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Introduction: Gastrointestinal (Gl) cancers present significant clinical challenges
characterized by dismal survival outcomes and suboptimal prognoses.
Currently, only partial indicators are available to predict the response of
immunotherapy. A critical gap remains in the development of models capable of
accurately predicting response rates to immunotherapy regimens. In this study,
we developed a machine-learning (ML) model based on factorial, molecular,
demographic, and clinical data to predict the response rate.

Methods: This multicentre retrospective study analyzed the clinical data of 506
patients, comprising 352 cases collected from Zhongnan Hospital of Wuhan
University and Hubei Cancer Hospital, along with 154 cases obtained from the
publicly available dataset of Memorial Sloan-Kettering Hospital. We used 14
features as input features, such as the patient’'s basic status, biochemical test
results, and genetic test results. Eight ML methods were employed to build
predictive models. Through rigorous validation using seven discriminative
performance metrics (accuracy, precision, recall, Fl-score, ROC-AUC, PR-
AUC, and Brier score), the eXtreme Gradient Boosting (XGBoost) algorithm
demonstrated superior predictive capability. Model interpretability was
subsequently enhanced through Shapley Additive explanations (SHAP) analysis
to elucidate feature contributions.

Results: We selected XGBoost with the best predictive performance to predict
response (AUC: 0.829 [95% Cl: 0.72-0.91], accuracy: 78.43%, sensitivity:
86.67%, specificity: 72.31%). The Delong test and calibration curve indicated
that XGBoost significantly outperformed the other models in prediction. The
SHAP values indicate that chemotherapy contributes the most to the model's
predictive accuracy (contribution score = 0.28), while Ki-67 exhibits the lowest
contribution rate (0.01). In addition, the study showed that chemotherapy,
higher hemoglobin (HGB), body mass index (BMI), age, lower neutrophil-to-
lymphocyte ratio (NLR), and tumor stage positively influenced the output of the
model.

Conclusion: Interpretable XGBoost models have shown accuracy, efficiency, and
robustness in determining the association between input features and response
rates. Among the input features, chemotherapy and tumor stage played the
most important role in the prediction model. Due to the varying efficacy of ICls
in gastrointestinal cancers, personalized predictive models can greatly assist
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clinical decision-making. This model fills this gap in clinical practice and can
provide more precise support for personalized treatment and risk avoidance.

KEYWORDS

predictive model, immune checkpoint inhibitors, treatment, gastrointestinal
malignancies, machine learning

1 Introduction

Gastrointestinal (GI) cancers are a group of diseases that seriously
endanger the health of human beings, including esophageal cancers
(EC) (1), gastric cancers (GC) (2)and colorectal cancers (CRC) (1, 3,
4). In recent years, the global morbidity and mortality of GI cancers
have gradually increased and shown a trend of rejuvenation (5, 6). GI
cancers are characterized by inconspicuous symptoms, high
These
pathophysiological characteristics collectively pose substantial

malignancy degree and propensity for metastasis.
challenges for clinical management and therapeutic intervention (7).

In recent years, immunotherapy has emerged as a transformative
therapeutic paradigm, revolutionizing the treatment landscape for GI
cancers (8, 9). Immune checkpoint inhibitors (ICIs) have achieved
revolutionized success in hematological malignancies, yet their
clinical application in GI cancers has yielded paradoxically limited
therapeutic efficacy (10, 11). It has been well documented that the rate
of clinical benefit in patients with GI cancers is low when ICIs are used
alone (9, 12). Therefore, ICIs are usually combined with chemotherapy,
radiotherapy, and targeted therapy in the treatment regimen of GI
cancers (13, 14). Currently, some indicators such as tumor mutational
burden (TMB) (15-17), microsatellite instability (MSI) (18-20), and
PD-L1 expression (21) can initially assess the efficacy of ICIs.
However, the response to therapy varies widely among patients with
GI cancers. A model to predict response to combination therapy is
presently lacking.

Machine learning (ML) is an important branch of artificial
intelligence that has already achieved significant results in the medical
field (22, 23). Currently, many studies have used ML methods to
predict the prognosis of malignant tumors. However, there are still few
studies on prediction models constructed by ML in GI cancers. In this
study, we constructed a prediction model by ML to predict patients
with GI cancers who are undergoing treatment based on ICIs. The
model has a total of 14 input features, most of which have been shown
to correlate with response rates. The variables incorporated included
hemoglobin (HGB) (24), neutrophil-to-lymphocyte ratio (NLR) (25),
sex (26), age (27), body mass index (BMI) (28, 29), cancer type, tumor
stage (30), treatment modalities, and genetic test results (16). Taking
whether to respond as the output target. In this study, a total of
patients (n = 506) diagnosed with GI cancers were used as basic data.
We found that most of the treatments received for GI malignancies
(n =352) in China were all combination therapies, so we chose the
patients at Memorial Sloan-Kettering (n = 154) who were treated with
immunotherapy alone as a control (4).

In this study, we developed a predictive framework to evaluate
treatment response to ICI-based combination regimens in GI cancers.
Firstly, we used eight ML methods (XGBoost, LightGBM, CatBoost,
RandomPForest, LR, KNN, Naive Bayes, and QDA) to comprehensively
analyze the patients’ 14 input features before treatment. Subsequently,
the model with the best predictive performance was selected and

Frontiers in Medicine

validated. Finally, the implementation of Shapley Additive
exPlanations (SHAP) to quantify feature contributions and visualize
non-linear through

relationships summary plots and

dependence analysis.

2 Methods
2.1 Patient data description

This multicentre retrospective study analyzed the clinical data of
506 patients, comprising 352 cases collected from Zhongnan Hospital
of Wuhan University and Hubei Cancer Hospital, along with 154 cases
obtained from the publicly available dataset of Memorial Sloan-
Kettering Hospital (4). All MSK data are available online (https://
www.ioexplorer.org). The inclusion criteria were as follows: (1)
pathological diagnosis of gastrointestinal malignancy; (2) age
>18 years; (3) having received at least four cycles of immunotherapy.
The exclusion criteria were as follows: (1) having a primary or
secondary history of cancer; (2) receiving traditional Chinese
medicines, targeted therapies, or biologic therapies in the cycle of
immunotherapy; (3) lack of follow-up information and clinical data.
Patients initially selected for this study were those diagnosed with GI
malignancies in 2021-2024 (n = 484), all of whom received at least
four cycles of immunotherapy in the hospital. Subsequently,
we retrospectively analyzed the clinical data of these patients.
We excluded patients who had undergone targeted or biologic
therapies during immunotherapy cycles (n =61), and we further
excluded patients who dropped out of treatment or died before
completing four cycles of treatment (n = 36). At last, we excluded
patients who were missing important basic clinical data (n = 35). After
excluding all non-compliant patient data, we ultimately completed
data collection from two Chinese hospitals (n = 352) (Figure 1).

2.2 Basic patient information and clinical
data

We recorded basic health information by reviewing the
nursing records before the first immunotherapy cycle, which
included age, gender, and BMI. BMI was calculated as weight
(KG) divided by the square of height (m?). All clinical blood test
results were within 3 days before the first immunization cycle.
NLR was calculated as absolute neutrophil count (per nanoliter)
divided by absolute (per
Hemoglobin (HGB) was expressed in units of g L

nanoliter).
131

lymphocyte count
We documented tumor type, ICB drug class, and other treatments
during the ICB treatment cycle by looking at physician-recorded
cases. Drug class: the patients’ immunotherapy regimens were
stratified into two cohorts: monotherapy with either PD-1/PD-L1
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Assed for eligibility
(n=484)
Excluled total: (n=132)
—— Receiving other treatment (n=61)
——Discontinuation of treatment (n=36)
——Data deficiencies (n=35)
Total:(n=352) Zhongnan Hospital of Wuhan University Public dataset: Memorial Sloan-
(n=268) and Hubei Cancer Hospital (n=84) Kettering Hospital (n=154)
Randomized
(n=506)
Training set Allocation 4:1 Test set
(n=404) (n=102)
FIGURE 1
Patient screening and enrollment flowchart.

inhibitors or CTLA-4 inhibitors versus dual-agent immune
checkpoint blockade combining both modalities. Cancers were
staged according to the American Joint Committee on Cancer, 8th
edition (31).

2.3 Genetic testing

Since numerous studies confirm that TMB is closely related to
MSI (32, 33), we decided to choose MSI stability as an input feature
(34). MSI: stable (0 < MSI score < 3), uncertain (3 < MSI score <
10), and unstable (10 < MSI score). In the ML model, we used two
groups for MSI status: MSI unstable versus MSI stable/indeterminate.
For patients with MMR deficiency, we further conduct genetic
sequencing to confirm the MSI status. Gene mutations: it is well
documented that HER-2 and K-RAS genes play an important role in
GC and CRC and determine the prognosis of patients (35).
Therefore, we incorporated the mutation status of these two genes as
one of the input features in our predictive model. The mutation
status of MSI, KRAS, and HER?2 genes was determined using next-
generation sequencing (NGS). To reduce patient costs and improve
the accuracy of genetic testing, targeted sequencing panel approaches
were employed for all analyses.

2.4 Ki-67 and CPS

Both CPS and Ki-67 scores were assessed through
immunohistochemistry (IHC). Pathologists determined the scores by
observing the percentage of Ki-67 and PD-L1 positive cells. In our
study, the Ki-67 input score was based on the percentage of Ki-67
positive cells as documented in the pathology report. For PD-L1
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expression (CPS score), a score greater than or equal to 1 was
considered positive.

THC Staining: tissue sections were dewaxed by immersing in
xylene twice for 10 min each, followed by hydration in an alcohol
gradient. Antigen retrieval was performed by placing the tissues in
citrate sodium repair solution. The sections were incubated with the
desired antibodies overnight at 4 °C. The next day, rapid color
development was achieved using DAB, and expression levels were
estimated using IHC scoring. Specific antibody catalog numbers and
dilution ratios are provided in Supplementary Table 3.

2.5 Response

We reviewed the doctor’s case records to determine the patient’s
treatment outcome. Response was based on Response Evaluation
Criteria in Solid Tumors (RECIST) v1.1 (36). The primary outcome of
the study was an assessment of overall treatment efficacy. Complete
response (CR), partial response (PR), and stable disease (SD) were
categorized as treatment effective, and progressive disease (PD) was
categorized as treatment ineffective.

2.6 Model training

Data division: we divided the data of 506 patients into training
(80%) and test (20%) sets using stratified random sampling, ensuring
that both response rate and hospital distribution were balanced
between the training set and test set.

Parameter selection: Hyper-parameter optimization was
performed using the Optuna framework (37). For each model,
we defined a search space (For XGBoost: We set the range of the
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n_estimators’ parameter from 20 to 200, the max_depth parameter
from 3 to 12, and the learning_rate parameter from 0.001 to 0.3.). The
optimization objective was to maximize the mean cross-validated
AUC under a five-fold stratified cross-validation scheme on the
training set. Each Optuna trial was allowed to run for up to 200
iterations, and the trial with the best validation AUC was chosen. The
final model was retrained on the entire training set using the best
parameters. All eight ML models were trained following this
procedure. Random seeds were fixed to ensure reproducibility
(random seeds for python and numpy were set to 42).

2.7 ML methods and SHAP analysis

A total of eight ML methods were used in this study which are
XGBoost, LightGBM, CatBoost, LR, KNN,
Naivebayes, and QDA. We used hyperparameter optimization to

RandomPForest,

optimize the performance of each ML model (38). Important metrics
we used to evaluate the performance and generalization of ML models
include area under the ROC curve (AUC), PR-AUC, accuracy,
sensitivity, Specificity, and so on (39). From these, the best-performing
model was selected and validated for analysis. SHAP is one of the most
commonly used interpretability tools (40). In this study, we visualized
the analysis by using the SHAP method to work out the contribution
of each feature to the model output.

2.8 Handling of missing values

For the treatment of missing values, more than 35 % of the
missing features were not included in our study. For models such as
XGBoost, LightGBM, and CatBoost, the built-in mechanisms for

10.3389/fmed.2025.1631011

handling missing data values of these models eliminate the need for
manual preprocessing. In contrast, for models including LR, KNN,
Naivebayes, QDA, and Random Forest, we employed the Multiple
Imputation by Chained Equations (MICE) method to impute
missing values.

2.9 Statistical analysis

All analyses were performed using IBM SPSS software (version
26.0), R software (version 4.0.5), and the Python scikit-learn
package (version 1.6.0). Response rates were compared by chi-square
test and Fisher’s exact test, we use the De-long test to compare the
AUC of the different models. p < 0.05 was statistically significant.
For full implementation details of this study, please refer to the
source  code

repository:  https://github.com/wangqingbin/

ML-Digestive-Cancer.

3 Results
3.1 Baseline characteristics of the patient

Figure 2 illustrates the process of participant selection and study
design. The basic characteristics of the 506 patients included in this
study are shown in Table 1. The cohort was comprised of mostly males
(65%), with a median age at diagnosis of 60 (IQR, 52-67) years. Of
these patients, 44.5% had a history of surgery (patients with
postoperative recurrence), median BMI was 22.65 (19.86-25.32).
There were 127 (25.09%) patients diagnosed with EC, 228 (45.05%)
with GC, and 151 (29.86%) with CRC. The total number of treatment
responders was 300 (59.3%).

Clinical data
China
Trair—ling set Training features
n=404 (age, BMI, MSI, treatment...)
— Training target
America n=154 Gene data (Response)
Testing set
[ ] =
n=102

Model-computed score

Select the best model

L

High Low

FIGURE 2
Process diagram for model construction.
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TABLE 1 Characteristics of patients in the study.

Characteristic

Total patients (n = 506)

10.3389/fmed.2025.1631011

Training set (n = 404) Test set (n = 102)

Sex, n (%)

Female 172 133 39
Male 334 271 63
Age, median, (IQR) 60 (52-67) 60 (52-67) 60 (53-68)
Cancer type, n (%)

Esophageal 127 (25.09) 101 (25) 26 (25.49)
Gastric 228 (45.05) 182 (45.05) 46 (45.10)
Colorectal 151 (29.86) 121 (29.95) 30 (29.41)
Stage n (%)

I-111 123 (24.4) 96 (23.76) 27 (26.47)
v 383 (75.6) 308 (76.24) 75 (73.53)
Surgery history n (%)

Yes 225 (44.5) 174 (43.07) 51 (50)
No 381 (55.5) 230 (56.93) 51 (50)
Response n (%)

Yes 300 (59.3) 240 (59.41) 60 (58.82)
No 206 (40.7) 164 (40.59) 42 (41.18)

3.2 Machine prediction model

To predict the treatment response rate of patients with GI malignant
tumors, we developed and trained eight ML models. The AUC curves of
all of these models are shown in Figure 3A and the values of AUC are
shown in Figure 3C. The decision curves of all models are shown in
Figure 3B. The AUC value of XGBoost was 0.829 (95% CI: 0.73-0.91). The
De-long test results suggested that the difference in the AUC between
XGBoost and other ML models was statistically significant (p < 0.05).
Given the imbalanced nature of our dataset, we incorporated the
Precision-Recall AUC (PR-AUC) metric to comprehensively evaluate
model performance beyond conventional ROC analysis, the Xgboost
PR-AUC = 0.8723 (Figure 3D). Subsequently, we used metrics such as
accuracy, sensitivity, and specificity to evaluate the accuracy of all models
(Table 2). We showed the number of true positives, true negatives, false
positives, and false negatives predicted by each model further
demonstrated in the form of Figure 4. XGBoost model achieved the best
performance among these methods.

3.3 SHAP analysis and importance of
features

The feature importance analysis we performed on XGBoost by
using an interpretable SHAP analysis approach (Figure 5).
Chemotherapy scored highest in feature contribution, indicating the
highest contribution to model accuracy. The lowest score was Ki67,
indicating the lowest contribution to model accuracy.

3.4 Analysis of key risk factors

In the XGBoost-based feature importance analysis and SHAP
analysis, treatment modality and tumor stage emerged as the two most
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influential features. We performed a detailed analysis of the
relationship between these features and response rate. We analyzed the
effects of different treatment modalities and different tumor stages on
response rates (Table 3).

4 Discussion

In recent years, ICIs have been widely used in the treatment of GI
cancers (41). However, with the rise of immunotherapy, challenges
have emerged. For example, the response rate remains relatively low
and varies significantly among individuals in this field. How to
enhance immune response rates and refine personalized
immunotherapy strategies stands as a critical challenge in the field
today. Therefore, we developed and trained eight ML models—
XGBoost, LightGBM, CatBoost, RandomForest, LR, KNN, Naive
Bayes, and QDA—to analyze data from patients with GI cancers.
Within our predictive framework, both the XGBoost and CatBoost
classifiers demonstrated high predictive efficacy, achieving AUC
values of 0.829 and 0.812, respectively. Further analysis revealed that
the XGBoost classifier outperformed CatBoost in both accuracy and
specificity metrics. Consequently, XGBoost proves to be a robust tool
for accurately predicting the response of ICIs therapy. In short, these
data indicate that our ML method can predict immunotherapy
response rates in GI cancers with high accuracy prior to treatment.

From the baseline chart of patients, it can be seen that the incidence
rate of GI cancers is much higher in men than in women, with the
incidence rate reaching 65%, which may have a great relationship with
factors such as smoking and drinking (42). In addition, the proportion
of patients entering stage IV reaches 75.6%, which indicates that GI
cancers are characterized by late detection. Most of the patients had
already metastasized by the time they sought medical treatment.

We used 8 ML methods to construct the prediction model. XGboost,

with an AUC value of 0.829 and a sensitivity of 0.8667, had the best
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Evaluation of ML models. (A) ROC curves for all ML models. (B) Decision curves for all ML models. (C) AUC values for all ML models. (D) PR-AUC for all

B Decision Curve Analysis For Eight Machine Learning Models

—— XGBoost
LightGBM
CatBoost
RandomForest
R

KNN
NaiveBayes

04 .6
Threshold Probability

Precision-Recall Curves C For Eight Machine Learning Models

Precision
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TABLE 2 Detailed parameters of each machine learning mode.

Specificity PPV (%) NPV (%)

66.67 (50.45-80.43)

78.79 (66.98-87.89)

77.78 (60.85-89.88)

52.38 (36.42-68.00)

72.22 (60.41-82.14)

73.33 (54.11-87.72)

54.76 (38.67-70.15)

73.61 (61.90-83.30)

76.67 (57.72-90.07)

61.9 (45.64-76.43)

75.76 (63.64-85.46)

72.22 (54.81-85.80)

71.43 (55.42-84.28)

79.31 (66.65-88.83)

68.18 (52.42-81.39)

52.38 (36.42-68.00)

67.21 (54.00-78.69)

53.66 (37.42-69.34)

71.43 (55.42-84.28)

78.95 (66.11-88.62)

66.67 (51.05-80.00)

Model Accuracy Sensitivity

XGBoost 78.43 (69.19-85.96) 86.67 (75.41-94.06)
LightGBM 72.55 (62.82-80.92) 86.67 (75.41-94.06)
CatBoost 74.51 (64.92-82.62) 88.33 (77.43-95.18)
RF 74.51 (64.92-82.62) 83.33 (71.48-91.71)
LR 74.51 (64.92-82.62) 76.67 (63.96-86.62)
KNN 61.76 (51.61-71.21) 68.33 (55.04-79.74)
Naivebayes 73.53 (63.87-81.78) 75 (62.14-85.28)

QDA 68.63 (58.69-77.45) 71.67 (58.56-82.55)

64.29 (48.03-78.45)

74.14 (60.96-84.74)

61.36 (45.50-75.64)

prediction performance among these models. The SHAP explanation
indicates that chemotherapy is the most significant predictive feature
(contribution score = 0.28), which aligns with the clinical practice of
chemotherapy serving as the cornerstone of GI cancer treatment.
Mechanistically, this process likely involves multiple factors. Firstly,
chemotherapy enhances tumor antigen presentation and T-cell-mediated
cytotoxicity, thereby potentiating immunotherapy through “sensitization”
effects (43). Secondly, combination therapies significantly mitigate the risk
of tumor cells developing resistance to single-treatment modalities,
thereby enhancing therapeutic efficacy through synergistic effects (44).
The study by Ningchen et al. investigated the association between
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nutritional status and the efficacy of immune checkpoint inhibitor therapy
in esophageal cancer. The research demonstrated that patients
pretreatment HGB levels and BMI were significantly correlated with
treatment effectiveness, and both served as independent prognostic
indicators for survival outcomes (45). In our study, we found that a higher
level of HGB and BMI significantly improved the therapeutic effect. In
our predictive model, the feature importance of BMI and HGB was 0.14
and 0.15, respectively. Therefore, the patients baseline nutritional status
positively influences the response rate to immunotherapy. In other
studies, NLR is an important indicator of the degree of inflammation (25),
and this was indirectly confirmed in our study. The higher the NLR ratio,
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FIGURE 5
SHAP interpretability analysis. (A) Interpretable and analyzable swarm maps. (B) Contribution of each input feature. (C) Local interpretation of each
input feature.
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TABLE 3 Detailed analysis of important features.

10.3389/fmed.2025.1631011

Characteristic Response, n (%) No response, n (%) 72 P
Treatment

ICls 118 (53.8) 102 (46.2) 16.96 <0.01
Chemo+ICIs 159 (72.6) 60 (27.4)

Stage

I-111 103 (83.7) 20 (16.7) 41.44 <0.01
v 195 (50.90) 188 (49.10)

the worse the outcome for the patients, which is probably related to the
degree of inflammation in the patient’s body. In tumor staging, once a
patient enters stage IV and metastasis occurs, the response rate will
be greatly reduced. Once tumor metastasis occurs, the therapeutic efficacy
of immunotherapy is significantly diminished. The MSI and PD-L1
expression are very important features to measure the efficacy of
immunotherapy (21, 46), but our prediction model is a combination
therapy model based on immunotherapy, and the MSI and PD-L1
expression does not have absolute importance in terms of the model’s
contribution, and we speculate that in the combination therapy model.
We speculate that in the combination therapy model, immunotherapy
contribution is inherently low and assumes an adjunctive therapeutic role.
Interestingly, age also plays an important role in the contribution of
characteristics, and we found that the older the age, the higher the
response rate, which we think may be related to the fact that young people
have a fast basal metabolism, and tumors are more likely to progress and
metastasize. In addition, gene mutations also contribute to treatment
response rates, HER-2 positivity in GC and K-RAS mutations in CRC
reduce response rates. Ki-67 is expressed in the nucleus. Once cells enter
the quiescent GO phase, Ki-67 undergoes rapid degradation, making its
index value a reliable indicator of cellular proliferative activity (47).
Paradoxically, while elevated Ki-67 levels correlate with accelerated tumor
cell proliferation rates, this proliferation marker simultaneously
demonstrates a strong positive association with chemosensitivity - tumors
exhibiting high Ki-67 expression demonstrate enhanced responsiveness
to chemotherapy and achieve superior treatment outcomes. This dual
biological significance (pro-proliferative yet pro-chemosensitive) likely
accounts for its low feature contribution rate (0.01) in our immunotherapy
predictive model. In SHAP interpretability analysis, the treatment method
and tumor stage are the two features with the highest contribution rates.
Subsequently, we performed a deeper analysis of these two features.
Table 3 shows that immunotherapy alone has a low response rate while
combining immunotherapy with chemotherapy increases the response
rate to 72.6%. Once the tumor reaches stage IV, the response rate drops
dramatically, from 80.7 to 50.6%.

In recent studies, ML has shown significant potential in predicting
the efficacy of immunotherapy. Hui Liu et al. developed a multimodal
prediction model for immunotherapy of esophageal cancer, the study
developed a predictive model for immunotherapy response in esophageal
cancer by integrating pathology images, CT scans, and clinical data,
achieving an AUC of 0.809 (48). Hong Wei Li et al. developed a predictive
model for the efficacy of immunotherapy in gastric cancer, the study
leveraged clinical data from 273 gastric cancer patients to construct
predictive models for overall survival (OS) and progression-free survival
(PES) in response to immunotherapy, with a specific focus on patients’
nutritional status. The XGBoost model achieved an AUC of 0.723 in
predicting treatment outcomes (49). Current studies have focused
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primarily on single cancer types rather than pan-GI malignancie. Our
study addresses this gap by developing an interpretable ML framework to
predict immunotherapy treatment responses across three major GI
cancers: EC, GC, and CRC. Currently, clinical approaches for predicting
immunotherapy responses still primarily rely on MSI status, TMB, or
physicians’ subjective clinical expertise. However, the tumor immune
microenvironment is extremely complex, and relying solely on any single
detection method cannot accurately predict immunotherapy response
rates. Therefore, it is imperative to develop personalized immunotherapy
strategies for patients and build predictive models for immunotherapy
efficacy. Therefore, our study constructs a predictive model incorporating
multiple dimensions—including common nutritional status indicators,
blood biochemical markers, imaging findings, and genetic testing results.
All metrics utilized are readily obtainable in routine clinical practice,
enabling more effective tailoring of personalized treatment plans for
individual patients.

Our study holds significant implications for clinical practice in
cancer therapy. First, chemotherapy remains the cornerstone of
comprehensive cancer treatment, and combination regimens can
substantially enhance response rates to immunotherapy. Second, for
gastrointestinal malignancies, once patients progress to stage IV, the
efficacy of immunotherapy declines markedly. Hence, early screening,
detection, and intervention are critically important in clinical
management.

Additionally, patients’ systemic health status

profoundly impacts immunotherapy outcomes—maintaining
optimal nutritional status and controlling inflammatory responses
are essential. Finally, traditional predictive biomarkers from genetic
testing remain indispensable; notably, MSI status retains its
irreplaceable role in forecasting immunotherapy responsiveness. In
summary, the determinants of immunotherapy efficacy are
multifaceted. To optimize therapeutic success, clinicians should
adopt a holistic approach that integrates all relevant factors.

However, our study still has several limitations. While basic
clinical characteristics including TNM staging, BMI, NLR, and HGB
were assessed in 100% of patients, genetic testing was not performed
in all cases. Specifically, out of a total of 506 patients with GI cancers,
381 underwent MSI testing; among 228 GC patients, 164 had HER-2
status evaluated; and among 151 CRC patients, 105 completed K-RAS
testing. These missing data may have introduced bias that could
potentially affect the accuracy of our predictive model. Furthermore,
the lack of experimental validation remains a constraint, and
additional experimental studies will be required to enhance the
clinical applicability of our findings in future research. Furthermore,
in our research, we split all the data into training and validation sets,
but still lack an independent external validation set. To verify the
accuracy of the model, we will need to use an additional independent
external validation set for validation in the future.
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5 Conclusion

XGBoost performed optimally with other ML methods in terms
of modeling to predict response effects with clinical accuracy. Through
comprehensive feature importance analysis, chemotherapy regimen
and tumor staging parameters emerged as the most influential
predictors, collectively accounting for 43% of the model’s predictive
capacity (Shapley value analysis). We will further conduct continuous
tracking analysis and interpretation of the selected features to validate
and apply the prediction model for the treatment effectiveness of
patients with GI cancers.
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