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Introduction: Gastrointestinal (GI) cancers present significant clinical challenges 
characterized by dismal survival outcomes and suboptimal prognoses. 
Currently, only partial indicators are available to predict the response of 
immunotherapy. A critical gap remains in the development of models capable of 
accurately predicting response rates to immunotherapy regimens. In this study, 
we  developed a machine-learning (ML) model based on factorial, molecular, 
demographic, and clinical data to predict the response rate.
Methods: This multicentre retrospective study analyzed the clinical data of 506 
patients, comprising 352 cases collected from Zhongnan Hospital of Wuhan 
University and Hubei Cancer Hospital, along with 154 cases obtained from the 
publicly available dataset of Memorial Sloan-Kettering Hospital. We  used 14 
features as input features, such as the patient’s basic status, biochemical test 
results, and genetic test results. Eight ML methods were employed to build 
predictive models. Through rigorous validation using seven discriminative 
performance metrics (accuracy, precision, recall, F1-score, ROC-AUC, PR-
AUC, and Brier score), the eXtreme Gradient Boosting (XGBoost) algorithm 
demonstrated superior predictive capability. Model interpretability was 
subsequently enhanced through Shapley Additive explanations (SHAP) analysis 
to elucidate feature contributions.
Results: We selected XGBoost with the best predictive performance to predict 
response (AUC: 0.829 [95% CI: 0.72–0.91], accuracy: 78.43%, sensitivity: 
86.67%, specificity: 72.31%). The Delong test and calibration curve indicated 
that XGBoost significantly outperformed the other models in prediction. The 
SHAP values indicate that chemotherapy contributes the most to the model’s 
predictive accuracy (contribution score = 0.28), while Ki-67 exhibits the lowest 
contribution rate (0.01). In addition, the study showed that chemotherapy, 
higher hemoglobin (HGB), body mass index (BMI), age, lower neutrophil-to-
lymphocyte ratio (NLR), and tumor stage positively influenced the output of the 
model.
Conclusion: Interpretable XGBoost models have shown accuracy, efficiency, and 
robustness in determining the association between input features and response 
rates. Among the input features, chemotherapy and tumor stage played the 
most important role in the prediction model. Due to the varying efficacy of ICIs 
in gastrointestinal cancers, personalized predictive models can greatly assist 
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clinical decision-making. This model fills this gap in clinical practice and can 
provide more precise support for personalized treatment and risk avoidance.

KEYWORDS

predictive model, immune checkpoint inhibitors, treatment, gastrointestinal 
malignancies, machine learning

1 Introduction

Gastrointestinal (GI) cancers are a group of diseases that seriously 
endanger the health of human beings, including esophageal cancers 
(EC) (1), gastric cancers (GC) (2)and colorectal cancers (CRC) (1, 3, 
4). In recent years, the global morbidity and mortality of GI cancers 
have gradually increased and shown a trend of rejuvenation (5, 6). GI 
cancers are characterized by inconspicuous symptoms, high 
malignancy degree and propensity for metastasis. These 
pathophysiological characteristics collectively pose substantial 
challenges for clinical management and therapeutic intervention (7).

In recent years, immunotherapy has emerged as a transformative 
therapeutic paradigm, revolutionizing the treatment landscape for GI 
cancers (8, 9). Immune checkpoint inhibitors (ICIs) have achieved 
revolutionized success in hematological malignancies, yet their 
clinical application in GI cancers has yielded paradoxically limited 
therapeutic efficacy (10, 11). It has been well documented that the rate 
of clinical benefit in patients with GI cancers is low when ICIs are used 
alone (9, 12). Therefore, ICIs are usually combined with chemotherapy, 
radiotherapy, and targeted therapy in the treatment regimen of GI 
cancers (13, 14). Currently, some indicators such as tumor mutational 
burden (TMB) (15–17), microsatellite instability (MSI) (18–20), and 
PD-L1 expression (21) can initially assess the efficacy of ICIs. 
However, the response to therapy varies widely among patients with 
GI cancers. A model to predict response to combination therapy is 
presently lacking.

Machine learning (ML) is an important branch of artificial 
intelligence that has already achieved significant results in the medical 
field (22, 23). Currently, many studies have used ML methods to 
predict the prognosis of malignant tumors. However, there are still few 
studies on prediction models constructed by ML in GI cancers. In this 
study, we constructed a prediction model by ML to predict patients 
with GI cancers who are undergoing treatment based on ICIs. The 
model has a total of 14 input features, most of which have been shown 
to correlate with response rates. The variables incorporated included 
hemoglobin (HGB) (24), neutrophil-to-lymphocyte ratio (NLR) (25), 
sex (26), age (27), body mass index (BMI) (28, 29), cancer type, tumor 
stage (30), treatment modalities, and genetic test results (16). Taking 
whether to respond as the output target. In this study, a total of 
patients (n = 506) diagnosed with GI cancers were used as basic data. 
We found that most of the treatments received for GI malignancies 
(n = 352) in China were all combination therapies, so we chose the 
patients at Memorial Sloan-Kettering (n = 154) who were treated with 
immunotherapy alone as a control (4).

In this study, we developed a predictive framework to evaluate 
treatment response to ICI-based combination regimens in GI cancers. 
Firstly, we used eight ML methods (XGBoost, LightGBM, CatBoost, 
RandomForest, LR, KNN, Naive Bayes, and QDA) to comprehensively 
analyze the patients’ 14 input features before treatment. Subsequently, 
the model with the best predictive performance was selected and 

validated. Finally, the implementation of Shapley Additive 
exPlanations (SHAP) to quantify feature contributions and visualize 
non-linear relationships through summary plots and 
dependence analysis.

2 Methods

2.1 Patient data description

This multicentre retrospective study analyzed the clinical data of 
506 patients, comprising 352 cases collected from Zhongnan Hospital 
of Wuhan University and Hubei Cancer Hospital, along with 154 cases 
obtained from the publicly available dataset of Memorial Sloan-
Kettering Hospital (4). All MSK data are available online (https://
www.ioexplorer.org). The inclusion criteria were as follows: (1) 
pathological diagnosis of gastrointestinal malignancy; (2) age 
≥18 years; (3) having received at least four cycles of immunotherapy. 
The exclusion criteria were as follows: (1) having a primary or 
secondary history of cancer; (2) receiving traditional Chinese 
medicines, targeted therapies, or biologic therapies in the cycle of 
immunotherapy; (3) lack of follow-up information and clinical data. 
Patients initially selected for this study were those diagnosed with GI 
malignancies in 2021–2024 (n = 484), all of whom received at least 
four cycles of immunotherapy in the hospital. Subsequently, 
we  retrospectively analyzed the clinical data of these patients. 
We  excluded patients who had undergone targeted or biologic 
therapies during immunotherapy cycles (n = 61), and we  further 
excluded patients who dropped out of treatment or died before 
completing four cycles of treatment (n = 36). At last, we excluded 
patients who were missing important basic clinical data (n = 35). After 
excluding all non-compliant patient data, we ultimately completed 
data collection from two Chinese hospitals (n = 352) (Figure 1).

2.2 Basic patient information and clinical 
data

We recorded basic health information by reviewing the 
nursing records before the first immunotherapy cycle, which 
included age, gender, and BMI. BMI was calculated as weight 
(KG) divided by the square of height (m2). All clinical blood test 
results were within 3 days before the first immunization cycle. 
NLR was calculated as absolute neutrophil count (per nanoliter) 
divided by absolute lymphocyte count (per nanoliter). 
Hemoglobin (HGB) was expressed in units of g L- 131. 
We documented tumor type, ICB drug class, and other treatments 
during the ICB treatment cycle by looking at physician-recorded 
cases. Drug class: the patients’ immunotherapy regimens were 
stratified into two cohorts: monotherapy with either PD-1/PD-L1 
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inhibitors or CTLA-4 inhibitors versus dual-agent immune 
checkpoint blockade combining both modalities. Cancers were 
staged according to the American Joint Committee on Cancer, 8th 
edition (31).

2.3 Genetic testing

Since numerous studies confirm that TMB is closely related to 
MSI (32, 33), we decided to choose MSI stability as an input feature 
(34). MSI: stable (0 ≤ MSI score < 3), uncertain (3 ≤ MSI score < 
10), and unstable (10 ≤ MSI score). In the ML model, we used two 
groups for MSI status: MSI unstable versus MSI stable/indeterminate. 
For patients with MMR deficiency, we  further conduct genetic 
sequencing to confirm the MSI status. Gene mutations: it is well 
documented that HER-2 and K-RAS genes play an important role in 
GC and CRC and determine the prognosis of patients (35). 
Therefore, we incorporated the mutation status of these two genes as 
one of the input features in our predictive model. The mutation 
status of MSI, KRAS, and HER2 genes was determined using next-
generation sequencing (NGS). To reduce patient costs and improve 
the accuracy of genetic testing, targeted sequencing panel approaches 
were employed for all analyses.

2.4 Ki-67 and CPS

Both CPS and Ki-67 scores were assessed through 
immunohistochemistry (IHC). Pathologists determined the scores by 
observing the percentage of Ki-67 and PD-L1 positive cells. In our 
study, the Ki-67 input score was based on the percentage of Ki-67 
positive cells as documented in the pathology report. For PD-L1 

expression (CPS score), a score greater than or equal to 1 was 
considered positive.

IHC Staining: tissue sections were dewaxed by immersing in 
xylene twice for 10 min each, followed by hydration in an alcohol 
gradient. Antigen retrieval was performed by placing the tissues in 
citrate sodium repair solution. The sections were incubated with the 
desired antibodies overnight at 4 °C. The next day, rapid color 
development was achieved using DAB, and expression levels were 
estimated using IHC scoring. Specific antibody catalog numbers and 
dilution ratios are provided in Supplementary Table 3.

2.5 Response

We reviewed the doctor’s case records to determine the patient’s 
treatment outcome. Response was based on Response Evaluation 
Criteria in Solid Tumors (RECIST) v1.1 (36). The primary outcome of 
the study was an assessment of overall treatment efficacy. Complete 
response (CR), partial response (PR), and stable disease (SD) were 
categorized as treatment effective, and progressive disease (PD) was 
categorized as treatment ineffective.

2.6 Model training

Data division: we divided the data of 506 patients into training 
(80%) and test (20%) sets using stratified random sampling, ensuring 
that both response rate and hospital distribution were balanced 
between the training set and test set.

Parameter selection: Hyper-parameter optimization was 
performed using the Optuna framework (37). For each model, 
we defined a search space (For XGBoost: We set the range of the 

FIGURE 1

Patient screening and enrollment flowchart.
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n_estimators’ parameter from 20 to 200, the max_depth parameter 
from 3 to 12, and the learning_rate parameter from 0.001 to 0.3.). The 
optimization objective was to maximize the mean cross-validated 
AUC under a five-fold stratified cross-validation scheme on the 
training set. Each Optuna trial was allowed to run for up to 200 
iterations, and the trial with the best validation AUC was chosen. The 
final model was retrained on the entire training set using the best 
parameters. All eight ML models were trained following this 
procedure. Random seeds were fixed to ensure reproducibility 
(random seeds for python and numpy were set to 42).

2.7 ML methods and SHAP analysis

A total of eight ML methods were used in this study which are 
XGBoost, LightGBM, CatBoost, RandomForest, LR, KNN, 
Naivebayes, and QDA. We  used hyperparameter optimization to 
optimize the performance of each ML model (38). Important metrics 
we used to evaluate the performance and generalization of ML models 
include area under the ROC curve (AUC), PR-AUC, accuracy, 
sensitivity, Specificity, and so on (39). From these, the best-performing 
model was selected and validated for analysis. SHAP is one of the most 
commonly used interpretability tools (40). In this study, we visualized 
the analysis by using the SHAP method to work out the contribution 
of each feature to the model output.

2.8 Handling of missing values

For the treatment of missing values, more than 35 % of the 
missing features were not included in our study. For models such as 
XGBoost, LightGBM, and CatBoost, the built-in mechanisms for 

handling missing data values of these models eliminate the need for 
manual preprocessing. In contrast, for models including LR, KNN, 
Naivebayes, QDA, and Random Forest, we employed the Multiple 
Imputation by Chained Equations (MICE) method to impute 
missing values.

2.9 Statistical analysis

All analyses were performed using IBM SPSS software (version 
26.0), R software (version 4.0.5), and the Python scikit-learn 
package (version 1.6.0). Response rates were compared by chi-square 
test and Fisher’s exact test, we use the De-long test to compare the 
AUC of the different models. p < 0.05 was statistically significant. 
For full implementation details of this study, please refer to the 
source code repository: https://github.com/wangqingbin/
ML-Digestive-Cancer.

3 Results

3.1 Baseline characteristics of the patient

Figure 2 illustrates the process of participant selection and study 
design. The basic characteristics of the 506 patients included in this 
study are shown in Table 1. The cohort was comprised of mostly males 
(65%), with a median age at diagnosis of 60 (IQR, 52–67) years. Of 
these patients, 44.5% had a history of surgery (patients with 
postoperative recurrence), median BMI was 22.65 (19.86–25.32). 
There were 127 (25.09%) patients diagnosed with EC, 228 (45.05%) 
with GC, and 151 (29.86%) with CRC. The total number of treatment 
responders was 300 (59.3%).

FIGURE 2

Process diagram for model construction.
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3.2 Machine prediction model

To predict the treatment response rate of patients with GI malignant 
tumors, we developed and trained eight ML models. The AUC curves of 
all of these models are shown in Figure 3A and the values of AUC are 
shown in Figure 3C. The decision curves of all models are shown in 
Figure 3B. The AUC value of XGBoost was 0.829 (95% CI: 0.73–0.91). The 
De-long test results suggested that the difference in the AUC between 
XGBoost and other ML models was statistically significant (p < 0.05). 
Given the imbalanced nature of our dataset, we  incorporated the 
Precision-Recall AUC (PR-AUC) metric to comprehensively evaluate 
model performance beyond conventional ROC analysis, the Xgboost 
PR-AUC = 0.8723 (Figure 3D). Subsequently, we used metrics such as 
accuracy, sensitivity, and specificity to evaluate the accuracy of all models 
(Table 2). We showed the number of true positives, true negatives, false 
positives, and false negatives predicted by each model further 
demonstrated in the form of Figure 4. XGBoost model achieved the best 
performance among these methods.

3.3 SHAP analysis and importance of 
features

The feature importance analysis we performed on XGBoost by 
using an interpretable SHAP analysis approach (Figure  5). 
Chemotherapy scored highest in feature contribution, indicating the 
highest contribution to model accuracy. The lowest score was Ki67, 
indicating the lowest contribution to model accuracy.

3.4 Analysis of key risk factors

In the XGBoost-based feature importance analysis and SHAP 
analysis, treatment modality and tumor stage emerged as the two most 

influential features. We  performed a detailed analysis of the 
relationship between these features and response rate. We analyzed the 
effects of different treatment modalities and different tumor stages on 
response rates (Table 3).

4 Discussion

In recent years, ICIs have been widely used in the treatment of GI 
cancers (41). However, with the rise of immunotherapy, challenges 
have emerged. For example, the response rate remains relatively low 
and varies significantly among individuals in this field. How to 
enhance immune response rates and refine personalized 
immunotherapy strategies stands as a critical challenge in the field 
today. Therefore, we  developed and trained eight ML models—
XGBoost, LightGBM, CatBoost, RandomForest, LR, KNN, Naïve 
Bayes, and QDA—to analyze data from patients with GI cancers. 
Within our predictive framework, both the XGBoost and CatBoost 
classifiers demonstrated high predictive efficacy, achieving AUC 
values of 0.829 and 0.812, respectively. Further analysis revealed that 
the XGBoost classifier outperformed CatBoost in both accuracy and 
specificity metrics. Consequently, XGBoost proves to be a robust tool 
for accurately predicting the response of ICIs therapy. In short, these 
data indicate that our ML method can predict immunotherapy 
response rates in GI cancers with high accuracy prior to treatment.

From the baseline chart of patients, it can be seen that the incidence 
rate of GI cancers is much higher in men than in women, with the 
incidence rate reaching 65%, which may have a great relationship with 
factors such as smoking and drinking (42). In addition, the proportion 
of patients entering stage IV reaches 75.6%, which indicates that GI 
cancers are characterized by late detection. Most of the patients had 
already metastasized by the time they sought medical treatment.

We used 8 ML methods to construct the prediction model. XGboost, 
with an AUC value of 0.829 and a sensitivity of 0.8667, had the best 

TABLE 1  Characteristics of patients in the study.

Characteristic Total patients (n = 506) Training set (n = 404) Test set (n = 102)

Sex, n (%)

Female 172 133 39

Male 334 271 63

Age, median, (IQR) 60 (52–67) 60 (52–67) 60 (53–68)

Cancer type, n (%)

Esophageal 127 (25.09) 101 (25) 26 (25.49)

Gastric 228 (45.05) 182 (45.05) 46 (45.10)

Colorectal 151 (29.86) 121 (29.95) 30 (29.41)

Stage n (%)

I-III 123 (24.4) 96 (23.76) 27 (26.47)

IV 383 (75.6) 308 (76.24) 75 (73.53)

Surgery history n (%)

Yes 225 (44.5) 174 (43.07) 51 (50)

No 381 (55.5) 230 (56.93) 51 (50)

Response n (%)

Yes 300 (59.3) 240 (59.41) 60 (58.82)

No 206 (40.7) 164 (40.59) 42 (41.18)
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prediction performance among these models. The SHAP explanation 
indicates that chemotherapy is the most significant predictive feature 
(contribution score = 0.28), which aligns with the clinical practice of 
chemotherapy serving as the cornerstone of GI cancer treatment. 
Mechanistically, this process likely involves multiple factors. Firstly, 
chemotherapy enhances tumor antigen presentation and T-cell-mediated 
cytotoxicity, thereby potentiating immunotherapy through “sensitization” 
effects (43). Secondly, combination therapies significantly mitigate the risk 
of tumor cells developing resistance to single-treatment modalities, 
thereby enhancing therapeutic efficacy through synergistic effects (44). 
The study by Ningchen et  al. investigated the association between 

nutritional status and the efficacy of immune checkpoint inhibitor therapy 
in esophageal cancer. The research demonstrated that patients’ 
pretreatment HGB levels and BMI were significantly correlated with 
treatment effectiveness, and both served as independent prognostic 
indicators for survival outcomes (45). In our study, we found that a higher 
level of HGB and BMI significantly improved the therapeutic effect. In 
our predictive model, the feature importance of BMI and HGB was 0.14 
and 0.15, respectively. Therefore, the patient’s baseline nutritional status 
positively influences the response rate to immunotherapy. In other 
studies, NLR is an important indicator of the degree of inflammation (25), 
and this was indirectly confirmed in our study. The higher the NLR ratio, 

FIGURE 3

Evaluation of ML models. (A) ROC curves for all ML models. (B) Decision curves for all ML models. (C) AUC values for all ML models. (D) PR-AUC for all 
ML models.

TABLE 2  Detailed parameters of each machine learning mode.

Model Accuracy Sensitivity Specificity PPV (%) NPV (%)

XGBoost 78.43 (69.19–85.96) 86.67 (75.41–94.06) 66.67 (50.45–80.43) 78.79 (66.98–87.89) 77.78 (60.85–89.88)

LightGBM 72.55 (62.82–80.92) 86.67 (75.41–94.06) 52.38 (36.42–68.00) 72.22 (60.41–82.14) 73.33 (54.11–87.72)

CatBoost 74.51 (64.92–82.62) 88.33 (77.43–95.18) 54.76 (38.67–70.15) 73.61 (61.90–83.30) 76.67 (57.72–90.07)

RF 74.51 (64.92–82.62) 83.33 (71.48–91.71) 61.9 (45.64–76.43) 75.76 (63.64–85.46) 72.22 (54.81–85.80)

LR 74.51 (64.92–82.62) 76.67 (63.96–86.62) 71.43 (55.42–84.28) 79.31 (66.65–88.83) 68.18 (52.42–81.39)

KNN 61.76 (51.61–71.21) 68.33 (55.04–79.74) 52.38 (36.42–68.00) 67.21 (54.00–78.69) 53.66 (37.42–69.34)

Naivebayes 73.53 (63.87–81.78) 75 (62.14–85.28) 71.43 (55.42–84.28) 78.95 (66.11–88.62) 66.67 (51.05–80.00)

QDA 68.63 (58.69–77.45) 71.67 (58.56–82.55) 64.29 (48.03–78.45) 74.14 (60.96–84.74) 61.36 (45.50–75.64)
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FIGURE 4

Confusion matrix for different models.

FIGURE 5

SHAP interpretability analysis. (A) Interpretable and analyzable swarm maps. (B) Contribution of each input feature. (C) Local interpretation of each 
input feature.

https://doi.org/10.3389/fmed.2025.1631011
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Lv et al.� 10.3389/fmed.2025.1631011

Frontiers in Medicine 08 frontiersin.org

the worse the outcome for the patients, which is probably related to the 
degree of inflammation in the patient’s body. In tumor staging, once a 
patient enters stage IV and metastasis occurs, the response rate will 
be greatly reduced. Once tumor metastasis occurs, the therapeutic efficacy 
of immunotherapy is significantly diminished. The MSI and PD-L1 
expression are very important features to measure the efficacy of 
immunotherapy (21, 46), but our prediction model is a combination 
therapy model based on immunotherapy, and the MSI and PD-L1 
expression does not have absolute importance in terms of the model’s 
contribution, and we speculate that in the combination therapy model. 
We speculate that in the combination therapy model, immunotherapy 
contribution is inherently low and assumes an adjunctive therapeutic role. 
Interestingly, age also plays an important role in the contribution of 
characteristics, and we  found that the older the age, the higher the 
response rate, which we think may be related to the fact that young people 
have a fast basal metabolism, and tumors are more likely to progress and 
metastasize. In addition, gene mutations also contribute to treatment 
response rates, HER-2 positivity in GC and K-RAS mutations in CRC 
reduce response rates. Ki-67 is expressed in the nucleus. Once cells enter 
the quiescent G0 phase, Ki-67 undergoes rapid degradation, making its 
index value a reliable indicator of cellular proliferative activity (47). 
Paradoxically, while elevated Ki-67 levels correlate with accelerated tumor 
cell proliferation rates, this proliferation marker simultaneously 
demonstrates a strong positive association with chemosensitivity - tumors 
exhibiting high Ki-67 expression demonstrate enhanced responsiveness 
to chemotherapy and achieve superior treatment outcomes. This dual 
biological significance (pro-proliferative yet pro-chemosensitive) likely 
accounts for its low feature contribution rate (0.01) in our immunotherapy 
predictive model. In SHAP interpretability analysis, the treatment method 
and tumor stage are the two features with the highest contribution rates. 
Subsequently, we  performed a deeper  analysis of these two features. 
Table 3 shows that immunotherapy alone has a low response rate while 
combining immunotherapy with chemotherapy increases the response 
rate to 72.6%. Once the tumor reaches stage IV, the response rate drops 
dramatically, from 80.7 to 50.6%.

In recent studies, ML has shown significant potential in predicting 
the efficacy of immunotherapy. Hui Liu et al. developed a multimodal 
prediction model for immunotherapy of esophageal cancer, the study 
developed a predictive model for immunotherapy response in esophageal 
cancer by integrating pathology images, CT scans, and clinical data, 
achieving an AUC of 0.809 (48). Hong Wei Li et al. developed a predictive 
model for the efficacy of immunotherapy in gastric cancer, the study 
leveraged clinical data from 273 gastric cancer patients to construct 
predictive models for overall survival (OS) and progression-free survival 
(PFS) in response to immunotherapy, with a specific focus on patients’ 
nutritional status. The XGBoost model achieved an AUC of 0.723 in 
predicting treatment outcomes (49). Current studies have focused 

primarily on single cancer types rather than pan-GI malignancie. Our 
study addresses this gap by developing an interpretable ML framework to 
predict immunotherapy treatment responses across three major GI 
cancers: EC, GC, and CRC. Currently, clinical approaches for predicting 
immunotherapy responses still primarily rely on MSI status, TMB, or 
physicians’ subjective clinical expertise. However, the tumor immune 
microenvironment is extremely complex, and relying solely on any single 
detection method cannot accurately predict immunotherapy response 
rates. Therefore, it is imperative to develop personalized immunotherapy 
strategies for patients and build predictive models for immunotherapy 
efficacy. Therefore, our study constructs a predictive model incorporating 
multiple dimensions—including common nutritional status indicators, 
blood biochemical markers, imaging findings, and genetic testing results. 
All metrics utilized are readily obtainable in routine clinical practice, 
enabling more effective tailoring of personalized treatment plans for 
individual patients.

Our study holds significant implications for clinical practice in 
cancer therapy. First, chemotherapy remains the cornerstone of 
comprehensive cancer treatment, and combination regimens can 
substantially enhance response rates to immunotherapy. Second, for 
gastrointestinal malignancies, once patients progress to stage IV, the 
efficacy of immunotherapy declines markedly. Hence, early screening, 
detection, and intervention are critically important in clinical 
management. Additionally, patients’ systemic health status 
profoundly impacts immunotherapy outcomes—maintaining 
optimal nutritional status and controlling inflammatory responses 
are essential. Finally, traditional predictive biomarkers from genetic 
testing remain indispensable; notably, MSI status retains its 
irreplaceable role in forecasting immunotherapy responsiveness. In 
summary, the determinants of immunotherapy efficacy are 
multifaceted. To optimize therapeutic success, clinicians should 
adopt a holistic approach that integrates all relevant factors.

However, our study still has several limitations. While basic 
clinical characteristics including TNM staging, BMI, NLR, and HGB 
were assessed in 100% of patients, genetic testing was not performed 
in all cases. Specifically, out of a total of 506 patients with GI cancers, 
381 underwent MSI testing; among 228 GC patients, 164 had HER-2 
status evaluated; and among 151 CRC patients, 105 completed K-RAS 
testing. These missing data may have introduced bias that could 
potentially affect the accuracy of our predictive model. Furthermore, 
the lack of experimental validation remains a constraint, and 
additional experimental studies will be  required to enhance the 
clinical applicability of our findings in future research. Furthermore, 
in our research, we split all the data into training and validation sets, 
but still lack an independent external validation set. To verify the 
accuracy of the model, we will need to use an additional independent 
external validation set for validation in the future.

TABLE 3  Detailed analysis of important features.

Characteristic Response, n (%) No response, n (%) χ 2 p

Treatment

ICIs 118 (53.8) 102 (46.2) 16.96 <0.01

Chemo+ICIs 159 (72.6) 60 (27.4)

Stage

I–III 103 (83.7) 20 (16.7) 41.44 <0.01

IV 195 (50.90) 188 (49.10)
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5 Conclusion

XGBoost performed optimally with other ML methods in terms 
of modeling to predict response effects with clinical accuracy. Through 
comprehensive feature importance analysis, chemotherapy regimen 
and tumor staging parameters emerged as the most influential 
predictors, collectively accounting for 43% of the model’s predictive 
capacity (Shapley value analysis). We will further conduct continuous 
tracking analysis and interpretation of the selected features to validate 
and apply the prediction model for the treatment effectiveness of 
patients with GI cancers.
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