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Diabetic kidney disease (DKD) has emerged as the leading cause of chronic

kidney disease (CKD) worldwide, surpassing primary glomerular disorders in

prevalence. Despite recent therapeutic advances, current treatment strategies

primarily alleviate symptoms rather than address the underlying pathogenic

mechanisms, highlighting an urgent need for targeted, mechanism-based

interventions. The pathogenesis of DKD involves a complex interplay of

metabolic, hemodynamic, inflammatory, oxidative, and fibrotic pathways.

Chronic hyperglycemia initiates a cascade of molecular events—including

the accumulation of advanced glycation end products (AGEs), activation

of the polyol pathway, enhanced protein kinase C (PKC) signaling, and

mitochondrial dysfunction—culminating in glomerular hyperfiltration, podocyte

injury, and progressive glomerular and tubulointerstitial fibrosis. In addition

to these classical mechanisms, emerging processes such as ferroptosis

(iron-dependent cell death), impaired autophagy, gut microbiota dysbiosis,

and epigenetic alterations o�er promising therapeutic targets. Current

DKD management integrates lifestyle modifications with four cornerstone

pharmacologic classes: renin–angiotensin–aldosterone system inhibitors

(RAASi), sodium–glucose co-transporter 2 inhibitors (SGLT2i), glucagon-like

peptide-1 receptor agonists (GLP-1 RAs), and mineralocorticoid receptor

antagonists (MRAs). Notably, evidence from clinical trials suggests that

simultaneous modulation of multiple pathogenic pathways provides superior

cardiorenal protection compared to monotherapy. Investigational therapies—

including endothelin receptor antagonists (ERAs), nuclear factor erythroid

2–related factor 2 (Nrf2) activators, and gut microbiota modulators—are under

active evaluation. Additionally, Traditional Chinese Medicine (TCM) formulations

have demonstrated albuminuria-lowering e�ects in clinical studies. Future

research should prioritize biomarker-driven precision medicine approaches,

enabling individualized therapy selection and development of agents that

concurrently target ferroptosis and inflammation. Given the multifaceted

pathophysiology of DKD, optimal management will require multimodal, patient-

tailored regimens that address hyperglycemia, hypertension, inflammation, and

fibrosis to e�ectively slow or halt disease progression.
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1 Epidemiological background

Diabetic kidney disease (DKD) is one of the most prevalent
and severe chronic microvascular complications of diabetes (1).
According to the International Diabetes Federation, ∼425 million
adults aged 20–79 years are living with diabetes globally, reflecting
a prevalence of 8.8% (2). China bears the highest disease
burden, accounting for 114 million individuals—26.7% of the
global diabetic population—with projections rising to 120 million
by 2045 (2). DKD develops in ∼20%−40% of patients with
diabetes, with incidence influenced by factors such as diabetes
duration, glycemic control, and genetic susceptibility (3). It has
now overtaken primary glomerular diseases as the leading cause
of chronic kidney disease (CKD) worldwide and substantially
increases both cardiovascular and all-cause mortality risk among
individuals with type 2 diabetes (T2D) (4). To address this
escalating health crisis, current DKD management emphasizes
four core pharmacologic classes: renin–angiotensin–aldosterone
system inhibitors (RAASi), mineralocorticoid receptor antagonists
(MRAs), sodium–glucose co-transporter 2 inhibitors (SGLT2i), and
glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs) (5).
Robust clinical evidence supports the use of combination therapy
with these agents, demonstrating significant benefits for both renal
preservation and cardiovascular protection. Ongoing research
into targeted therapeutics and precision medicine strategies holds
promise for optimizing treatment outcomes and transforming the
long-term prognosis of patients with DKD (6).

2 Pathogenesis of DKD

DKD develops through a constellation of interconnected
pathological processes—including metabolic dysregulation,
hemodynamic alterations, inflammation, and fibrotic
remodeling—that collectively drive progressive renal dysfunction
and structural deterioration. A comprehensive understanding of
these mechanisms is essential for developing effective, targeted
therapies. Chronic hyperglycemia is the central initiating factor
in DKD pathogenesis, activating multiple overlapping molecular
cascades that cause cellular injury (7). Metabolically, persistent
hyperglycemia upregulates glucose transporter-1 (GLUT1),
reinforcing a self-perpetuating TGF-β1–GLUT1 signaling loop
in mesangial cells that promotes abnormal extracellular matrix
(ECM) accumulation, primarily of collagen and fibronectin (8).
Concurrently, non-enzymatic glycation of proteins and lipids leads
to the formation of advanced glycation end products (AGEs),
which drive kidney injury through both RAGE-dependent and
RAGE-independent pathways (9). RAGE engagement activates
NF-κB signaling, leading to the release of pro-inflammatory
cytokines and the generation of reactive oxygen species (ROS),
while RAGE-independent pathways contribute to ECM expansion
and tissue fibrosis (9–11). Hyperglycemia also triggers alternative
metabolic pathways—including the polyol pathway, hexosamine
biosynthesis, and protein kinase C (PKC) activation—all of
which exacerbate oxidative stress and amplify transforming
growth factor-beta (TGF-β)/Smad signaling (12–16). These events
contribute to glomerular hypertrophy, basement membrane
thickening, and mesangial expansion (17). At the cellular level,

mitochondrial dysfunction and ferroptosis—an iron-dependent
form of regulated cell death—initiate a self-reinforcing cycle of
ROS overproduction, lipid peroxidation, and iron accumulation
(18–20). Impaired autophagy and dysregulated endoplasmic
reticulum (ER) stress responses further hinder the clearance
of damaged cellular components, accelerating renal cell injury
(21, 22). Hemodynamic abnormalities represent another critical
contributor to DKD progression. Afferent arteriolar dilation,
together with renin–angiotensin system (RAS) hyperactivation,
results in glomerular hyperfiltration and increased intraglomerular
pressure (23). This mechanical stress damages the filtration
barrier and activates inflammatory pathways involving cytokines,
adhesion molecules, and selectins, culminating in endothelial
dysfunction, podocyte injury, mesangial cell activation, and
fibrotic changes that collectively drive albuminuria and decline in
renal function (8, 24, 25). In summary, sustained hyperglycemia
orchestrates a multifactorial pathophysiological network involving
metabolic injury, oxidative stress, hemodynamic strain, and
inflammatory amplification. Effective therapeutic strategies
must, therefore adopt an integrated approach, simultaneously
targeting these pathogenic axes to meaningfully slow or reverse
DKD progression.

Accumulating evidence highlights inflammation as a central
driver in both the initiation and progression of DKD (26).
Persistent hyperglycemia activates a network of interrelated
inflammatory pathways that contribute to sustained renal injury.
One of the principal mechanisms involves hyperglycemia-
induced oxidative stress and the consequent formation of
advanced glycation end products (AGEs), which in turn activate
two key inflammatory cascades: the Toll-like receptor (TLR)
2/4–MyD88–NF-κB pathway and the thioredoxin-interacting
protein–NOD-like receptor pyrin domain-containing 3 (NLRP3)
inflammasome complex (27–29). Activation of these signaling
pathways promotes the release of pro-inflammatory cytokines,
including interleukin (IL)-6, IL-1β, and tumor necrosis factor-
alpha (TNF-α), which compromise the integrity of the endothelial
glycocalyx, increase glomerular capillary permeability, and
promote microalbuminuria—an early hallmark of diabetic renal
injury (26, 30–32). Inflammatory signaling further induces the
expression of adhesion molecules such as vascular cell adhesion
molecule-1, intercellular adhesion molecule-1, and P-selectin,
facilitating the recruitment of monocytes, macrophages, and T
lymphocytes into renal tissue (32). This fosters a self-reinforcing
loop among infiltrating immune cells, inflammatory mediators,
and adhesion molecules, perpetuating tissue damage (33).
AGE-RAGE interactions intensify oxidative stress via both
receptor-dependent and -independent mechanisms, while also
amplifying NF-κB activity to further exacerbate the inflammatory
milieu (34, 35). The heightened oxidative burden triggers
gasdermin D-mediated pyroptosis and promotes partial epithelial–
mesenchymal transition, contributing to glomerulosclerosis and
tubulointerstitial fibrosis (36, 37). The inflammatory landscape in
DKD is, thus characterized by simultaneous activation of multiple
signaling cascades, dynamic immune–renal cell crosstalk, and self-
amplifying feedback loops. This complex pathophysiology provides
a compelling rationale for the development of multi-targeted
anti-inflammatory therapies, including NLRP3 inflammasome
inhibitors, NF-κB pathway modulators, and biologic agents
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targeting IL-6, IL-1β, and TNF-α–each showing promising
potential to attenuate disease progression.

Oxidative stress is a central pathological mechanism in DKD,
closely intertwined with chronic hyperglycemia (35, 38). This pro-
oxidative state, characterized by excessive reactive oxygen species
(ROS) generation, arises through several converging pathways.
Hyperglycemia enhances ROS production via hyperactivation of
NADPH oxidases—particularly the NOX4 and NOX5 isoforms—
dysfunction of the mitochondrial electron transport chain leading
to electron leakage, and increased xanthine oxidase activity (39–
41). These ROS, in turn, amplify AGE–receptor for AGE (RAGE)
signaling, establishing a vicious cycle wherein oxidative damage
and inflammation reinforce one another, exacerbating renal injury
(35). Excess ROS inflict widespread molecular damage: lipid
peroxidation yields cytotoxic byproducts such as malondialdehyde
(MDA) and 4-hydroxynonenal (4-HNE); DNA oxidative lesions
manifest as elevated levels of 8-hydroxydeoxyguanosine (8-OHdG);
and proteins undergo oxidative modifications that impair their
function (39–41). Thesemolecular insults compromise the integrity
of the glomerular filtration barrier and accelerate tubular and
interstitial injury (42). Concurrently, DKD is marked by impaired
endogenous antioxidant defenses. The nuclear factor erythroid
2–related factor 2 (Nrf2)–Kelch-like ECH-associated protein 1
(Keap1) axis, a key regulator of cellular redox homeostasis, exhibits
diminished activity (43). Levels and activity of major antioxidant
enzymes—superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GSH-Px)—are also significantly reduced,
weakening the kidney’s capacity to neutralize ROS (44, 45).
Emerging evidence has identified additional oxidative mechanisms
contributing to DKD progression. Ferroptosis, an iron-dependent
form of regulated cell death, has been shown to play a
significant role in renal injury (46). Moreover, the interplay
between endoplasmic reticulum (ER) stress and oxidative stress
further amplifies cellular dysfunction and promotes ROS-driven
fibrogenesis (18). Together, these oxidative pathways underpin the
transition from early-stage albuminuria to advanced renal failure.
These insights underscore the therapeutic potential of strategies
that target multiple aspects of oxidative stress in DKD. Such
approaches may include inhibition of ROS-generating pathways,
restoration of antioxidant enzyme function, and modulation of
ferroptotic cell death—each offering promise for preserving renal
function by mitigating ongoing oxidative injury. The oxidative
stress pathways implicated in DKD pathogenesis are illustrated in
Figure 1.

Hemodynamic dysregulation is a fundamental pathological
driver of DKD, acting synergistically withmetabolic disturbances to
accelerate disease progression (44, 45). In the early stages of DKD,
hyperglycemia disrupts normal renal hemodynamic regulation
through several interrelated mechanisms. Elevated glucose
levels impair tubuloglomerular feedback and promote afferent
arteriolar vasodilation, resulting in glomerular hyperfiltration (47).
Simultaneously, activation of the intrarenal renin–angiotensin
system (RAS) induces efferent arteriolar vasoconstriction (48).
These vascular alterations collectively elevate intraglomerular
pressure, imposing sustained mechanical stress on the glomerular
filtration apparatus (49). This persistent hemodynamic strain
initiates a cascade of structural damage. Initially, mechanical forces
disrupt glomerular endothelial cells and their protective glycocalyx,

followed by activation of podocyte stress responses and mesangial
cell proliferation with excessive extracellular matrix deposition
(50, 51). These changes compromise the integrity of the glomerular
filtration barrier, increasing permeability and facilitating the
onset and progression of albuminuria (52, 53). Hemodynamic
dysregulation is closely intertwined with inflammatory processes,
forming a self-reinforcing pathological cycle (54). Local elevations
in angiotensin II, imbalanced production of vasoactive mediators
such as nitric oxide and prostaglandins, and Toll-like receptor
4 (TLR4)-mediated inflammatory signaling further disrupt
vascular tone regulation (55–57). The resulting interplay among
hyperfiltration, elevated intraglomerular pressure, and endothelial
dysfunction perpetuates renal injury and accelerates functional
decline (58–60). Clinical studies have identified progressive
increases in the afferent-to-efferent arteriolar resistance ratio as
a predictive marker for progression to end-stage kidney disease
(ESKD) (49). These mechanistic insights have informed several
key therapeutic developments. SGLT2i restore tubuloglomerular
feedback and reduce intraglomerular pressure (61); angiotensin-
converting enzyme (ACE) inhibitors and angiotensin receptor
blockers (ARBs) interrupt the RAS cascade (62); while MRAs
confer additional hemodynamic and anti-inflammatory benefits
(63). Through distinct but complementary mechanisms, these
agents improve renal hemodynamics and delay DKD progression.
Therefore, precise characterization of hemodynamic abnormalities
and implementation of multi-targeted therapeutic strategies are
essential for interrupting disease progression and preserving
long-term kidney function in patients with DKD.

Epigenetic regulation plays a pivotal role in the pathogenesis
of DKD, providing a molecular basis for the phenomenon of
metabolic memory—whereby transient episodes of hyperglycemia
induce long-lasting pathological changes in renal cells (64, 65).
Alterations in DNA methylation represent a hallmark of this
epigenetic remodeling (66). DNA methyltransferase 1-mediated
modifications exhibit bidirectional effects: hypermethylation of
promoter regions in protective genes, such as ACTN4 (encoding
α-actinin-4), suppresses their expression, while hypomethylation
of pro-pathogenic genes, including matrix metalloproteinase-9,
enhances their transcription (67, 68). These methylation shifts
reprogram the expression of genes involved in glomerular barrier
integrity and fibrogenesis (69). Moreover, dysfunction of the ten-
eleven translocation enzyme–α-ketoglutarate axis impairs active
DNA demethylation, stabilizing disease-associated methylation
patterns (70, 71). Histone modifications are also dysregulated in
DKD. Increased acetylation of histones H3 and H4 promotes
transcription of genes associated with inflammation and TGF-
β signaling (72). In parallel, SET7-mediated monomethylation
at histone H3 lysine 4 (H3K4me1) sustains the expression
of profibrotic genes such as MAP4K3 (73). Bromodomain-
containing protein 4 binds acetylated histones and, together
with the Ino80 chromatin remodeling complex, maintains
open chromatin architecture to support persistent expression
of disease-promoting gene programs (74). Non-coding RNAs
represent a third major epigenetic regulatory axis in DKD.
MicroRNAs (miRNAs; e.g., miR-27a, miR-93-5p), long non-
coding RNAs (e.g., XIST, LINC01619), and circular RNAs
(e.g., circCOL1A2, circADAM9) participate in intricate post-
transcriptional regulatory networks (75–80). These non-coding
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FIGURE 1

Oxidative stress pathways in DKD. This figure depicts the role of oxidative stress in DKD pathogenesis. Hyperglycemia induces excessive ROS

production via NADPH oxidase (NOX4/5), mitochondrial dysfunction, and xanthine oxidase. ROS promotes lipid peroxidation, DNA damage,

ferroptosis, and ER stress. AGE–RAGE signaling amplifies ROS, while Nrf2–Keap1 pathway and antioxidant enzymes (SOD, CAT, and GSH-Px) are

inhibited, exacerbating oxidative damage in glomerular and tubulointerstitial compartments. ROS, reactive oxygen species; AGEs, advanced glycation

end-products; RAGE, receptor for AGEs; NOX, NADPH oxidase isoforms; MDA, malondialdehyde; 4-HNE, 4-hydroxynonenal; 8-OHdG Kelch-like

ECH, 8-hydroxy-2
′
-deoxyguanosine; SOD, superoxide dismutase; CAT, catalase; GSH-Px, glutathione peroxidase; Nrf2, nuclear factor erythroid

2–related factor 2; Keap1, Kelch-like ECH-associated protein 1; ER, endoplasmic reticulum.

RNAs modulate key processes—including endoplasmic reticulum
stress, NF-κB activation, and ferroptosis—through competitive
endogenous RNA interactions and cross-regulatory feedback (81–
83). These multilayered epigenetic alterations help explain the
persistence of renal injury despite glycemic improvement and
may also contribute to transgenerational transmission of disease
susceptibility. Accordingly, epigenetic-targeted therapies are under
active investigation, including histone deacetylase inhibitors, DNA
methyltransferase inhibitors, bromodomain and extraterminal
domain protein blockers, and SIRT1 activators. These agents
offer novel strategies to disrupt metabolic memory and attenuate
DKD progression.

2.1 Gut microbiota dysbiosis in diabetic
kidney disease

The intestinal microbiome plays a critical role in maintaining
kidney homeostasis through complex bidirectional interactions
within the gut–kidney axis (84, 85). Emerging evidence
implicates gut microbial dysbiosis as an active contributor to
the pathophysiology of DKD. Characteristic alterations in gut
microbial composition in DKD include a marked reduction in
short-chain fatty acid (SCFA)-producing bacteria—particularly

butyrate-producing members of the Lachnospiraceae family
and genera such as Blautia and Faecalibacterium—alongside
an overgrowth of potentially pathogenic taxa, including
Enterobacteriaceae and other gamma-proteobacteria (86).
Mounting evidence indicates that patients with DKD commonly
exhibit gut microbiota dysbiosis, altered bile acid pool composition,
and aberrant expression of bile acid receptors—particularly
Farnesoid X Receptor (FXR) and Takeda G protein–coupled
receptor 5. These disruptions may exacerbate renal injury by
activating pro-inflammatory signaling cascades, notably the
NF-κB pathway and NLRP3 inflammasome, thereby enhancing
cytokine production (87). This microbial imbalance contributes to
disease progression through several mechanisms. Aberrant protein
fermentation enhances the generation of nephrotoxic metabolites,
such as indoxyl sulfate, p-cresol sulfate, and trimethylamine
N-oxide (TMAO) (88–90). As renal function declines, these
uremic toxins accumulate and exacerbate kidney injury by
promoting oxidative stress, disrupting cellular metabolism, and
activating inflammatory signaling pathways (90–92). Intestinal
barrier dysfunction further amplifies renal damage. During DKD
progression, hyperglycemia and microbial dysbiosis disrupt
epithelial tight junctions, increasing gut permeability and enabling
translocation of endotoxins—particularly lipopolysaccharide
(LPS)—into the systemic circulation (93, 94). LPS activates the
Toll-like receptor 4 (TLR4)/NF-κB pathway, sustaining systemic
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inflammation and accelerating renal decline (95). A reciprocal
relationship exists between kidney dysfunction and gut microbial
alterations: renal impairment, influenced by dietary restrictions,
antibiotic exposure, slowed gastrointestinal transit, altered luminal
pH, and urea accumulation, reshapes the intestinal environment,
further promoting dysbiosis and perpetuating kidney injury
(96). While DKD shares many features of gut dysbiosis observed
in other forms of CKD, it exhibits unique microbial patterns
driven by diabetes-specific metabolic disturbances (92, 97).
Compared with non-diabetic kidney disease, DKD is associated
with more profound depletion of SCFA-producing bacteria,
resulting in reduced levels of beneficial microbial metabolites
such as butyrate, propionate, and acetate (98). These SCFAs
exert anti-inflammatory effects via activation of G-protein–
coupled receptors and inhibition of histone deacetylases; their
deficiency aggravates renal inflammation and fibrosis (99).
Additionally, DKD is characterized by aberrant amino acid
metabolism. Enhanced microbial degradation of tryptophan and
phenylalanine increases production of nephrotoxic derivatives—
such as phenyl sulfate and indole compounds—which contribute
to fibrosis through oxidative stress, mitochondrial dysfunction,
and NLRP3 inflammasome activation (100–102). Hyperglycemia
itself directly alters the gut microbiota, favoring expansion of
pathogenic species while suppressing beneficial taxa (103, 104).
AGEs further modify microbial metabolic outputs and promote
uremic toxin production (105). Diabetes-related gastrointestinal
complications, including gastroparesis and altered motility,
contribute to small intestinal bacterial overgrowth, exacerbating
microbial imbalance (106). Elevated TMAO levels in DKD
also downregulate tight junction proteins, increasing intestinal
permeability (107, 108). This “leaky gut” phenotype—driven
by hyperglycemia, uremia, and microbial toxins—establishes
a destructive cycle of barrier dysfunction in both the intestine
and kidney. Given the central role of gut–kidney interactions
in DKD pathogenesis, microbiota-targeted interventions—
including probiotics, prebiotics, synbiotics, and fecal microbiota
transplantation—represent promising therapeutic strategies.
A more refined understanding of diabetes-specific dysbiosis
may facilitate the development of precision microbiota-based
interventions for DKD prevention and treatment.

2.2 Exosome signaling in DKD

Exosomes—first characterized in 1982—are membrane-
bound extracellular vesicles that have emerged as pivotal
mediators of intercellular communication and key contributors
to disease pathogenesis. In DKD, recent evidence indicates that
hyperglycemia and albuminuria stimulate increased exosome
production from glomerular endothelial cells and tubular epithelial
cells (109–111). These vesicles actively propagate proinflammatory
and profibrotic signals within the renal microenvironment
(109, 112). Under hyperglycemic conditions, mesangial cell–
derived exosomes have been shown to upregulate transforming
growth factor-beta (TGF-β) expression and activate the TGF-
β1/PI3K–Akt signaling pathway, ultimately promoting podocyte
injury and fibrotic remodeling (113). Additionally, exosomes serve
as carriers of microRNAs (miRNAs) that modulate mesangial cell

proliferation and interstitial fibrosis—two key pathological features
of progressive DKD (114–116). These findings underscore the
role of exosomes not merely as passive biomarkers, but as active
participants in the molecular signaling networks that drive diabetic
kidney injury.

2.3 Autophagy dysfunction in DKD

Autophagy is a fundamental cellular process responsible
for the degradation and recycling of damaged organelles and
misfolded proteins, playing a vital role in maintaining renal
homeostasis. In DKD, impaired autophagy has been identified as
a central pathogenic mechanism contributing to podocyte injury,
albuminuria, and tubulointerstitial damage (117). Experimental
studies demonstrate that enhancing autophagic flux ameliorates
structural and functional renal injury, reduces proteinuria, and
delays disease progression (118–120). These findings support the
concept that autophagy dysregulation is involved throughout the
course of DKD—from early glomerular changes to advanced stages
of kidney failure. Given its essential role in cellular quality control,
the autophagy pathway represents a promising therapeutic target
(121). Interventions aimed at restoring autophagic function may
provide a novel approach to disrupt the pathological cascade
underlying DKD, offering potential to slow or halt the progression
of renal injury in diabetic patients.

2.4 Ferroptosis activation in DKD

Ferroptosis is a regulated, iron-dependent form of cell death
distinct from apoptosis, necrosis, and autophagy. Characterized
by excessive lipid peroxidation and impaired antioxidant defenses,
ferroptosis has been increasingly implicated in the pathogenesis
of DKD (122–124). Experimental evidence from diabetic animal
models and human kidney tubular epithelial cells exposed
to hyperglycemic conditions demonstrates hallmark features of
ferroptosis, including mitochondrial shrinkage and disrupted
redox homeostasis (122, 125, 126). Inhibition of ferroptosis has
been shown to confer renoprotective effects and attenuate DKD
progression (122). Renal biopsy specimens from DKD patients
reveal elevated expression of ferroptosis-associated proteins—such
as acyl-CoA synthetase long-chain family member 4 (ACSL4)
and prostaglandin-endoperoxide synthase 2—accompanied by
marked downregulation of glutathione peroxidase 4 (GPX4), a key
suppressor of ferroptosis (127). These molecular signatures support
the contribution of ferroptotic cell death to DKD pathogenesis and
identify ferroptosis as a promising therapeutic target. Interventions
aimed at restoring redox balance, chelating iron, or directly
inhibiting ferroptosis-related enzymesmay offer novel strategies for
renal protection in diabetic patients.

2.5 Epigenetic modifications in DKD

Epigenetic regulation—including DNA methylation, histone
modifications, and non-coding RNA-mediated gene silencing—
plays a crucial role in the initiation and progression of DKD

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2025.1631053
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1631053

(128). These heritable yet reversible modifications influence
gene expression without altering the underlying DNA sequence,
thereby modulating cellular responses to hyperglycemia and
inflammatory stimuli (129, 130). Among epigenetic mechanisms,
histone methylation has garnered particular attention for its role
in shaping chromatin structure and regulating transcription of key
profibrotic genes such as transforming growth factor-beta 1 (TGF-
β1) and type I collagen (131, 132). Aberrant histone methylation
patterns have been linked to persistent inflammation, fibrogenesis,
and activation of programmed cell death pathways in renal tissues,
contributing to progressive loss of kidney function in DKD (133).
Importantly, the reversible nature of epigenetic modifications
renders them attractive targets for therapeutic intervention.
Pharmacological modulation of histone methyltransferases, DNA
methyltransferases, and chromatin-binding proteins may enable
reprogramming of disease-associated gene expression patterns
(134). As such, targeting epigenetic dysregulation represents a
promising strategy to halt or potentially reverse DKD progression
in clinical settings.

3 Holistic approaches for managing
DKD

The complex and multifactorial pathophysiology of DKD
necessitates an integrated therapeutic approach that targets
multiple pathogenic pathways concurrently. This section outlines
a structured framework for DKD management, incorporating
glycemic control, blood pressure regulation, lipid management,
lifestyle modifications, evidence-based pharmacologic therapies,
and coordinated multidisciplinary care.

3.1 Glycemic control strategies in DKD

Achieving and maintaining optimal glycemic control is
fundamental to both the prevention and progression attenuation
of DKD. The ADVANCE trial demonstrated that reducing
hemoglobin A1c (HbA1c) levels below 6.5% was associated with
a 21% reduction in nephropathy risk and a 30% reduction
in proteinuria (135, 136). Similarly, in type 1 diabetes, the
Diabetes Control and Complications Trial (DCCT) established that
intensive glucose control reduced the risk of DKD progression
by ∼60% (137). These findings are supported by meta-analyses
of multiple clinical trials, which show significant reductions in
the incidence of both microalbuminuria (relative risk 0.86) and
macroalbuminuria (relative risk 0.74) with improved glycemic
management (138). However, individualized treatment remains
essential. Patients with advanced kidney dysfunction may derive
limited renal benefit from intensive glucose lowering and are at
heightened risk of hypoglycemia (139). Recent studies also suggest
that glycemic variability—fluctuations in glucose levels—may be as
important as mean glycemia in predicting adverse renal outcomes.
Thus, therapeutic strategies should balance glycemic targets with
safety considerations, particularly in patients with reduced renal
reserve (140).

3.2 Hypertension management in DKD
patients

Blood pressure regulation is a cornerstone of DKD
management. Current Kidney Disease: Improving Global
Outcomes (KDIGO) guidelines recommend maintaining blood
pressure below 130/80 mmHg, with more stringent targets advised
for individuals with albuminuria, due to their heightened risk
of renal and cardiovascular events (141, 142). Evidence from
the UK Prospective Diabetes Study (UKPDS) demonstrated
that effective blood pressure control significantly reduces both
microvascular and macrovascular complications in patients with
diabetes (143). Among antihypertensive agents, inhibitors of the
renin–angiotensin–aldosterone system (RAAS)—particularly Cs
(ACEIs)—have shown superior renal benefits. A subanalysis of
the African American Study of Kidney Disease and Hypertension
(AASK) highlighted ramipril’s efficacy, demonstrating a 22%−38%
reduction in composite renal endpoints compared to other
antihypertensive agents (144). These findings have firmly
established RAAS blockade as the foundational antihypertensive
strategy in DKD. Selection of additional agents—such as
calcium channel blockers or diuretics—should be guided by
comorbid conditions, volume status, and patient-specific factors
to achieve individualized and sustained blood pressure targets
(145, 146).

3.3 Managing abnormal lipid profiles in
DKD

Dyslipidemia is a significant modifiable risk factor for
cardiovascular disease in patients with DKD, and its effective
management is essential to reduce overall morbidity and mortality
(147). The Study of Heart and Renal Protection (SHARP),
which enrolled 9,270 individuals with moderate-to-advanced
CKD, demonstrated that combination lipid-lowering therapy
with simvastatin and ezetimibe reduced the incidence of major
atherosclerotic events by 17% (148). A meta-analysis of 33
randomized controlled trials (RCTs) further confirmed the
renoprotective effects of statins, showing reductions in urinary
albumin excretion [weighted mean difference (WMD): −2.04
mg/24 h], proteinuria (WMD: −0.58 g/24 h), and modest
improvements in creatinine clearance (WMD: +0.86 ml/min)
(149). Based on these findings, current clinical guidelines
recommend maintaining low-density lipoprotein cholesterol
(LDL-C) levels below 100 mg/dl, with lower targets for individuals
at elevated cardiovascular risk (150). Lipid-lowering therapy,
particularly with statins and combination regimens, thus plays a
central role in the comprehensive management of DKD.

3.4 Lifestyle modifications in DKD therapy

Lifestyle modification represents a critical adjunct to
pharmacologic therapy in DKD management, offering substantial
benefits for blood pressure control, metabolic regulation, and
renal outcomes (151). Among dietary interventions, sodium
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restriction has the strongest evidence base. A Cochrane systematic
review reported mean reductions of 6.15 mmHg in systolic and
3.41 mmHg in diastolic blood pressure following dietary sodium
restriction (152). Current international guidelines recommend
limiting sodium intake to 2.0–2.3 g/day (153). Observational data
consistently demonstrate a strong correlation between sodium
intake and albuminuria severity (154). Weight management also
exerts important renoprotective effects. Mendelian randomization
studies have identified a causal relationship between increased
body mass index (BMI) and heightened kidney disease risk,
with each standard deviation increase in BMI nearly doubling
disease probability (odds ratio: 2.00) (155). Bariatric and metabolic
surgeries have been associated with marked improvements in renal
function and reductions in albuminuria among obese patients with
DKD (156). Physical activity offers additional benefit. Structured
exercise programs, particularly those incorporating resistance
training, have been shown to improve glomerular filtration
rates and reduce proteinuria (157). Current clinical guidelines
recommend that DKD patients engage in at least 150min per
week of moderate-intensity aerobic exercise to support cardiorenal
health (158).

3.5 Modern pharmacological approach

The contemporary pharmacologic framework for DKD
emphasizes the use of four core medication classes, each
contributing distinct yet complementary cardiorenal protective
effects. These include: (1) RAASi—such as ACEIs and ARBs;
(2) SGLT2i; (3) GLP-1 RAs; and (4) ns-MRAs (159, 160). Each
class targets different pathogenic mechanisms—hemodynamic
dysregulation, hyperglycemia, inflammation, and fibrosis—
and has independently demonstrated benefits for renal and
cardiovascular outcomes in randomized controlled trials. When
used in combination, these agents exhibit additive and, in some
cases, synergistic effects, offering a robust strategy for mitigating
DKD progression and associated cardiovascular morbidity (161).
The integration of these therapies into routine clinical practice
represents a paradigm shift from glucose-centric models toward a
comprehensive cardiorenal-metabolic treatment approach.

3.6 Integrated team-based care approach

Optimal management of DKD requires a multidisciplinary,
team-based approach that leverages the expertise of various
healthcare professionals. Primary care providers play a
foundational role in screening, risk stratification, early
intervention, and referral of high-risk individuals (162).
Endocrinologists contribute specialized expertise in glycemic
management, particularly in selecting agents with proven
cardiorenal benefits, such as SGLT2i and GLP-1 RAs (163). As
DKD advances, nephrologists take on a central role in managing
progressive renal function decline, persistent albuminuria, complex
electrolyte disturbances, and planning for renal replacement
therapy when appropriate (164). Given the elevated cardiovascular
burden in DKD, cardiologists are increasingly integral to the

care team (165). However, data suggest that SGLT2 inhibitors
and GLP-1 receptor agonists remain underutilized in cardiology
practice despite their established benefits (166). Reframing these
agents as foundational cardiorenal protective therapies, rather
than merely glucose-lowering drugs, is essential to enhance their
uptake across disciplines. Implementation of patient-centered
care models—featuring integrated electronic health records,
effective inter-provider communication, and collaborative clinical
decision-making—remains critical to achieving therapeutic
goals. Both the Kidney Disease: Improving Global Outcomes
(KDIGO) guidelines and the American Diabetes Association
(ADA) endorse multidisciplinary care coordination as a central
pillar of comprehensive DKD management (167).

4 Medication-based therapeutic
approaches for DKD

4.1 Inhibitors of the
renin–angiotensin–aldosterone system
(RAASi)

Blockade of the RAAS remains the foundational therapy for
DKD, supported by robust evidence from landmark randomized
controlled trials. The Collaborative Study Group (CSG) trial
enrolled 409 patients with type 1 diabetes and persistent proteinuria
(≥500 mg/day), randomizing them to captopril or placebo (168).
Captopril reduced the risk of serum creatinine doubling by
48% (P = 0.007), with a more pronounced 76% risk reduction
observed in patients with baseline serum creatinine >2.0 mg/dl.
Moreover, captopril therapy halved the combined risk of mortality,
dialysis initiation, or kidney transplantation. In patients with
type 2 diabetes, the RENAAL trial evaluated 1,513 participants
with overt nephropathy (169). Losartan treatment resulted in a
16% relative reduction in the composite outcome of doubling
of serum creatinine, end-stage renal disease (ESRD), or death
(P = 0.02). Notably, losartan decreased the risk of serum
creatinine doubling and ESRD by 25 and 28%, respectively,
and reduced proteinuria by 35%, compared to a 4% increase
in the placebo group. The Irbesartan Diabetic Nephropathy
Trial (IDNT) compared irbesartan to amlodipine and placebo in
1,715 patients with type 2 DKD (170). Irbesartan reduced the
primary composite endpoint by 23% vs. amlodipine and 20% vs.
placebo (both P < 0.01), while also slowing the rate of renal
function decline (171, 172). Despite the strength of these findings,
several limitations must be acknowledged. Differences in blood
pressure between treatment arms may confound interpretation
of direct renoprotective effects. Sample sizes limited secondary
endpoint analysis, and pharmaceutical sponsorship introduces
the possibility of selective outcome reporting. Additionally,
composite endpoints combining irreversible outcomes with
surrogate markers complicate interpretation. Nevertheless, these
trials provide compelling and consistent evidence that RAAS
inhibition reduces the progression of DKD and underpins current
clinical guideline recommendations.
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4.2 Inhibitors of sodium–glucose
cotransporter 2 (SGLT2i)

SGLT2i represent a transformative advance in the management
of CKD, including DKD, with efficacy demonstrated across
multiple large-scale randomized trials. The CREDENCE trial
enrolled 2,627 patients with type 2 diabetes and albuminuric
kidney disease [urinary albumin-to-creatinine ratio (UACR) 300–
5,000 mg/g; estimated glomerular filtration rate (eGFR) 30–
90 ml/min/1.73 m²], randomizing participants to canagliflozin
(100mg daily) or placebo (173). Over a median 2.6-year follow-up,
canagliflozin reduced the risk of the primary composite outcome—
ESRD, doubling of serum creatinine, or death from renal or
cardiovascular causes—by 30% (HR 0.70; 95% CI 0.59–0.82).
The DAPA-CKD trial extended these findings to both diabetic
and non-diabetic CKD populations. Among 4,304 participants
(67.5% with diabetes), dapagliflozin (10mg daily) reduced the
primary composite outcome by 39% (HR 0.61; 95% CI 0.51–
0.72) (174). Similarly, the EMPA-KIDNEY trial, which included
6,609 participants across various CKD etiologies and stages,
demonstrated that empagliflozin reduced the risk of kidney disease
progression or renal death by 28% (HR 0.72; 95% CI 0.64–0.82)
(175). Despite their robust benefits, several caveats apply. All three
trials were industry-sponsored, raising the potential for reporting
bias. Importantly, patients with advanced renal impairment (eGFR
<20–30 ml/min/1.73 m²) were excluded, limiting generalizability
to this high-risk subgroup. Moreover, long-term safety data in
patients with severely reduced kidney function remain incomplete.
Nonetheless, these studies firmly establish SGLT2 inhibitors as
cornerstone therapy for DKD and broader CKD management.
Their renoprotective effects—largely independent of glycemic
control—have redefined treatment paradigms, expanding their role
from antidiabetic agents to central components of cardiorenal
protection across diverse patient populations.

4.3 Antagonists of mineralocorticoid
receptors (MRAs)

MRAs have emerged as a novel and promising class of
therapeutic agents for DKD. Finerenone, a selective non-steroidal
MRA, has led this advancement by targeting aldosterone-mediated
inflammatory and fibrotic signaling pathways—key drivers of DKD
progression. Its mechanism of action complements those of SGLT2
inhibitors and RAAS blockers, contributing to a multifaceted
therapeutic approach (176). The FIDELIO-DKD trial provided
pivotal evidence supporting the efficacy of finerenone in patients
with type 2 diabetes and CKD (177). In this randomized, placebo-
controlled study of 5,734 participants (UACR 30–5,000mg/g; eGFR
25–75 ml/min/1.73 m²), finerenone (10–20mg daily) significantly
reduced the primary composite renal outcome—defined as kidney
failure, sustained eGFR decline ≥40%, or renal death—by 18%
compared to placebo (HR 0.82; 95% CI 0.73–0.93; P = 0.001)
over a median follow-up of 2.6 years. The FIGARO-DKD trial,
which enrolled patients with earlier-stage DKD and preserved
eGFR, demonstrated a 13% relative reduction in major adverse
cardiovascular events (MACE; HR 0.87; 95% CI 0.76–0.98; P

= 0.03), primarily driven by a 29% reduction in heart failure
hospitalizations (178). The FIDELITY pooled analysis (n= 13,026)
integrated data from both trials, confirming consistent cardiorenal
benefits: a 23% reduction in the composite kidney outcome (HR
0.77; 95%CI 0.67–0.88) and an 18% reduction in all-causemortality
(HR 0.82; 95% CI 0.70–0.95) (179). Despite these encouraging
findings, several limitations warrant consideration. All three trials
were sponsored by the manufacturer (Bayer), raising the possibility
of reporting bias. Hyperkalemia was a notable adverse event,
occurring in 21.4% of finerenone-treated patients vs. 9.1% in the
placebo group, necessitating close monitoring of serum potassium
levels. Furthermore, the exclusion of patients with symptomatic
heart failure may restrict the generalizability of results to this
particularly vulnerable subgroup. Nevertheless, finerenone has
firmly established itself as a critical component of contemporary
DKD therapy. When combined with SGLT2 inhibitors, it enables a
complementary, mechanism-based approach that targets multiple
pathogenic pathways. These developments underscore a paradigm
shift towardmulti-targeted precision therapy inDKD, aligning with
the broader goals of individualized medicine in nephrology.

4.4 Incretin-based therapies

GLP-1 RAs have emerged as promising agents in the
management of DKD, exerting multifaceted benefits through
improved glycemic control, weight reduction, anti-inflammatory
effects, and modulation of renal hemodynamics (1). An expanding
body of evidence from both cardiovascular outcome trials and
kidney-specific studies supports their implementation in DKD
care. In the LEADER trial, which enrolled 9,340 individuals
with type 2 diabetes and elevated cardiovascular risk, liraglutide
treatment resulted in a 22% reduction in a secondary composite
renal outcome (HR 0.78; 95% CI 0.67–0.92), primarily due to
reduced incidence of new-onset macroalbuminuria (180–182).
Similarly, the SUSTAIN-6 trial (n = 3,297) reported a 36% relative
reduction in kidney disease progression with semaglutide (HR
0.64; 95% CI 0.46–0.88) (183). Although both trials evaluated
renal outcomes as secondary endpoints, the results provided
compelling early evidence of renoprotection. The FLOW trial
was the first randomized controlled trial specifically designed to
evaluate renal outcomes with GLP-1 RA therapy (184). Among
3,534 participants with DKD (eGFR 25–75 ml/min/1.73 m²; UACR
100–5,000 mg/g), once-weekly semaglutide (1.0mg) reduced the
risk of the primary composite renal endpoint—defined as kidney
failure, sustained ≥50% eGFR decline, or death from renal or
cardiovascular causes—by 24% (HR 0.76; 95% CI 0.66–0.88) (185).
Additionally, semaglutide reduced all-cause mortality by 20% (HR
0.80; 95% CI 0.67–0.95). The trial was terminated early due to
clear efficacy, marking a major advancement in renal protection
through incretin-based therapy. However, subgroup analyses
from FLOW raised important questions regarding combination
therapy. Among 550 participants concurrently receiving SGLT2
inhibitors, semaglutide conferred no significant renal benefit (HR
1.07; 95% CI 0.69–1.67), in contrast to substantial protection
observed in those not on SGLT2i therapy (HR 0.73; 95%
CI 0.63–0.85). These findings suggest a potential therapeutic
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ceiling when combining agents with overlapping mechanisms—
including natriuresis, afferent arteriolar constriction, and anti-
inflammatory effects—and underscore the need for further
investigation into optimal sequencing and drug combinations.
Several caveats must be considered when interpreting these
data. All major GLP-1 RA trials—including LEADER, SUSTAIN-
6, and FLOW—were sponsored by pharmaceutical companies
(Novo Nordisk or Eli Lilly), raising the possibility of reporting
bias. Except for FLOW, renal outcomes were evaluated as
secondary endpoints, with limited statistical power for definitive
conclusions. Moreover, patients with advanced kidney dysfunction
(eGFR <25 ml/min/1.73 m²) were consistently excluded, limiting
applicability to this high-risk population. Long-term safety and
efficacy in patients with severe renal impairment remain to be fully
characterized. In summary, GLP-1 receptor agonists now represent
a key therapeutic option in the comprehensive management of
DKD. Their distinct mechanisms of action complement those
of RAASi and SGLT2i, offering additional opportunities for
personalized care. Future research should focus on identifying
optimal therapeutic combinations and addressing unmet needs in
underrepresented and high-risk patient groups.

4.5 Inhibitors of dipeptidyl peptidase-4
(DPP-4)

Dipeptidyl peptidase-4 (DPP-4) inhibitors exert their effects
by blocking DPP-4 enzymatic activity, thereby preventing the
degradation of endogenous incretin hormones—primarily
glucagon-like peptide-1 (GLP-1) and glucose-dependent
insulinotropic peptide (GIP). This prolongs the bioactivity of
incretins, contributing to glucose-dependent insulin secretion and
suppression of glucagon release. Beyond their glycemic effects,
DPP-4 inhdiabetic kidney diseaseibitors have shown potential
renoprotective properties, including improved renal perfusion,
attenuation of oxidative stress, reduced proinflammatory signaling,
and enhanced tubular epithelial cell viability (186). In a clinical
study by Kim and colleagues involving 414 patients with DKD,
treatment with DPP-4 inhibitors led to a 28.4% reduction in
UACR, compared with only an 8.2% reduction in the control
group (P < 0.01) (186). The annual rate of decline in estimated
glomerular filtration rate (eGFR) was also slower among treated
individuals (1.24 vs. 2.01 ml/min/1.73 m²; P = 0.03), indicating
modest renoprotective benefit. DPP-4 inhibitors offer distinct
clinical advantages, particularly in high-risk populations. They
are weight-neutral, carry a low risk of hypoglycemia, and are
well-tolerated, with rare gastrointestinal side effects (187). These
features make them suitable for elderly patients, those with
impaired renal function, and individuals intolerant to other
glucose-lowering agents. However, their cardiorenal efficacy
is modest compared with that of SGLT2i and GLP-1 receptor
agonists. As a result, current treatment guidelines position DPP-4
inhibitors as secondary options—primarily for patients who cannot
tolerate or are ineligible for first-line renoprotective therapies (1).
Although they do not offer the same magnitude of benefit as newer
agents, DPP-4 inhibitors remain valuable in individualized DKD
management. Further studies are warranted to evaluate their role in

combination regimens alongside other evidence-based therapies.
An overview of these pivotal trials, including inclusion criteria and
primary/secondary endpoints, can be found in Table 1.

4.6 Phosphodiesterase inhibitors

Pentoxifylline, a non-selective phosphodiesterase inhibitor,
has shown modest clinical benefit in patients with moderate
to advanced stages (3, 4) of DKD. Its therapeutic effects are
attributed to multiple mechanisms, including upregulation of the
renoprotective Klotho protein, suppression of proinflammatory
cytokines, attenuation of tissue fibrosis, and reduction of
proteinuria (188). These actions collectively contribute to the
preservation of renal function and deceleration of disease
progression. Pentoxifylline is generally well-tolerated. The most
frequently reported adverse effects are gastrointestinal in nature—
nausea, vomiting, and abdominal discomfort (189). Although
bleeding complications are rare, caution is warranted in patients
with recent cerebral or retinal hemorrhage due to its potential
antiplatelet activity (190). Given its low cost, pleiotropic effects,
and favorable safety profile, pentoxifylline may serve as a valuable
adjunctive treatment in select patients with progressive DKD. It
offers a cost-effective therapeutic addition, particularly in resource-
limited settings or among patients unable to access newer agents.
However, broader clinical adoption will require further validation
through large-scale, randomized trials.

4.7 Therapeutic approaches targeting
advanced glycation end products (AGEs)

AGEs comprise harmful compounds formed when proteins
and lipids undergo non-enzymatic glycation in hyperglycemic
environments. These molecules promote tissue damage by
inducing oxidative stress and chronic inflammatory responses,
significantly contributing to DKD progression and other diabetic
complications, including cardiovascular disorders (191). Emerging
research suggests that dietarymodifications aimed at limiting AGEs
consumption can improve insulin sensitivity, reduce glycemic
parameters, and decrease systemic inflammatory markers (192).
While pharmaceutical agents that inhibit AGEs formation remain
in early developmental stages, nutrition-based interventions to
minimize AGEs exposure represent practical, economical, and
beneficial therapeutic approaches that complement comprehensive
DKD management (193). Future investigations should focus
on defining recommended dietary AGEs intake limits and
thoroughly assessing their long-term clinical effects, facilitating
the incorporation of targeted nutritional strategies into routine
clinical recommendations.

4.8 Vitamin D-related compounds

Active vitamin D (calcitriol) and related synthetic analogs
function as steroid-like hormones that regulate mineral
homeostasis, immune function, and cellular differentiation.
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TABLE 1 This Table provides a comprehensive overview of landmark randomized controlled trials (RCTs) in DKD, structured according to the PICO

format: Population (P), Intervention (I), Comparison (C), Outcome (O).

Trial name Population Intervention Comparison Primary outcomes

Captopril Trial (1993) Type 1 diabetes with nephropathy Captopril (ACEI) Placebo+ other
antihypertensives

SlowerCrCldecline; 50%↓

ESRD/transplant/death

RENAAL (2001) T2DM+ proteinuria Losartan (ARB) Place·bo+ standard
care

16% ↓ doubling SCr; 28% ↓ ESRD

IDNT (2001) T2DM+HTN+ nephropathy Irbesartan (ARB) Amlodipine or placebo 20% ↓ doubling SCr; 23% ↓ ESRD

CREDENCE (2019) T2DM+ eGFR 30–<90
+albuminuria >300mg/g

Canagliflozin+ RAASi Placebo+ RAASi 30% ↓ renal/Coutcome; trial stopped early

DAPA-CKD (2020) CKD (eGFR 25–75)± diabetes Dapagliflozin+SOC Placebo+ SOC 44% ↓ in renal/CV composite outcome

EMPA+KIDNEY (2023) CKD with/without diabetes, eGFR
≥20

Empagliflozin+SOC Placebo+ SOC 28% ↓ ESKD/CV death; 14% ↓

hospitalization

FIDELIO-DKD (2020) T2DM+ CKD Finerenone+ RASi Placebo+ RASi 18% ↓ renal outcome; 14% ↓ CV events

FIGARO-DKD (2021) T2DM+ early CKD Finerenone+ RASi Placebo+ RASi 13% ↓ CV outcome, esp. HF
hospitalization

FIDELITY (2022) Pooled FIDELIO+ FIGARO Finerenone+ RASi Placebo+ RASi 23% ↓ renal, 14% ↓ CV composite

LEADER (2016) T2DM+ high CV risk Liraglutide Placebo 22% ↓ CV death; ↓ nephropathy

SUSTAIN-6 (2016) T2DM+ high CV risk Semaglutide Placebo 36% ↓ nephropathy; ↓ eGFR decline

AMPLITUDE-O (2021) T2DM+ CKD or CVD Efpeglenatide Placebo 32% ↓ composite renal outcome

FLOW (ongoing) T2DM+ CKD Semaglutide Placebo Renal endpoints (pending)

Trials are categorized by drug class, and outcomes are labeled as Primary or Secondary endpoints. Key inclusion criteria are summarized for clarity.

T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urinary albumin-to-creatinine ratio; ESRD,

end-stage renal disease; CV, cardiovascular; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; SGLT2i, sodium-glucose cotransporter-2 inhibitor; GLP-

1RA, glucagon-like peptide-1 receptor agonist; GIP, glucose-dependent insulinotropic polypeptide; MRA, mineralocorticoid receptor antagonist; Non-steroidal MRA, selective non-steroidal

mineralocorticoid receptor blocker; ERA, endothelin receptor antagonist; HF, heart failure.

CKD patients frequently exhibit vitamin D insufficiency, which
strongly correlates with accelerated renal function decline and
increased albuminuria (194, 195). Administration of active vitamin
D consistently improves endothelial function, reduces albuminuria,
and inhibits progression of renal fibrosis (196–198). Mechanistic
studies demonstrate that vitamin D receptor (VDR) activation
reduces podocyte apoptosis by suppressing NF-κB signaling
cascades (199, 200). Paricalcitol, a selective vitamin D receptor
activator, has shown promising results in preclinical research by
modulating Wnt signaling pathways, reducing glucose-induced
podocyte injury, and markedly decreasing albumin excretion (201).
In a controlled clinical trial involving 45 patients with persistent
albuminuria despite optimal renin-angiotensin-aldosterone system
blockade, paricalcitol treatment achieved significant additional
reductions in albuminuria compared with placebo (202). These
observations support VDR targeting as a promising adjunctive
therapeutic strategy for DKD, particularly among high-risk
individuals with residual albuminuria, offering an innovative
approach beyond conventional management.

5 Integrated therapeutic approaches

The pathophysiology of DKD is multifactorial, involving
hyperglycemia, intraglomerular hypertension, chronic
inflammation, oxidative stress, and progressive fibrosis. These
interconnected pathways necessitate treatment strategies that
extend beyond monotherapy. Contemporary DKD management

increasingly emphasizes the use of complementary pharmacologic
agents targeting distinct mechanisms to achieve broader and more
durable therapeutic effects. A growing body of evidence supports
the use of multi-agent regimens combining RAASi, SGLT2i, GLP-1
RAs, and ns-MRAs. These combinations have demonstrated
superior efficacy in reducing albuminuria, preserving glomerular
filtration, and mitigating cardiovascular events compared
with individual drug classes alone. As mechanistic insights
and pharmacologic innovation continue to expand, the DKD
treatment paradigm is shifting toward personalized, multi-targeted
therapeutic strategies. Tailored regimens, optimized through
emerging biomarker data and patient-specific risk profiling, hold
promise for enhancing both renal and cardiovascular outcomes in
future clinical practice.

5.1 Comprehensive strategy combining
multiple medication classes

A recent actuarial modeling study assessed the potential
clinical benefits of combining three major pharmacologic classes—
SGLT2 inhibitors, GLP-1 receptor agonists, and the non-steroidal
MRA finerenone—using data from large-scale randomized trials
(161). The analysis integrated findings from the CANVAS and
CREDENCE trials (n = 14,543) for SGLT2i (203), a meta-
analysis of eight cardiovascular outcome trials for GLP-1 RAs
(n = 60,080) (204), and the FIDELIO-DKD and FIGARO-
DKD studies for finerenone (n = 13,026) (179). Results were
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striking. The three-drug combination was projected to reduce
major adverse cardiovascular events (MACE) by 35% (HR 0.65;
95% CI 0.55–0.76), decrease hospitalization for heart failure
by 68%, and slow CKD progression by 58% (HR 0.42; 95%
CI 0.31–0.56). In hypothetical patients aged 50 years, this
regimen could extend MACE-free survival by 3.2 years and
delay kidney disease progression by 5.5 years. Despite the
compelling projections, several important limitations must be
acknowledged. No clinical trial to date has directly evaluated
triple therapy vs. single or dual combinations; these findings are
derived from indirect comparisons that assume independent and
additive effects across agents. All source studies were industry-
sponsored, introducing potential bias due to selective reporting.
Additionally, the simulation relied on clinical trial populations
that may not fully reflect real-world patient heterogeneity, possibly
overestimating effectiveness. Furthermore, mechanistic overlap—
particularly in anti-inflammatory and natriuretic effects—raises the
possibility of diminishing returns when combining these agents.
Nevertheless, this analysis offers robust support for advancing
comprehensive, multi-target treatment strategies in DKD. As
therapeutic options expand and evidence accumulates, structured
combination therapy—especially when guided by biomarker-
driven risk stratification—has the potential to redefine DKD
management and optimize long-term cardiorenal protection.

5.2 Renal triple therapy for kidney
protection

The therapeutic strategy combining RAASi, SGLT2i, and
ns-MRAs—collectively referred to as Renal Triple Therapy
(RTT)—offers synergistic, mechanism-based protection in the
management of DKD. This multi-drug approach concurrently
targets intraglomerular hypertension, tubular inflammation, and
fibrotic remodeling (1, 177, 178, 205). A recent network meta-
analysis reported that RTT reduced the risk of cardio-renal
composite outcomes by 46% compared to RAASi monotherapy
(HR 0.54; 95% CI 0.50–0.58) (206). The FIDELITY analysis,
which pooled data from the FIDELIO-DKD and FIGARO-DKD
trials (n = 13,026; median follow-up: 3.0 years), demonstrated
that finerenone reduced cardiovascular events by 14% (HR 0.86;
P = 0.0018), kidney events by 23% (HR 0.77; P = 0.0002),
and all-cause mortality by 18% (HR 0.82; P = 0.014) (179,
207). Importantly, patients receiving concurrent SGLT2i therapy
experienced even greater renoprotection, with a 58% reduction
in kidney composite outcome risk (HR 0.42) (208). Despite
these compelling findings, several barriers hinder widespread
clinical adoption of RTT. Hyperkalemia remains a primary
safety concern. In FIDELIO-DKD, mild hyperkalemia (serum
potassium ≥5.5 mmol/L) occurred in 21.4% of finerenone-
treated patients compared to 9.2% in the placebo group
(209). While SGLT2 inhibitors may help mitigate this risk,
implementation of rigorous potassium monitoring protocols
remains essential when combining agents (210). Real-world
applicability is another limitation. Pivotal trials systematically
excluded certain patient populations: 43.2% of individuals with
CKD without albuminuria and 6.9% with eGFR below 25

ml/min/1.73 m²—two cohorts frequently encountered in clinical
practice (211). Future research should focus on determining
the optimal sequencing of these agents, characterizing long-term
safety and tolerability in diverse populations, and developing
personalized, biomarker-driven treatment algorithms. Such efforts
will be critical to fully realize the therapeutic potential of Renal
Triple Therapy and integrate it effectively into standard care
pathways for DKD.

5.3 Combining eastern and western
medical approaches for DKD treatment

5.3.1 Single-agent therapies from traditional
Chinese medicine

Within the therapeutic framework for DKD, single-agent
remedies derived from TCM can be broadly classified into three
functional categories based on their pharmacological actions:
tonic preparations, antipyretic substances, and agents that activate
blood circulation and resolve stasis. Tonic preparations are
primarily used to reinforce kidney function and correct metabolic
disturbances. Cordyceps sinensis (caterpillar fungus) and its
active constituents have shown multiple beneficial effects in
DKD models, including glucose-lowering, anti-inflammatory,
antioxidant, antifibrotic, immunomodulatory, and cytoprotective
activities (212). These properties have been incorporated into
various patented TCM formulations that demonstrate measurable
clinical efficacy. Recent studies have highlighted astragaloside
IV (AS-IV)—the principal bioactive component of Astragalus

membranaceus—as a particularly promising candidate. AS-IV
mitigates DKD-associated renal injury by inhibiting ferroptosis
in tubular epithelial cells, primarily through suppression of the
HIF-1α/HMOX1 signaling pathway. It also enhances glucose
and lipid metabolism by upregulating protective proteins such
as glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1,
while downregulating ferroptosis-related mediators including
ACSL4 and transferrin receptor 1 (213). In related research, a
compound mixture (MIX) comprising three bioactive flavonoids—
baicalin, wogonin, and wogonoside—derived from Scutellaria

baicalensis has been shown to attenuate renal fibrosis in diabetic
models by inhibiting activation of the TGF-β/Smads signaling
cascade. Additionally, this formulation improved metabolic
indices and ameliorated structural kidney damage. Collectively,
these results provide mechanistic validation and preclinical
support for the development of innovative DKD therapies based
on well-characterized herbal constituents (214). These findings
underscore AS-IV’s potential as an innovative anti-ferroptotic
therapeutic agent. Antipyretic substances exert renoprotective
effects primarily via scavenging of ROS and suppression of
inflammatory responses. Pueraria lobata-derived flavonoids,
including puerarin, enhance antioxidant enzyme activities—such
as superoxide dismutase (SOD) and catalase (CAT)—reduce
accumulation of AGEs, and attenuate oxidative damage and
apoptosis (215). Similarly, gypenosides, bioactive saponins from
Gynostemma pentaphyllum, exhibit potent lipid-lowering activity
and modulate gut microbiota composition in high-fat diet-fed rats,
suggesting potential gut–kidney axis-mediated metabolic benefits
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in DKD (216). Circulation-activating, stasis-resolving agents have
shown promise in attenuating renal fibrosis and regulating immune
responses. Tripterygium wilfordii has demonstrated significant
efficacy in preclinical DKD models. Network pharmacology and
molecular docking analyses identified 29 active compounds that
target 134 potential proteins—63 of which are directly implicated
in DKD pathophysiology. Protein–protein interaction network
analysis highlights TNF and AKT1 as central regulatory nodes,
suggesting that Tripterygium may modulate key inflammatory
and fibrotic signaling pathways (217). Panax notoginseng is widely
used as an adjunct therapy in DKD. A comprehensive meta-
analysis encompassing 1,918 participants from 24 randomized
controlled trials found that combining Panax notoginseng with
standard care significantly reduced urinary albumin excretion
(mean difference −26.89mg), 24-h proteinuria (−0.32 g),
and serum creatinine (−4.52 µmol/L) (218). Improvements
were also observed in lipid parameters: total cholesterol (TC)
(−1.56 mmol/L), triglycerides (−0.56 mmol/L), and low-density
lipoprotein cholesterol (−0.94 mmol/L), supporting its utility
as a complementary metabolic regulator in DKD management.
Additionally, osthole—a natural coumarin compound derived
from Cnidium monnieri—has shown promise in early-stage DKD
by downregulating components of the TGF-β1/Smads signaling
cascade, thereby attenuating the progression of glomerulosclerosis
(219). Ultra-high-performance liquid chromatography coupled
with quadrupole time-of-flight mass spectrometry (UHPLC-
QTOF-MS) identified 26 chemical constituents in serum following
administration of Alpiniae oxyphyllae fructus (AOF). Integrating
network pharmacology with molecular docking analysis, five
candidate bioactive compounds—including Cubebin and
dihydrochalcone derivatives—were identified as targeting key
pathogenic proteins such as TP53, SRC, STAT3, PIK3CA, and
AKT1 (220). This study systematically elucidated the mechanism
by which AOF modulates cellular senescence in DKD, progressing
from compound identification and core target prediction to
functional validation in both in vitro and in vivo models. These
findings provide both a mechanistic rationale and experimental
evidence supporting the potential incorporation of AOF into
modern therapeutic frameworks. Researchers have developed and
validated AANG—a botanical formulation comprising asiatic
acid (a Smad7 activator) and naringenin (a Smad3 inhibitor)
that attenuates renal fibrosis and inflammation in DKD through
modulation of the TGF-β/Smad3/Smad7 signaling pathway.
In db/db mouse models, AANG treatment preserved renal
architecture, improved kidney function, and promoted pancreatic
β-cell proliferation, thereby enhancing insulin secretion and
restoring glucose and lipid homeostasis (221). Notably, AANG
delayed the onset of type 2 diabetes (T2D) in prediabetic mice,
indicating its dual potential for both prevention and treatment of
T2D and its renal complications. These findings offer compelling
therapeutic insights into multi-target interventions rooted in
Traditional Chinese Medicine (TCM) principles for managing
diabetes and its associated nephropathy (222). In summary,
several TCM-derived single-agent therapies exhibit notable
potential as adjunctive interventions in DKD management.
Future studies should focus on elucidating precise mechanisms
of action, optimizing dosing strategies, and validating efficacy

and safety through rigorously designed randomized controlled
trials (RCTs).

5.3.2 Traditional Chinese medicine for addressing
intestinal microbial imbalance in DKD

TCM has shown notable potential in regulating gut–kidney
axis dysfunction, offering a novel therapeutic avenue for managing
DKD. A growing body of experimental evidence links DKD
pathogenesis and progression with intestinal dysbiosis, gut barrier
disruption, and elevated levels of gut-derived microbial toxins
(223). Multiple TCM formulations have demonstrated efficacy
in restoring intestinal microbial homeostasis while attenuating
renal injury. QiDiTangShen Granules (QDTS), for example,
have been shown to restructure intestinal bacterial communities
and modulate bile acid metabolism in db/db mice (224). These
changes activate the microbiota–bile acid–farnesoid X receptor
(FXR) signaling pathway, leading to significant reductions in
renal damage. Likewise, Yishen Huashi Granules (YSHS) preserve
renal function via modulation of the microbiota–metabolism–
transcriptome network (225). In streptozotocin-induced DKD rat
models, YSHS increased the abundance of beneficial Lactobacillus
species and reduced potentially pathogenic Prevotella populations
(226). Other studies have further substantiated the role of TCM
in counteracting intestinal dysbiosis. Anemarrhena asphodeloides
extract (AAE) improves microbial diversity and promotes the
growth of beneficial bacteria such as Blautia coccoides (227). By
enhancing peroxiredoxin activity, AAE supports gut–pancreas
crosstalk and contributes to improved glycemic regulation (228).
Additional formulations, including Qingre Xiaozheng Formula
and Tang-Shen-Fang, have demonstrated the ability to rebalance
microbial ecosystems, suppress metabolic inflammation, and
reduce the production of gut-derived uremic toxins, thereby
conferring renoprotective effects (229, 230). In another study, a
formulation containing four Bifidobacterium strains significantly
reduced total cholesterol (TC) levels and downregulated
interleukin-2 (IL-2) expression—a key pro-inflammatory
cytokine—in patients with DKD, indicating potential lipid-
lowering and anti-inflammatory benefits. In parallel, treatment
with Jingui Shenqi Pill produced more pronounced improvements
in TCM syndrome scores and greater reductions in the urine
albumin-to-creatinine ratio (ACR). Microbiota analysis revealed
that the probiotic intervention selectively increased the abundance
of Prevotella_7, potentially enhancing carbohydrate metabolism
and systemic energy balance. Although neither intervention
significantly altered global microbial diversity indices, the targeted
modulation of specific taxa supports the feasibility of precision
microbiome-based therapies for DKD. Collectively, these findings
strengthen the rationale for developing multifaceted strategies
that leverage intestinal microbiota modulation to mitigate DKD
progression (231).

Recent studies have demonstrated that Abelmoschus manihot

extract, marketed as Huangkui Capsule (HKC), attenuates
diabetic nephropathy progression by reshaping gut microbiota
composition, optimizing metabolic parameters, and suppressing
expression of renal pro-inflammatory genes. These effects appear
to be mediated through the gut–kidney axis, reinforcing the
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hypothesis that Traditional Chinese Medicine (TCM) agents exert
systemic, organ-crosstalk effects. This mechanistic insight provides
a modern conceptual basis for integrating TCM approaches
into DKD management (232). TCM-based interventions targeting
the intestinal microbiota represent mechanistically plausible and
clinically promising strategies for DKD treatment. Future research
should explore integrative approaches that combine microbial
modulation with immune and metabolic regulation, potentially
enabling personalized and multi-pathway therapeutic strategies for
patients with DKD.

5.3.3 Evidence from multicenter trials supporting
combined TCM and RAASi therapy

Recent years have seen the emergence of multicenter
randomized controlled trials (RCTs) evaluating the efficacy of
combining TCM formulations with RAASi in the treatment of
DKD. One multicenter trial involving 413 participants found
that combining irbesartan with Huangkui Capsules led to a
significant reduction in urinary albumin-to-creatinine ratio
(UACR), with a mean decrease of 262.3 mg/g, compared to 89.1
mg/g with irbesartan alone (P < 0.001) (233). Similarly, a clinical
trial assessing Keluoxin Capsules (n = 129) demonstrated that
co-administration with standard therapy significantly reduced log-
transformed UACR vs. placebo (P = 0.029) and decreased the risk
of ≥30% UACR elevation by 74% (234). Despite these encouraging
findings, several limitations must be acknowledged. Most trials had
short treatment durations, typically limited to 24 weeks, precluding
assessment of long-term outcomes such as progression to ESKD.
Small sample sizes reduced statistical power, and methodological
concerns—including insufficient reporting of randomization
procedures (e.g., in the Huangkui Capsule trial)—limit the strength
of conclusions. Furthermore, most studies relied on surrogate
endpoints, such as albuminuria, without directly assessing renal
function decline or definitive clinical events. Taken together,
current evidence suggests that adding TCM preparations to RAAS-
based therapy may enhance albuminuria reduction in patients
with DKD. Another TCM-based formulation, Shenshuaining
(SSN)—composed of extracts from Astragalus membranaceus

(Huangqi), Salvia miltiorrhiza (Danshen), and Rehmannia

glutinosa (Dihuang)—has demonstrated significant therapeutic
efficacy in patients with DKD. Mechanistic investigations reveal
that SSN improves renal function and reduces proteinuria by
modulating immune responses, mitigating oxidative stress,
and inhibiting renal fibrosis. Clinical data further indicate that
combining SSN with either angiotensin-converting enzyme
inhibitors (ACEIs) or angiotensin receptor blockers (ARBs)
enhances renal protection compared to ACEI/ARB monotherapy.
Such combination regimens significantly lower serum creatinine
and blood urea nitrogen levels, suggesting a capacity to slow
renal function decline (235). When added to standard care, SSN
appears to augment renoprotective outcomes with an acceptable
safety profile. Nonetheless, confirmation of its efficacy across
heterogeneous patient populations will require large-scale,
multicenter randomized controlled trials. The molecular structures
of representative active compounds are presented in Table 2.

However, large-scale, high-quality RCTs with extended follow-
up are essential to validate long-term renoprotective effects and
assess impacts on clinically meaningful outcomes such as kidney
failure, cardiovascular events, and mortality.

6 Future directions in DKD treatment

6.1 Targeting metabolic, inflammatory, and
fibrotic pathways

The progression of DKD arises from intricate interactions
between metabolic dysregulation, chronic inflammation, and
renal fibrosis. Advances in pathophysiological understanding
have revealed several promising molecular targets within these
interrelated pathways, offering potential avenues for innovative
therapeutic development. Endothelin receptor antagonists (ERAs)
have shown renoprotective efficacy by inhibiting endothelin-
mediated vasoconstriction and suppressing pro-inflammatory and
pro-fibrotic signaling cascades (236). These effects translate into
reductions in albuminuria, mitigation of fibrotic remodeling,
and preservation of renal function (236–238). Similarly, inverse
agonists of the cannabinoid-1 receptor have demonstrated
favorable metabolic and structural outcomes in preclinical models,
improving insulin sensitivity and maintaining renal architecture
(239, 240). The transcription factor nuclear factor erythroid 2–
related factor 2 (Nrf2) plays a central role in redox homeostasis
and inflammation (241). Pharmacological activation of Nrf2
enhances the expression of cytoprotective genes, conferring
resistance against oxidative injury and fibrogenesis in DKD
models (242). Another emerging target is ceramide synthase 6
(CerS6), a key regulator of sphingolipid metabolism implicated
in sterile inflammation. CerS6 promotes mitochondrial DNA
release and activates the cGAS–STING pathway, amplifying
inflammatory responses and aggravating kidney damage (243, 244).
Inhibition of CerS6 has been shown to attenuate renal injury in
experimental models, underscoring its therapeutic potential (244).
Collectively, these mechanistic insights highlight the feasibility of
multi-targeted therapeutic approaches that concurrently address
metabolic abnormalities, inflammation, and fibrosis. Future efforts
should focus on translating these findings into clinically viable
interventions, with an emphasis on long-term efficacy, safety, and
personalized application.

6.2 The intestinal microbiome as a
therapeutic target

Emerging evidence supports the intestinal microbiome as
a novel and modifiable target in the treatment of DKD.
Accumulating data from clinical trials and meta-analyses suggest
that probiotic supplementation may confer renoprotective benefits
through modulation of gut microbial communities, metabolic
regulation, and suppression of systemic inflammation. A meta-
analysis of seven randomized controlled trials involving 456
patients demonstrated that probiotics significantly improved
renal outcomes: eGFR increased [standardized mean difference
(SMD) = 6.03; 95% CI: 0.84–11.21; P = 0.020], while serum
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TABLE 2 The table illustrates the molecular structures of seven pharmacologically active phytochemicals identified in TCMs commonly applied in DKD

management: Cordycepin (Cordyceps sinensis), Astragaloside IV (Astragalus membranaceus), Puerarin (Pueraria lobata), Gypenoside XVII (Gynostemma

pentaphyllum), Triptolide (Tripterygium wilfordii), Notoginsenoside R1 (Panax notoginseng), and Osthole (Cnidium monnieri).

Botanical name
(Chinese name)

Extract type Major active
compound

Plant part
used

Structural
modifications

Pharmacological
mechanisms

Cordyceps sinensis Water extract, fungal
polysaccharides,
nucleosides

Cordycepin Fruiting body Deoxyadenosine analog,
non-glycosylated

Anti-inflammatory,
antioxidant, anti-apoptotic,
immunomodulatory

Pueraria lobata Flavonoids Puerarin Root C-glycosyl flavonoid Antioxidant, anti-AGEs,
SOD/CAT enhancement

Gynostemma

pentaphyllum

Saponins (Gypenosides) Gypenoside
aglycones

Aerial parts Steroidal backbone with
glycoside chains

Hypolipidemic, gut
microbiota regulation,
NF-κB/TNF-α, insulin
sensitivity

Tripterygium wilfordii Ethanol extract,
diterpenoids

Triptolide Root bark Epoxide and unsaturated
rings

Anti-inflammatory,
antifibrotic, targets
TNF/AKT1 pathways

Panax notoginseng Total saponins Notoginsenoside R1 Rhizome Triterpenoid backbone,
glycoside conjugates

Reduce proteinuria, lipid
regulation, RAAS synergy

Cnidium monnieri Coumarins Osthole Fruit Coumarin structure with
isopentenyl side chain

Anti-oxidative, inhibits
TGF-β1/Smads, anti-fibrotic

Astragalus membranaceus Total saponins, ethanol
extract

Astragaloside IV Root Multiple glycoside side chains Multiple glycoside side chains

These compounds exert renoprotective effects through mechanisms such as inhibition of oxidative stress, inflammation, fibrosis, and ferroptosis, as well as modulation of metabolic and gut–

renal pathways.

DKD, diabetic kidney disease; TCM, traditional Chinese medicine; AGEs, advanced glycation end products; SOD, superoxide dismutase; CAT, catalase; NF-κB/TNF-α, tumor necrosis

factor-alpha/nuclear factor-kappaB; TNF/AKT1, tumor necrosis factor/threonine-proteinkinase; TGF-β1, transforming growth factor-beta 1; RAAS, renin–angiotensin–aldosterone system.

creatinine and blood urea nitrogen levels declined (P < 0.05)
(245). Oxidative stress markers also improved, with significant
increases in glutathione and total antioxidant capacity (P <

0.001), and decreased malondialdehyde concentrations (P= 0.020)
(245). Inflammatory markers such as high-sensitivity C-reactive
protein were significantly reduced (P < 0.001) (245). Further
support comes from a randomized, double-blind, controlled
trial involving 60 DKD patients, in which daily administration
of 8 × 109 CFU probiotics for 12 weeks improved fasting
glucose, HOMA-IR, and lipid profiles (P < 0.01) (246). A
comprehensive 2023 Cochrane review evaluating 45 trials (n
= 2,266) confirmed the safety of probiotic interventions, with
most adverse events being mild gastrointestinal symptoms (247).
According to GRADE methodology, evidence for improvements
in blood urea nitrogen, total cholesterol, and LDL-C was of
moderate quality, whereas data on serum creatinine, UACR,
fasting glucose, and HbA1c were rated low quality (248).
Despite promising findings, several limitations constrain the
clinical applicability of existing data. Notably, there is substantial
heterogeneity among trials in terms of DKD diagnostic criteria,
probiotic strains, dosages, treatment durations, and outcome
measures (98). Most studies enrolled small cohorts (30–200
participants) with short follow-up periods (8–24 weeks), precluding
evaluation of hard clinical endpoints such as progression to
ESKD (98, 247). Furthermore, the geographic concentration of
study populations—primarily among Asian, particularly Chinese,
patients—raises concerns regarding generalizability (98, 249).
Mechanistic studies suggest that probiotics exert their effects
through microbial rebalancing, augmentation of short-chain
fatty acid-producing bacteria (e.g., Faecalibacterium, Roseburia),
and reduction in uremic toxin production (98, 250). Moving

forward, high-quality multicenter clinical trials with larger
sample sizes, longer follow-up, and standardized endpoints are
essential to validate efficacy. Personalized approaches based on
host–microbiome interactions may further enhance therapeutic
outcomes. Current evidence supports the adjunctive use of multi-
strain probiotic formulations (≥4× 109 CFU daily for 8–12 weeks)
in DKD management, provided they are administered under
appropriate clinical supervision and integrated within a broader
therapeutic framework.

6.3 Genetic approaches and cellular
therapy

Stem cell–based interventions, particularly those utilizing
mesenchymal stem cells (MSCs), hold considerable promise for
the treatment of DKD, although clinical translation remains at an
early stage. A meta-analysis of 40 preclinical studies involving 992
diabetic rodent models demonstrated that MSC-based therapies
markedly improved renal function and attenuated key pathological
features, including fibrosis, inflammation, apoptosis, and oxidative
stress (251). Focused analysis of MSCs revealed potent glucose-
lowering effects [standardized mean difference (SMD) = −1.954;
95% CI: −2.389 to −1.519; P < 0.001], as well as significant
reductions in serum creatinine (SMD = −4.838; P < 0.001) and
blood urea nitrogen (SMD = −4.912; P < 0.001), indicating
substantial renoprotective benefits (252). The NEPHSTROM trial
remains the most advanced human study to date. This phase
1b/2a randomized, placebo-controlled trial enrolled 16 patients
with type 2 diabetes and progressive DKD, who were allocated
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in a 3:1 ratio to receive either a single intravenous infusion of
80 × 106 ORBCEL-M cells (CD362-selected, allogeneic bone
marrow–derived MSCs) or placebo (253). The treatment exhibited
a favorable safety profile, with no serious treatment-related
adverse events reported. In terms of efficacy, the MSC-treated
group exhibited a slower annual decline in eGFR. However,
measured GFR did not differ significantly between groups, raising
questions about the clinical relevance of this finding. Notably,
MSC therapy preserved circulating regulatory T cells and stabilized
inflammatory monocyte subsets, suggesting immunomodulatory
effects. Despite encouraging preclinical and early clinical data,
multiple translational hurdles remain. Considerable heterogeneity
across animal studies (I²= 85.1%−90.8%) arises from variability in
cell sources, administration routes, dosing protocols, and outcome
measures (252). The limited sample size in NEPHSTROM reduces
statistical power and precludes definitive conclusions regarding
efficacy (253). Furthermore, most animal models of DKD rely on
chemically induced diabetes, which may inadequately reflect the
multifactorial pathophysiology of human DKD (254). Mechanistic
studies suggest that MSCs exert their benefits predominantly
via paracrine signaling, including anti-inflammatory (e.g.,
downregulation of IL-6, IL-1β, and TNF-α), anti-fibrotic, and pro-
angiogenic effects, as well as preservation ofmitochondrial function
(254–257). However, MSCs derived from patients with type 2
diabetes exhibit functional impairments, including accelerated
senescence, impaired proliferation, and reduced therapeutic
efficacy, thereby limiting the feasibility of autologous cell therapies
(254). Critical barriers to clinical translation include the lack
of standardized manufacturing protocols, variability in quality
control, uncertainty regarding optimal delivery methods, and the
absence of consensus on therapeutic dosing regimens. To advance
MSC-based therapy toward routine clinical application in DKD,
future research must prioritize large, well-powered, rigorously
designed late-phase clinical trials, along with the development of
predictive biomarkers for therapeutic responsiveness. Additionally,
combination strategies that integrate MSCs with established
pharmacological agents—such as SGLT2i—warrant exploration as
potentially synergistic treatment modalities.

7 Summary and future directions

7.1 Clinical practice implications

This comprehensive review underscores several critical
considerations for improving the clinical management of DKD.
First, compelling evidence now supports a shift from traditional
monotherapy toward multi-targeted combination regimens.
Rather than incremental escalation, clinicians should consider
early initiation of dual or triple therapy in patients with persistent
albuminuria despite optimized RAAS inhibition. The FIDELITY
pooled analysis demonstrated that Renal Triple Therapy (RTT)
reduced the risk of composite kidney outcomes by 23%, reinforcing
the rationale for such strategies. Second, adopting a cardio-
kidney-metabolic framework represents a major paradigm shift
from glucose-centric management to a more holistic, risk-based
approach. The substantial cardiovascular benefits observed with
SGLT2 inhibitors (55% reduction in heart failure hospitalization)

and GLP-1 receptor agonists (35% reduction in major adverse
cardiovascular events) highlight the need to align treatment
with broader cardiorenal-metabolic risk profiles, rather than
focusing exclusively on glycemic control. Third, integrative
approaches, including TCM, offer additional therapeutic value. For
example, the combination of Huangkui capsules and irbesartan
significantly reduced proteinuria (by 262.3 mg/g), suggesting that
culturally tailored integrative strategies may benefit select patient
populations. However, implementing such approaches requires
careful evaluation of evidence quality and vigilant monitoring
for herb–drug interactions. Finally, emerging insights into novel
disease mechanisms—including ferroptosis, gut microbiota
dysbiosis, and epigenetic regulation—provide a foundation for
precision medicine. Incorporating biomarkers derived from these
pathways may enable personalized therapy selection and dynamic
treatment monitoring, accelerating the transition from empirical
regimens to mechanism-driven care in DKD.

7.2 Research priorities for future
investigation

To improve both clinical outcomes and translational
progress in DKD, future research should prioritize the following
six domains.

7.2.1 Priorities for clinical studies
Large-scale, long-duration randomized controlled trials (RCTs)

are urgently needed to evaluate how emerging combination
therapies impact hard renal endpoints, including serum creatinine
doubling, progression to kidney failure, and renal death. Most
existing studies have follow-up durations of 24 weeks to
2.6 years, limiting insight into long-term efficacy and safety.
Additionally, head-to-head comparisons—especially regarding the
optimal sequencing of SGLT2i, GLP-1 receptor agonists, and non-
steroidal MRAs—remain scarce and warrant systematic evaluation.

7.2.2 Personalized treatment approaches
Identifying and validating predictive biomarkers—such as

genetic variants, urinary proteomic profiles, and circulating
microRNAs—should be a central research priority. Integrating
these novel indicators with conventional clinical metrics
could support risk-stratified patient classification and facilitate
individualized therapeutic decision-making.

7.2.3 Studies of underlying mechanisms
Elucidating the molecular interactions among agents used in

combination therapy is essential for optimizing dose selection,
minimizing adverse effects, and avoiding mechanistic redundancy.
In particular, studies should assess the potential synergistic
or antagonistic effects between agents targeting converging
biological pathways (e.g., SGLT2i and GLP-1 RAs) to inform
rational polypharmacy.
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7.2.4 Identification of new treatment targets
Recently identified therapeutic targets—including endothelin

receptor antagonists, Nrf2 activators, and ferroptosis inhibitors—
represent promising areas for intervention. Notably, isoquercetin
has shown efficacy in preclinical models by inhibiting STAT3
and CerS6-mediated cGAS–STING signaling, supporting its
progression into early-phase clinical trials.

7.2.5 Generating evidence from clinical practice
The development of large, multi-center registries encompassing

diverse populations is crucial to assess the real-world safety and
effectiveness of combination therapies. Such databases can also
detect rare adverse events and improve the generalizability of
clinical trial findings. Special attention should be given to older
adults, advanced DKD patients (eGFR <30 ml/min/1.73 m²), and
underrepresented ethnic groups.

7.2.6 Economic analysis of health interventions
In resource-constrained settings, comprehensive cost-

effectiveness analyses are needed to guide the integration of
novel therapies into clinical guidelines and public health policies.
These evaluations will also support broader, equitable access to
evidence-based precision therapies.

In conclusion, advancing these priority areas will catalyze a
paradigm shift in DKD care—from controlling progression to
targeting disease mechanisms, and from standardized treatment to
personalized, precision-based approaches. This evolution will be
essential to achieving sustainable, effective, and equitable care for
the growing global population affected by DKD.
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