 162 articles were read in 
full, and finally 16 were included.

2.2.2 Characteristics of the included studies
Table 1 summarizes the design and participant characteristics of 

the 16 included studies. These studies were published between 2017 
and 2024, with nine of them conducted in China. Of the included 
studies, two were prospective studies, and 14 were retrospective 
studies. The subjects in four studies were ACS patients, and those in 
12 studies were subtypes of ACS. 13 studies were patients with PCI 
and three were patients with CAG or PCI. Nine studies clearly 
indicated that the type of interventional procedure was emergency 
PCI, while the other seven did not make a clear distinction. The 
sample sizes of these studies varied from 217 to 82,186 individuals. 
Only five studies specified the hydration protocols and contrast agent 
protocols, while the remaining studies did not provide detailed 
information (Supplementary Table S1).

Table 2 provides details about the predictive models used in the 
included studies. In the realm of model development, 14 studies have 
employed multivariate logistic regression analysis, whereas two 
studies have implemented machine learning methodologies. As for the 
method of variable selection, nine studies used univariate analysis to 
select the factors related to CI-AKI in ACS patients, and then used 
multivariate regression analysis to select independent predictive 
factors. In two of the included studies, a univariate analysis was 
carried out, LASSO regression was utilized to identify potential 
predictors, and subsequently, multivariate logistic regression was 
applied to develop the model. In the other two studies, LASSO 
regression was utilized to identify predictors, followed by multivariate 
logistic regression for modeling. Of the 16 included studies, at most 
15 predictors were included, and at least three predictors were 
included. The most frequently utilized predictive factors across the 
studies were age, serum creatinine (SCr) and left ventricular ejection 
fraction (LVEF) both appearing in each of the seven models. 
Additionally, estimated glomerular filtration rate (eGFR) and use of 
intra-aortic balloon pump (IABP) were commonly used in eight and 
five models, respectively. Other predictors included diabetes 
mellitus(DM), multivessel disease, chronic kidney disease(CKD), 
hypotension, hemoglobin, and highly sensitive C-reactive 
protein(hsCRP), among others.

Among the included studies, 12 studies underwent internal 
validation, while two studies underwent external validation. Yinghua 
et al.’s model and Xuejun et al.’s model contained both internal and 
external validation, which shows that their research stands out (18, 19).

Discrimination, as assessed by the C-statistic, is the most critical 
metric for evaluating the predictive performance of a model. Reported 
C statistical values ranged from 0.715 to 1.000, which shows good 
prediction performance (AUC>0.700). Calibration was reported in 13 
models, with the Hosmer-Lemeshow test being the most commonly 
used method. In addition, a total of three studies did not report 
calibration information. In terms of clinical application, only four out 
of the 16 studies addressed this aspect, while the remaining studies did 
not mention it (19–22). In the included studies, the models presented 
different forms, mainly risk scores and nomograms. Additionally, two 
models used website, the other two were Random Forest (RF) models.
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2.2.3 Risk of bias and applicability assessment
We used the PROBAST to assess the risk of bias and applicability 

of all 16 included researches (Table 3). All studies were assessed as 
having a high risk of bias, indicating methodological problems during 
development or validation.

In the participant domain, all studies were identified as having a 
high risk of bias, mainly due to the type of study and the risk of disease 
in the subjects studied. In the predictor domain, all of the studies were 
determined to have a low risk of bias. Among the outcome domains 
of the 16 studies, five had a high risk of bias due to the inclusion of 
predictors in the outcome definition, while the remainder exhibited a 
low risk of bias. In the analysis domain, the risk of bias assessment 
results of two studies in this field were “unclear,” and the rest were 
“high risk of bias.” The sample size is reasonable according to whether 
EPV (events per variable) is greater than or equal to 20. In three 
articles, it was not possible to judge whether the sample size was 
reasonable because EPVs from model development could not 
be calculated or validation set data were not reported (23–25). Six 
studies partially or fully converted continuous variables to categorical 
variables (24–29), nine studies did not have enough information to 
determine whether the methods for handling missing data were 
appropriate (18, 20–22, 25, 27–30), three studies handled the missing 
data inappropriately (23, 24, 31). In the screening of predictors, 11 of 
the 16 studies were based on univariate analysis (18–20, 23–29, 32). 
Almost all of the studies provided no information about the 

complexity of the data. Two studies did not perform calibration (30, 
33). The internal validation methods of four studies included only 
random split validation or no internal validation (26, 27, 29, 30). Three 
studies did not provide information on the coefficients of the 
predictors in the multivariate regression model (19, 31, 33).

The assessment of the applicability of the 16 included studies 
included three aspects: participants, predictors, and outcomes. In the 
participant domain, three studies were considered to have a high risk 
of applicability owing to the participants being limited to specific 
populations with ACS. Both the predictor and outcome domains were 
of low risk of applicability.

2.2.4 Meta-analysis of derivation models
There were discrepancies in the details of the included models and 

the information provided was incomplete. Only 13 studies met the 
synthetic criteria. Heterogeneity test results showed that I2 = 89.7% 
(p = 0.000), indicating a high degree of heterogeneity between studies, 
so the random effects model was used for meta-analysis. The pooled 
AUC estimate of the developed models was 0.804 (95% CI: 0.772–
0.836; Figure 2). Sensitivity analyses confirmed the robustness of the 
results (Supplementary Figure S1). Egger’s test (t = −6.90, p = 0.000) 
showed a significant publication bias, which was also confirmed by 
funnel plots (Supplementary Figure S2), but the trimming and filling 
method did not fill in the studies, indicating that the meta-analysis 
results were robust.

FIGURE 1

Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart of literature search and selection.
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TABLE 1  Overview of basic data of the included studies.

Author year Country Study design Participants Interventional 
procedure type

Data source Main 
outcome

Total Cases/Sample 
size (%)

Stefano (26) Italy Prospective cohort study STEMI Primary PCI
Policlinico San Matteo in Pavia, Italy, and Centro Cardiologico

Monzino in Milan, Italy
CI-AKI 3,736 229/3736 (6.13%)

Yinghua (19) China Retrospective study ACS PCI
Affiliated Hospital of Xuzhou Medical University and the East 

Hospital of Xuzhou Medical University
CI-AKI 939 D:69/722

Benjamin (23) America Retrospective cohort study STEMI Primary PCI UT Methodist Hospital AKI 840 /

Yuhei (27) Japan
Retrospective observational 

study
STEMI Primary PCI

Miyazaki Medical Association

Hospital
AKI 908 77/908 (8.48%)

Akaphol (24) Thailand Retrospective cohort STEMI Primary PCI Central Chest Institute of Thailand,a tertiary care hospital AKI 1,617 195/1617 (12.06%)

Pei-Chun (30) China Retrospective data ACS PCI Taiwan National Health Insurance Research Database AKI 82,186 3829/82186 (4.66%)

Amir (33) Iran Retrospective study ACS PCI Tehran Heart Center AKIN 4,592 646/4592 (14.07%)

Hang (20) China Retrospective analysis STEMI Emergency PCI Xuzhou Medical University Hospital CI-AKI 542 74/542 (13.65%)

Faysal (28) Turkey Retrospective study STEMI Primary PCI Van Training and Research hospital CIN 2,289 219/2289 (9.57%)

Kai (21) China Retrospective study NSTE-ACS PCI The Affiliated Hospital of Xuzhou Medical University CI-AKI 1,156 168/1156 (14.53%)

Yue (22) China Retrospective study ACS PCI
Atherosclerotic cardiovascular disease (ASCVD) database-

Affiliated Hospital of Xuzhou Medical University
CI-AKI 1,073 213/1073 (19.85%)

Sukrisd (25) Thailand Retrospective cohort STEMI Primary PCI Central Chest Institute of Thailand (CCIT) CIN 217 43/217 (19.82%)

Kai-yang (32) China Prospective observational study
STEMI/NSTE-

ACS
Emergent PCI Guangdong general hospital CIN 692 55/692 (7.95%)

Hui (29) China Retrospective analysis STEMI Primary CAG/PCI

D: the First Affiliated Hospital of Xinxiang Medical College; V: 

the First Affiliated Hospital of Henan

Polytechnic University

AKI 452 D:57/364

Ling (31) China Retrospective cohort study AMI CAG/PCI Changzhou No.2 People’s Hospital of Nanjing Medical University CI-AKI 1,495 226/1495 (15.12%)

Xuejun (18) China Retrospective study AMI CAG/PCI

D: central branch of The Affiliated Changzhou No.2 people’s 

Hospital of Nanjing Medical University; V: Yanghu branch of 

hospital

CI-AKI 920 164/920 (17.83%)

STEMI, ST-elevation myocardial infarction; pPCI, primary Percutaneous Coronary Interventions; ACS, acute coronary syndromes; CAG, coronary angiography; PCI, percutaneous coronary intervention; AMI, acute myocardial infarction; T2DM, type 2 diabetes 
mellitus; NSTE-ACS, non-ST-elevation acute coronary syndrome, DM, diabetes mellitus; D, derivation; V, validation; CI-AKI, contrast-induced acute kidney injury; AKI, acute kidney injury; AKIN, acute kidney injury necrosis; CIN, contrast-induced nephropathy; 
SCr, serum creatinine.
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2.2.5 Meta-analysis of validation models
The validation model utilized a random-effects model to 

compute the combined AUC, resulting in 0.785 (95% CI: 0.747–
0.823; Figure  3). The I2 = 84.8% (p = 0.000), suggesting a high 
degree of heterogeneity among the researches. Sensitivity analysis 
showed that all the values were within the estimated 95% CI, 
indicating the robustness of the results (Supplementary Figure S3). 
Egger’s test (t = −4.11, p = 0.002) showed a significant publication 
bias, which was also confirmed by funnel plots 
(Supplementary Figure S4). However, the trimming and filling 
method did not work, indicating that the results were robust.

2.3 Discussion

This study systematically reviewed the risk prediction models for 
CI-AKI in patients with ACS after PCI or CAG, aiming to screen for 
prediction models suitable for clinical use. 16 risk prediction models 
were included in this study, and the modeling method was mainly 
logistic regression analysis, and only one quarter of the models were 
externally validated. The AUC values reported range from 0.715 to 
1.000, indicating that these models have good predictive performance. 
However, upon assessment with PROBAST, all included studies were 
rated as having a high risk of bias, which would weaken their practical 
utility in clinical applications. In the development models, the pooled 
AUC was 0.804 (95% CI: 0.772–0.836), and 0.785 (95% CI: 0.747–
0.823) in the validation model.

2.3.1 Prediction factor analysis
In this study, age, eGFR, SCr, LVEF, and the use of IABP were 

commonly used predictors. The results are consistent with Mehran’s 
models (34). Advanced age was correlated with a greater incidence of 
CIN, aligning with the findings of a meta-analysis (35). The reason is that 
the kidney metabolism of elderly patients is slow, and after the application 
of a contrast agent, it is more likely to cause renal hemodynamic changes, 
renal medulla hypoxia, renal tubular poisoning and other conditions (36, 
37). Therefore, clinical attention should be paid to the elderly, alert to the 
occurrence of postoperative kidney injury.

The eGFR is an evaluation index of renal function, representing 
the basic renal function and compensatory ability. The lower the value, 
the higher the risk of occurrence and progression of renal damage. 
SCr is the most commonly used marker for assessing renal function; 
however, it is prone to variations due to factors such as age, sex, race, 
and protein consumption, and it has limited specificity. In contrast, 
cystatin C (CyC) offers greater sensitivity and can swiftly identify early 
(within 24 h) acute renal function changes with high sensitivity and 
dependability. The elevation in CyC levels typically peaks within 24 h 
following exposure to a nephrotoxic agent (38). It can not only early 
diagnose CI-AKI at 24 h after CM exposure, but also predict the 
occurrence of future major adverse events (MAE). Therefore, CyC 
levels can be measured at an early stage for early intervention.

Patients exhibiting a low left ventricular ejection fraction (LVEF) 
are at an increased risk for developing CI-AKI. This heightened risk 
could be attributed to their diminished cardiac output, which may 
adversely affect tissue and organ perfusion, leading to compromised 
renal function and a less favorable prognosis (21).

The use of IABP is an indicator of hemodynamic instability and is an 
independent predictor of CA-AKI (39). Patients with an IABP typically 

exhibit severe illness and compromised cardiac function. These 
individuals often experience reduced kidney perfusion and are at an 
increased risk of kidney injury, a finding that aligns with the observations 
of Reza et al. (40). The amount of intraoperative contrast agent is also 
stressed. In 2023, Aiste’s team proposed a simple strategy, building on 
previous theory, to reduce the amount of contrast used during PCI and 
thereby reduce the risk for CI-AKI (41). For patients with diabetes, on the 
one hand, the use of hypoglycemic drugs is essential. In a systematic 
review, SGLT2-I was found to reduce the risk of developing CI-AKI by 
63% in patients with diabetes after CAG or PCI (42). Another study of 
646 AMI patients with diabetes found that the use of SGLT2-I reduced 
the risk of both in-hospital and long-term adverse cardiovascular 
outcomes (43). On the other hand, monitoring of fasting plasma glucose 
and glycosylated hemoglobin A1c (HbA1c) is essential. Yu’s group 
investigated the relationship between Stress hyperglycemia ratio (SHR) 
and CI-AKI in a ratio of the above two. It was found that both the lowest 
and highest levels of fasting SHR were significantly associated with an 
increased occurrence of CI-AKI (44). However, current models rely 
heavily on static indicators (age, eGFR, etc.) Future efforts should focus 
on integrating mechanistic biomarkers that reflect the dynamic disease 
trajectories post-AMI (45) and personalized risk, such as novel RNA 
biomarkers (HCG15 and Morrbid) (46) or even gut microbiota (47), to 
achieve more precise prediction.

The included models contain preoperative and intraoperative 
predictors. Risk assessment using preoperative predictors helps 
identify high-risk CI-AKI patients early, facilitating preoperative 
planning and guiding the application of intraoperative preventive 
measures. For intraoperative predictors, all relevant data are available 
after surgery, allowing for accurate risk prediction. This final risk 
assessment is superior to a single preoperative assessment and can 
directly guide enhanced monitoring and precise management of high-
risk patients. Therefore, preoperative and intraoperative predictors 
should be  integrated to establish a dynamic assessment system, 
enabling full-course risk management from preoperative early 
warning to postoperative precise intervention.

2.3.2 Deficiencies and suggestions of the models
There are some shortcomings in the existing prediction models.
In the data source, only two of the included studies were 

prospective, while the rest were retrospective. Compared with 
prospective studies, retrospective studies may overstate model 
performance: they may involve data collection with known outcomes, 
easily introducing information unavailable in real-world model 
applications; data mostly come from single-center medical 
institutions, which may introduce selection bias due to specific 
selection criteria of the institutions and diagnostic-therapeutic 
protocols. The patients in these institutions have more severe and 
typical conditions, while mild cases or negative outcomes may 
be excluded. Improper handling of missing values in the data can 
easily introduce bias. Consequently, model performance may only 
be suited to historical data, and its generalizability is questionable. 
Most of the included studies were conducted in Asia. Since Asian 
populations differ from other regions in disease epidemiology and 
treatment strategies, the international application and promotion of 
the studies may be limited. Therefore, future studies should conduct 
multi-center, cross-regional prospective cohort studies with more 
geographically representative populations to verify its global 
generalizability. There is no unified standard for CI-AKI currently 
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TABLE 2  Overview of the information of the included prediction models.

Author 
year

Variable selection
Model 
development 
method

Calibration 
method

Clinical 
application

Validation 
method

Final predictors

Model 
performance 
(AUC/C-
statistic)

Model 
presentation

Stefano (26)

Univariate analysis and 

multivariate logistic 

regression analysis

Multivariable logistic 

regression model

Hosmer-

Lemeshow test
NI External validation

Killip class (II, III), Killip class (IV), 

Diabetes, Anterior STEMI, Age > 75 years, 

eGFR<60 ml/min/1.73m2

D:0.8379(0.802-0.8738);

V:0.84
Risk score

Yinghua (19)
Univariate and multivariate 

regression analyses

Multivariate 

regression analysis

Hosmer-

Lemeshow test, 

Calibration plot

DCA

Internal(self-sampling 

method) and external 

validation

Age, eGFR, TyG index, PNI
D:0.785(0.729-0.841);

V:0.802(0.699-0.905)
Nomogram model

Benjamin (23) Backward selection
Multivariable logistic 

regression model

Hosmer-

Lemeshow test
NI

Internal

cross-validation

Age, history of CKD, eGFR, LVEF, LVEDP, 

whether the patient was hypotensive, 

whether the patient received an IABP

D:0.77(0.70-0.83);

V:0.76(0.70-0.82)
A web-based tool

Yuhei (27) Stepwise backward
Multivariable logistic 

regression model

Hosmer-

Lemeshow test
NI Internal validation

Blood sugar(BS) ≥200 mg/dL, high-

sensitivity troponin I(hsTnI) >1.6 ng/dL 

(normal upper limit×50), Albumin ≤3.5 

mg/dL, eGFR <45 mL/min/1.73 m2

D:0.754(0.733-0.846);

V:0.754(0.644-0.839)
Risk score

Akaphol (24) Backward elimination
Multivariable logistic 

regression model

Hosmer-

Lemeshow test, 

Calibration plot

NI Internal validation

Age, baseline creatinine, LVEF < 40%, 

multi-vessel pPCI, treated with thrombus 

aspiration, inserted IABP, pre and intra-

procedural cardiogenic shock, congestive 

heart failure

D:0.78(0.75-0.82);

V:0.75(0.72-0.79)
An online web

Pei-Chun (30) Clinically relevant variables
Multivariable logistic 

model
NI NI Internal validation

Age, DM, ventilator use, prior AKI, number 

of intervened

vessels, CKD, IABP use, cardiogenic shock

D:0.874(0.868-0.881);

V:0.8624(0.8515-

0.8733)

ADVANCIS Score

Amir (33) Lasso, SHAP

Machine 

learning(NB, LR, CB, 

LMP, RF)

NI NI

Internal validation 

(five-fold cross-

validation)

LVEF, FPG, creatinine, mean creatinine, 

eGFR
AUC=0.775

Random Forest 

model

Hang (20)

Univariate analysis, LASSO 

and multivariate logistic 

regression analysis

Multivariate logistic 

regression analysis

Hosmer-

Lemeshow test, 

Calibration 

curves

DCA
Internal validation 

(Bootstrap)
DM, LVEF, SII,NT-proBNP, hsCRP

D:0.84(0.790-0.890);

V:0.844(0.762-0.926)
Nomogram model

(Continued)
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TABLE 2  (Continued)

Author 
year

Variable selection
Model 
development 
method

Calibration 
method

Clinical 
application

Validation 
method

Final predictors

Model 
performance 
(AUC/C-
statistic)

Model 
presentation

Faysal (28)

Univariate analysis,Lasso and 

multivariate logistic 

regression analysis

Multivariable logistic 

regression analysis
Calibration plot NI

Internal validation (A 

bootstrap of 200 

replicates)

Age, Hypertension, Hemoglobin, eGFR, 

Albumin, SIIRI, LVEF, Lesion length, Pain-

to-balloon time

AUC=0.97 Nomogram model

Kai (21)

LASSO regression and 

multivariable logistic 

regression analysis

Multivariate logistic 

regression analysis

Hosmer–

Lemeshow test, 

Calibration plot

DCA

Internal validation 

(Bootstrap internal 

verification method)

Age >75, LVEF, DM, FAR, hsCRP, 

lymphocyte count

D:0.835(0.800-0.871);

V:0.767(0.711-0.824)
Nomogram model

Yue (22)
LASSO regression and 

multivariate analyses

Multivariate logistic 

regression analysis

Calibration 

curves
DCA

Internal validation 

(Bootstrap self-

sampling method)

Subtypes of ACS, age>75, multivessel 

coronary artery disease, hyperuricemia, 

LDL-C, TyG index, eGFR

D:0.811(0.766-0.844);

V:0.773(0.712-0.829)
Nomogram model

Sukrisd (25)

Univariate analysis and 

multivariate logistic 

regression analysis

Multivariable logistic 

regression analysis

Hosmer-

Lemeshow, 

Calibration plot

NI

Internal 

validation(1,000 

replicates bootstrapped 

sampling)

Ejection fraction < 40%, Triple-vessel 

disease, Use of IABP

D:0.83(0.76-0.90);

V:0.77(0.68-0.85)

Risk Stratification 

Score

Kai-Yang (32)

Univariate analysis and 

multivariate logistic 

regression analysis

Multivariate logistic 

regression analysis

Hosmer-

Lemeshow test
NI

Internal validation 

(bootstrap

method)

Age>75, baseline SCr>1.5 mg/dl, 

hypotension, the use of IABP
V:0.828(0.737-0.920) Risk score

Hui (29)

Univariate logistic regression

analysis and multivariate 

logistic regression analysis

Multivariate logistic 

regression analysis

Hosmer-

Lemeshow test, 

Calibration chart

NI External validation

Age > 72, ejection fraction of no more than 

40%, baseline SCr > 102.7 mmol/L, RDW > 

13.15, MDCLs

D:0.721(0.652-0.790);

V:0.731(0.624-0.838)
Risk score

Ling (31) Boruta algorithm

Machine 

learning(DT, SVW, 

RF, KNN, NB, GBM)

NI NI

Internal validation 

Ten-fold cross-

validation

Neutrophil percentage, age, Free 

triiodothyronine, Preoperation hypotension, 

SCr, Hemoglobin, LDL-C, Total 

triglycerides, Brain natriuretic peptide, 

WBC, HDL-C, Heart rate, BMI, Cardiac 

troponin I, SBP

D:1.000(1.000-1.000);

V:0.82(0.76-0.87)

Random Forest 

model

Xuejun (18)

Univariate logistic regression

analysis and multivariate 

logistic regression analysis

Multivariate logistic 

regression analysis

Hosmer-

Lemeshow test, 

Calibration plot

NI
Internal and external 

validation

Hemoglobin, contrast volume >100ml, 

hypotension before the procedure, eGFR, 

logBNP, age

D:0.775(0.732-0.819);

V:0.715(0.631-0.799)
Nomogram model

NI, no information; D, derivation; V, validation; LVEF, left ventricular ejection fraction; LVEDP, left ventricular end diastolic pressure; IABP, intra-aortic balloon pump; DCA, decision curve analysis; eGFR, estimated glomerular filtration rate; DM, diabetes mellitus; 
SII, immune-inflammatory index; NT-proBNP, N-terminal pro-brain natriuretic peptide; hsCRP, highly sensitive C-reactive protein; SIIRI, Systemic immune-inflflammation response index; FAR, fibrinogen-to-albumin ratio; LDL-C, low-density lipoprotein cholesterol; 
TyG, triglyceride-glucose; SCr, serum creatinine; RDW, red blood cell distribution width; MDCLs, middistal segment culprit lesions; HDL-C, High-density lipoprotein cholesterol; BMI, Body mass index; PNI, prognostic nutritional index; SBP, systolic blood pressure; 
WBC, white blood cell; BNP, B-type natriuretic peptide.
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TABLE 3  PROBAST results of the included studies.

Author year Study 
type

ROB Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Stefano (26) B − + + − + + + − +

Yinghua (19) B − + + − − + + − −

Benjamin (23) A − + + − + + + − +

Yuhei (27) A − + + − + + + − +

Akaphol (24) A − + − − + + + − +

Pei-Chun (30) A − + + − + + + − +

Amir (33) A − + − − + + + − +

Hang (20) A − + + − − + + − −

Faysal (28) A − + + − + + + − +

Kai (21) A − + + ? + + + − +

Yue (22) A − + + ? − + + − −

Sukrisdi (25) A − + + − + + + − +

Kai-yang (32) A − + − − + + + − +

Hui (29) B − + − − + + + − +

Ling (31) A − + − − + + + − +

Xuejun (18) B − + + − + + + − +

PROBAST, Prediction model Risk of Bias Assessment Tool; ROB, Risk of Bias; A indicates “development only”; B indicates “development and validation in the same publication”; + indicates low ROB/low concern regarding applicability; - indicates high ROB/high 
concern regarding application? Indicates unclear ROB/unclear concern regarding applicability.
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(48–55), and the exclusion criteria only excluded patients with severe 
renal insufficiency or requiring dialysis, but not those with chronic 
renal insufficiency, which may overestimate the incidence of CI-AKI 
and bring bias. Researchers should unify all key research indicators 
based on the standard definitions in the guidelines. This will ensure 
the research process is standardized and the results are comparable. 
Nearly half of the 16 included studies failed to clearly specify the type 
of PCI procedure involved. Since patients undergoing emergency PCI 
have a higher risk of CI-AKI than those undergoing elective PCI (56, 
57). Even if the models have good performance, the ambiguity in 
procedure type may limit the applicable scenarios of these models. 
Future studies should clearly distinguish between emergency and 
elective procedures for more accurate evaluation of model 
applicability. Although five studies have indicated that both their 
hydration protocols and contrast agent protocols were consistent with 
the Kidney Disease Improving Global Outcomes (KDIGO) 
recommendations (58), other studies should also specify the protocols 
inorder to facilitate the exploration of heterogeneity.

In the outcome domain, five studies incorporated predictors into 
the outcome definition. This could lead to models utilizing this 
information during training and prediction, resulting in 
overestimation of model performance, model overfitting, and an 
inability to accurately assess the importance of variables.

In the statistical analysis, some studies converted continuous 
variables into categorical variables, which led to the loss of data 

information. This may fail to fully reflect the true characteristics of 
variables and reduce the accuracy of predictions. Meanwhile, among 
the 16 included studies, nine studies did not report information on 
missing data and data complexity. This reduces the transparency and 
reproducibility of the research, making it difficult to determine the 
potential impact of missing data on the results and hindering other 
researchers from verifying or drawing on the research. These issues 
have an adverse impact on the scientific evaluation and practical 
application of prediction models. Most of the studies used univariate 
analysis to screen predictors. Univariate analysis may ignore the 
interaction and confounding effects between variables, thereby 
introducing bias and increasing the risk of overfitting (59).

Currently, machine learning has gradually become a hot spot, 
which can effectively improve the predictive capabilities of models to 
deal with complex issues by using a variety of algorithms. In this 
review, Amir et al. and Ling et al. used machine learning to build a 
variety of prediction models, but in the end, the random forest model 
proved to have the best performance (31, 33). Moreover, although all 
studies showed good prediction performance, only four studies 
conducted external validation, which limits their clinical 
generalization. For instance, the model built by Ling et  al. using 
machine learning methods showed perfect performance 
(AUC = 1.000), but a lack of external verification, in addition, the 
calibration method was not explained, which made the overfitting 
problem of the model not reasonably solved (31). In terms of clinical 

FIGURE 2

Forest plot of the random effects meta-analysis of pooled AUC estimates for derivation models.
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application, only four studies evaluated it using decision curve analysis 
(DCA). However, these studies did not clearly illustrate whether the 
models truly improved clinical conditions and prognosis, such as 
mortality, dialysis requirement, or length of hospital stay. On one 
hand, most prediction models stayed at the stages of development and 
internal validation. Few explored their impact on clinical outcomes. 
On the other hand, prediction tools including nomograms or 
web-based calculators had not been tested in real-world settings and 
lacked cost-effectiveness evaluations. Therefore, future study should 
shift focus from model development to implementing existing high-
quality models, verifying their clinical utility, and conducting sound 
cost-effectiveness assessments.

Overall, to enhance the performance and popularity of the 
prediction models, future studies should develop models based on 
multi-center, cross-regional prospective cohort studies with more 
geographically representative populations. To improve the clinical 
utility, future studies should shift focus from model development to 
implementing existing high-quality models. Additionally, external 
validation is required to enhance the model’s generalization ability, 
with the core being to assess the model’s stability and applicability in 
new data. An independent dataset should be selected that differs from 
the source of the development cohort (e.g., different centers, different 
time periods, different population characteristics) but is consistent 
with the target population, and it must include all input variables and 

outcome indicators of the model. This ensures that external validation 
can truly reflect the model’s generalization ability and application 
reliability in diverse real-world scenarios. At the same time, when 
screening variables, it is recommended to avoid only basing on 
univariate analysis, but to match traditional regression algorithms 
with machine learning algorithms and professional knowledge 
background. Furthermore, future study should shift focus from model 
development to implementing existing high-quality models, verifying 
their clinical utility, and conducting cost-effectiveness assessments.

2.3.3 Prevention is more important than 
treatment

There is no specific treatment method in clinical practice, and 
prevention is far more important than treatment. The KDIGO 
recommends that for patients at risk of CI-AKI, volume expansion 
with either isotonic sodium chloride solution or sodium bicarbonate 
solution should be performed, rather than no volume expansion (58, 
60). Hydration therapy is to expand the volume of the patient, dilute 
the concentration of contrast agent in the kidney, reduce the contact 
between the contrast agent and the kidney and reduce the viscosity of 
urine, thereby accelerating the excretion of contrast agent. It is 
currently the most internationally recognized preventive measure. 
However, the method of hydration varies according to the individual 
condition of the patient. Intravenous fluid should be administered at 

FIGURE 3

Forest plot of the random effects meta-analysis of pooled AUC estimates for validation models.
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a rate of ≥1.0–1.5 mL/kg/h for 3–12 h before and 6–12 h after contrast 
media exposure to maintain a urine output of at least 150 mL/h, 
thereby reducing the risk of CI-AKI (58, 61). Contrast nephropathy 
(CIN) or CI-AKI is an iatrogenic acute kidney injury observed after 
intravascular injection of contrast material (CM) for diagnostic 
procedures or therapeutic angiographic interventions (10). According 
to guideline recommendations, iso-osmolar or low-osmolar iodinated 
contrast media should be used instead of high-osmolar ones (58). 
Choosing the appropriate contrast agent and minimizing the amount 
used, while still ensuring accurate diagnosis and effective treatment, 
are prudent strategies to prevent CI-AKI.

2.3.4 Limitations
The systematic review has several potential limitations. Firstly, the 

present study had a high degree of heterogeneity. Secondly, there was 
significant publication bias in this meta-analysis. Consequently, the 
pooled AUC may not be adequately representative. Thirdly, most of 
the included studies were conducted in Asia, which limits the 
international generalizability of the findings. Moreover, only English-
language publications were included, meaning relevant studies might 
have been omitted due to language barriers. Future studies can 
collaborate with teams with multilingual backgrounds and expand the 
language scope of retrieval to more comprehensively integrate various 
research results and reduce the impact of bias.

2.4 Conclusion

A total of 16 studies on risk prediction models for CI-AKI after PCI 
or CAG in patients with ACS were included in this review. The 
developed models exhibited a pooled AUC of 0.804 (95% CI: 0.772–
0.836), while the validation models demonstrated a pooled AUC of 
0.785 (95% CI: 0.747–0.823). However, all studies had a high risk of bias 
and two studies raised concerns about applicability. A quarter of the 
studies lacked external validation, and the clinical application of the 
model needs further validation. Thus, no existing model of CI-AKI after 
CAG or PCI with ACS can currently be recommended for routine use. 
Based on current data, the clinical utility of these models should 
be  postponed until the development of methodologically robust, 
externally validated tools tested in prospective multicenter settings, with 
standardized definitions of CI-AKI and clinical impact assessments. 
Furthermore, researchers should follow PROBAST to improve the 
quality of prediction models and provide greater clinical value.
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