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Objective: Eyelid curvature analysis serves as a key morphological indicator in 
the diagnosis of ophthalmic diseases and postoperative evaluation. This study 
aims to develop an automated and reproducible image processing method 
to accurately extract eyelid margin curves from anterior segment images and 
perform quantitative curvature analysis.

Methods: A dual-branch U-Net architecture is proposed, utilizing a shared encoder 
and task-specific decoders to simultaneously segment the palpebral fissure and 
corneal regions. Based on the segmentation results, eyelid margin curves were 
extracted and fitted with second-order polynomials to calculate curvature values.

Results: A total of 130 anterior segment images were collected. In segmentation 
tasks, the proposed AtDU-Net model achieved an IoU of 0.979 and a Dice 
coefficient of 0.989. The automatically measured eyelid curvatures showed high 
consistency with manual annotations, with correlation coefficients of 0.9032 for 
the upper eyelid and 0.9154 for the lower eyelid. Bland-Altman analysis indicated 
that over 92% of the samples fell within the limits of agreement, validating the 
consistency and reliability of the measurements.

Conclusion: The proposed method demonstrates superior performance in 
terms of accuracy, robustness, and consistency with manual measurements. 
It shows strong potential for clinical applications, providing reliable technical 
support for eyelid morphological analysis and surgical planning.
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1 Introduction

The eye is a complex and delicate sensory organ, serving as a crucial bridge for perceiving light 
and color. Its structure can be divided into two main parts: the ocular surface (1) and the fundus 
(2). The fundus, as the core area for visual signal conversion and transmission, contains structures 
such as the retina (3) and optic disc (4), which are critical for transforming light signals into neural 
signals. The ocular surface, on the other hand, mainly consists of the cornea (5) and eyelids (6), 
playing a vital role in protecting the eye and initially regulating light. The cornea, located on the 
anterior wall of the eye, is a highly transparent thin membrane that plays a key role in refracting 
and focusing light during the visual imaging process. Its curvature and transparency directly 
determine the quality of the image, and its morphological characteristics are closely related to its 
health status. The eyelid, another essential component of the ocular surface, is mainly divided into 
the upper eyelid and lower eyelid, which cover the upper and lower portions of the eye, respectively, 
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and serve to protect the eyeball (7). Meibomian gland (MG), large 
sebaceous glands located in the upper and lower eyelid (8). They are 
responsible for producing and secreting lipids called blepharoplasts, 
which constitute the lipid layer of the tear film (9). The upper eyelid is a 
soft tissue structure that covers the upper part of the eyeball, with its 
primary functions being to shield the eye from external stimuli and to 
secrete tears through blinking, keeping the ocular surface moist. The 
lower eyelid, a curtain-like structure covering the lower part of the 
palpebral fissure, works in conjunction with the upper eyelid to form a 
protective barrier for the eyeball. The palpebral fissure refers to the natural 
opening or gap between the upper  and lower eyelids. Its geometric 
characteristics, including size, shape, and curvature, are critical for 
ophthalmic diagnosis and functional evaluation of the eye. Abnormalities 
of the eyelids can occur in various degrees across different ophthalmic 
diseases (10).

Eyelid abnormalities can cause changes in the curvature of the eyelid. 
Diseases such as ptosis, Graves’ ophthalmopathy, and eyelid tumors can 
all result in eyelid abnormalities (11). For instance, ptosis may 
be  associated with brain tumors or autoimmune diseases such as 
myasthenia gravis. And the clinical manifestations of Thyroid-associated 
ophthalmopathy are diverse and complex, including unilateral or bilateral 
eyelid retraction (12). Blepharoptosis, a common indication for upper 
eyelid surgery, may have a myogenic, neurogenic, traumatic, or 
mechanical cause (13). In Graves’ orbitopathy, patients may experience 
eyelid retraction, causing the curvature of the upper eyelid to become 
more pronounced, with the highest point of the eyelid contour shifting 
outward, thereby increasing the area of upper temporal region (14). In 
cases of congenital ptosis (15), the eyelid contour tends to become 
relatively flattened, with the highest point shifting inward, resulting in a 
reduction in the area of the upper eyelid region. Additionally, due to 
abnormalities in the orbicularis oculi muscle and levator tendon 
membranes, patients with blepharochalasis (16) may exhibit enlarged and 
thickened upper eyelids, further affecting the curvature of the eyelid 
contour. Meanwhile, in the field of medical esthetics, eyelid plastic surgery 
is a common procedure in cosmetic surgery. To create a more refined 
appearance of the eyes, the curvatures of the upper and lower eyelids have 
gained increasing attention.

Therefore, the quantitative measurement of eyelid curvature can 
reflect the morphological changes in the eyelid contour, providing 
crucial support for ophthalmologists in diagnosing ocular diseases.

Currently, most measurements of eyelid line curvature rely on 
specialized instruments and physicians. Various metrics, such as 
margin–reflex distance 1 (MRD1), MRD2, palpebral fissure height 
(PFH), and eyelid length, are currently being used to objectively assess 
the shape and condition of the eyelids (17, 18). The concept of the 
mid-pupil lid distance (MPLD) has been used in various studies to 
compare the curvature of the eyelid between different patients (19–
22). Several studies have explored the measurement of eyelid 
curvature. For example, Cruz et  al. (23) studied palpebral fissure 
images from 29 patients with Graves’ orbitopathy, 22 patients with 
congenital ptosis, and 50 healthy individuals without any medical 
history. They processed these images using NIH Image 1.55 software 
to extract curvature data for the upper eyelid. By fitting the upper 
eyelid contour with a second-order polynomial, they obtained the 
corresponding curvature values. Additionally, Cruz (24) conducted 
quantitative analyses of the palpebral fissure shapes of 20 severe 
congenital ptosis cases through cross-sectional digital image 
processing. This analysis evaluated the curvature of the upper and 

lower eyelid lines, providing guidance for contour adjustments during 
surgery, enabling doctors to achieve more precise lateral displacements 
and optimize surgical outcomes. Maseedupally (25) et  al. input 
uniformly cropped ocular surface images into the i-Metrics software, 
where professional ophthalmologists manually annotated the eyelid 
lines. The curvature was then quantified through polynomial fitting. 
Meanwhile, Malbouisson (26) used a camera with an electro-coupled 
device to capture palpebral fissure images of 110 healthy subjects and 
processed these images using NIH Image software on a Macintosh 
computer, employing a second-order polynomial to fit the contours of 
the upper and lower eyelids. Garcia (27) quantitatively analyzed the 
lower eyelid contours of patients with Graves’ orbitopathy, using 
ImageJ software to adjust the Bezier curves of the lower eyelid for 41 
patients and 43 healthy controls. Bezier curves, widely used in 
computer graphics, define a curve by a mathematical formula and 
have been suggested to analyze eyelid curvature (28).

However, there are several problems with existing methods for 
measuring eyelid line curvature. Firstly, although current software can 
conveniently extract eyelid contour points, professional 
ophthalmologists are still required for evaluation, which is time-
consuming and labor-intensive. Furthermore, when selecting points 
on the eyelid contour to fit curves for the upper and lower eyelid lines, 
the number and specific location of these points are easily influenced 
by the operator’s subjective judgment. This is particularly relevant in 
medical image segmentation, where labels are often highly subjective 
(29). In addition, after upper and lower eyelid surgeries, doctors need 
to dynamically monitor eyelid morphology, and frequent manual 
measurements are difficult to implement when the number of patients 
is large. With the continuous improvement of computer technology 
and data processing capabilities, the development and application of 
AI are becoming increasingly widespread and in-depth (30). Deep 
learning algorithms effectively recognize meaningful patterns in 
images and have been shown to extract pathologic features in medical 
imaging (31–33). To address this issue, this paper proposes a new 
method for measuring eyelid curvature based on U-Net. By improving 
the existing segmentation network, the method automatically segments 
the palpebral fissure and corneal areas. It then combines traditional 
image processing and mathematical methods to quantitatively measure 
the eyelid line curvature. The entire process only requires acquiring the 
patient’s ocular surface images, enabling the patient to conveniently, 
quickly, and accurately obtain their eyelid curvature value and 
promptly understand their eyelid contour condition.

2 Materials and methods

2.1 Data

This study utilized 130 ocular surface images provided by the 
Shenzhen Eye Hospital. Considering the dependency of deep learning 
models on sufficient training data, further dividing the dataset to 
create a validation set would have significantly reduced the amount of 
training data, thereby impairing the learning performance of the 
model. Therefore, we selected 100 images for training and 30 images 
for testing. Although a separate validation set was not established, the 
model performance was evaluated on the test set after each training 
epoch to monitor generalization capability and prevent overfitting. 
The original image size was 2,974 × 1,984, with an actual width of 
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14.65 cm and height of 9.77 cm, where each pixel corresponds to 
0.04924 mm. The corneal horizontal diameter was 11.5 mm in reality, 
and through image processing, it was calculated as 954 pixels, 
corresponding to a corneal horizontal diameter of 0.01205 mm per 
pixel. To ensure consistent scale and reduce computational cost, the 
images were resized to 744 × 496. Data augmentation strategies, 
including random cropping and random horizontal and vertical 
flipping, were applied to enhance the diversity of the training samples 
and improve model robustness. The processed training set was then 
used to accurately segment the palpebral fissure and corneal regions, 
enabling the measurement of eyelid line curvature.

The data anonymization for corneal surface images was applied 
before the study, ethical review and approval was not required for the 
study on human participants in accordance with the local legislation 
and the institutional requirements. Written informed consent from 
the patients was not required to participate in this study in accordance 
with the national legislation and the institutional requirements.

2.2 Method

This study has developed a deep learning-based eyelid curvature 
measurement system, the overall architecture of which is shown in 
Figure  1. The system consists of three main modules: the dataset 
preprocessing module, the eyelid-cornea segmentation module, and 
the curvature measurement module. The aim is to achieve automated 
measurement of eyelid curvature from ocular image processing, 
providing efficient and accurate technical support for ophthalmic 
diagnosis. Firstly, the dataset preprocessing module is responsible for 
generating high-quality training datasets and standardizing the data 
to ensure the robustness and generalization ability of the subsequent 
deep learning models. Secondly, the eyelid-cornea segmentation 
module uses an improved Attention Double U-Net (AtDU-Net) 
architecture, combining multi-scale feature extraction with attention 
mechanisms to achieve precise segmentation of the eyelid and corneal 

regions. Finally, the curvature measurement module analyzes the 
segmentation results, extracting the upper and lower eyelid curve 
shapes and accurately calculating their curvature parameters. Through 
the efficient collaboration of these three modules, the system achieves 
the automation of eyelid curvature measurement. It not only improves 
the accuracy of segmentation and the efficiency of measurement but 
also provides a reliable basis for early screening of ophthalmic diseases 
and surgical planning.

2.2.1 Dual U-net architecture
With its encoder-decoder architecture at its core, the U-Net 

network captures multi-scale global features during the encoder 
phase, while the decoder phase progressively restores image details. 
By incorporating skip connections, it retains key spatial information, 
making it perform exceptionally well in medical image segmentation 
tasks, especially on small sample datasets. Although Transformer-
based architectures have recently demonstrated strong capabilities in 
capturing long-range dependencies and modeling global context, they 
are often associated with higher model complexity and demand more 
data and computational resources. In contrast, U-Net and its improved 
variants maintain a relatively low number of parameters and efficient 
inference speed, while still achieving sufficient segmentation accuracy 
for the eyelid and corneal regions in this study. Therefore, we adopt 
the U-Net architecture as the core network structure to ensure both 
segmentation performance and practical training efficiency for our 
system. This study proposes an Attention Double U-Net (AtDU-Net) 
segmentation method to achieve precise segmentation of both the 
corneal and palpebral fissure regions simultaneously.

The overall structure of the segmentation network is shown in 
Figure 2, consisting of a shared feature extraction backbone network 
and dual decoders. The shared feature extraction backbone network 
is composed of two convolutional layers, three Hierarchical Attention 
Sampling Modules (HASM), and Split Axial Detail Modules (SADM). 
The feature extraction backbone network adopts a hierarchical shared 
design, which extracts multi-level feature information at different 

FIGURE 1

Structure of the automatic eyelid curvature measurement system.
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scales through cascaded convolution operations, enabling the capture 
of complex structural features in both the palpebral fissure and corneal 
regions. This design not only enhances the model’s ability to capture 
the complexity of the input images and subtle regional differences, but 
also significantly improves the efficiency of feature extraction for both 
regions. The hierarchical shared feature extraction mechanism thus 
lays a solid foundation for both the efficiency and accuracy of the 
segmentation task.

To further meet the specific requirements of corneal and palpebral 
fissure regions in the segmentation task, the network introduces a 
symmetric dual-decoder structure, which independently decodes the 
corneal and palpebral fissure regions. In traditional single-decoder 
architectures, the inability to fully capture the characteristics of 
different regions often leads to confusion of feature information, 
thereby affecting segmentation accuracy. The dual-decoder design, 
through the independence of the decoding paths, ensures that the 
corneal and eyelid regions do not interfere with each other during the 
segmentation process. Specifically, each decoder can adopt a more 
refined decoding strategy based on the unique characteristics of its 
target region, addressing differences in shape, boundaries, and feature 
distribution. This independent decoding approach significantly 
enhances the adaptability of the segmentation model, enabling it to 
optimize segmentation for the distinct characteristics of each region. 
This not only improves segmentation accuracy but also significantly 
enhances the model’s generalization ability for multi-region 
segmentation tasks.

Therefore, the dual U-Net architecture, by incorporating a shared 
feature extraction backbone and dual-decoder structure, ensures the 
relative independence of region-specific segmentation tasks while 
simultaneously enhancing the overall robustness and operational 
efficiency of the segmentation system.

2.2.2 Hierarchical attention-based adaptive 
sampling

In deep learning tasks for image segmentation, feature extraction 
is one of the key factors determining model performance. However, 
traditional convolution operations have certain limitations in 
capturing global contextual information and modeling multi-scale 
features, often failing to meet the high precision requirements for 
detailed features in complex scenarios. Specifically, the local receptive 
field of convolution operations makes it difficult for the model to 
comprehensively capture global information when handling cross-
region dependencies, which is particularly disadvantageous for image 
features with blurry boundaries or significant scale differences. 
Additionally, the importance of feature channels often varies 
significantly in practical applications, and a single, fixed sampling 
strategy cannot flexibly highlight the feature expression of key regions, 
leading to limited performance in parsing complex details and 
ultimately affecting the accuracy of segmentation or detection.

To address the issues mentioned above, this study proposes the 
Hierarchical Attention Sampling Module (HASM), aimed at 
comprehensively improving the model’s feature extraction ability in 
key regions. The module consists of three main components: the 
Feature Compression Module, the Hierarchical Attention Module, and 
the Context Aggregation Module, as shown in Figure 3. First, the 
Feature Compression Module extracts key information from the input 
features through downsampling and local convolution operations, 
which reduces the computational load while retaining significant local 
features. Then, the Hierarchical Attention Module adapts the 
importance of each feature channel through convolution and pooling 
operations, effectively highlighting the feature expression of key 
regions while diminishing the influence of redundant or irrelevant 
features. Finally, the Context Aggregation Module integrates global 
contextual information into the feature space using a fusion strategy 
of global max and average pooling, combined with a large kernel 
convolution operation, which further enhances the model’s ability to 
perceive interactions between distant regions. By leveraging its 
advantages in feature selection and enhancement, HASM significantly 
improves the model’s ability to recognize detailed boundaries, 
especially when dealing with complex scenes and blurry boundaries. 
Its hierarchical attention mechanism and multi-scale feature 
integration design ensure high-quality segmentation results. 
Additionally, in terms of computational efficiency, the effective 
combination of downsampling and attention mechanisms significantly 
reduces computational complexity while maintaining high-resolution 
features, thereby enabling efficient feature extraction and processing 
and improving computational resource utilization. These 
improvements collectively enhance the model’s overall performance 
in segmentation tasks, providing strong support for feature extraction 
in the eyelid and corneal segmentation tasks.

2.2.3 Attention mechanism
In deep learning tasks for image segmentation, efficiently capturing 

key features and modeling both global and local dependencies is one 
of the core challenges to improving model performance. To address 
this challenge, this study proposes the Split Axial Detail Module 
(SADM), which aims to significantly enhance the model’s ability to 
model multi-scale features and capture boundary details through 
innovative feature compression and axial attention mechanisms. The 
SADM module consists of three key components: the Feature 

FIGURE 2

Attention double U-Net segmentation network architecture.
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Generation Module, the Row Attention Module, and the Column 
Attention Module, as shown in Figure 4. First, the Feature Generation 
Module refines the input features through local convolution operations, 
strengthening feature detail expression and local dependency 
modeling. Then, the features undergo compression and modeling 
through the Row Attention Module and Column Attention Module, 
respectively. The Row Attention Module calculates global dependencies 
in the row direction, enhancing feature coherence in the vertical 
direction, while the Column Attention Module focuses on dependency 
modeling in the column direction, thereby improving feature 
representation in the horizontal direction. The synergistic effect of row 
and column attention allows the module to fully capture global feature 
information from different directions while maintaining the diversity 
and integrity of feature expressions.

The SADM module, by splitting feature modeling into row and 
column directions, significantly enhances the feature expression 
capability while effectively reducing computational complexity. 
Additionally, by combining the Feature Generation Module with the 
Attention Modules, the model is able to retain key detailed features 
while enhancing its ability to perceive long-range dependencies, 
thereby enabling precise segmentation of target regions even in 
complex scenarios. Through the use of SADM, this study has 
significantly strengthened the model’s global modeling capability and 
ability to capture detailed features, providing crucial technical support 
for multi-scale feature integration and region dependency modeling.

2.2.4 Measurement module
After segmenting the palpebral fissure and corneal regions, 

we further implement the measurement of the curvature values for the 
upper and lower eyelid lines. Upon closely observing a large number 
of eyelid contour images, we found that the shape changes at both 
ends of the eyelid are more pronounced and prone to abrupt 
variations, while the curvature in the middle part is relatively stable 
and more accurately reflects the state of the eye. Based on professional 
advice from ophthalmologists, we decided to focus only on the middle 
portion of the upper and lower eyelid lines for curvature calculation. 
Specifically, as shown in Figure 5, using the cornea as a reference, 
we define the intersection points of the tangents at the far-left and 

far-right edges of the cornea with the upper and lower eyelid lines as 
1u  and 1d , and 2u  and 2d , respectively. Then, by calculating the average 

curvature of all points along the upper eyelid line within the segment 
from 1u  to 2u , we represent the overall curvature of the upper eyelid 
line; similarly, by calculating the average curvature of all points along 
the lower eyelid line within the segment from 1d  to 2d , we represent 
the overall curvature of the lower eyelid line.

The specific operation process for the measurement is as follows:

 • Obtain the Palpebral Fissure Edge Line: Perform edge detection 
on the segmented palpebral fissure region to identify and extract 
its edge line. The pixel values along the edge line are set to 1, 
while the background pixels are set to 0. Starting from the bottom 
left corner of the image as the coordinate origin, traverse the edge 
detection results and record the coordinates of all pixels along the 
palpebral fissure edge line.

 • Circle Fitting for the Corneal Region: For the segmented corneal 
region, fit the smallest enclosing circle to calculate the center 
coordinates ( ),c m n  and the radius r  of the cornea.

 • Obtain the Intersection Points of the Upper and Lower Eyelid 
Lines: Using the coordinate data of the palpebral fissure edge line 
and the center and radius of the cornea, determine the corneal 
region’s horizontal coordinate range as − +  ,m r m r . By detecting 
the edge pixels at the range endpoints −m r  and +m r , find the 
intersection points of the tangents on both sides of the cornea 
with the upper  and lower eyelid lines. This step gives the 
upper  and lower eyelid line portions within the horizontal 
coordinate interval − +  ,m r m r . The coordinates of these points 
are then fitted to a quadratic curve = + +2y ax bx c .

 • Curvature Calculation: Curvature Calculation: For a smooth 
planar curve defined as = + +2y ax bx c , the curvature K  at a 
given point is mathematically expressed as:

 
( )( )
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=
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FIGURE 3

Structure of hierarchical attention sampling module.
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Where r  denotes the radius of curvature, ′y  is the slope of the 
tangent line at the point, and ′′y  is the second derivative 
representing the rate of change of the slope (i.e., the local 

bending). The denominator
 

( )( )′+
3

2 21 y

 
serves as a normalization

 

factor under unit-speed arc length parameterization, ensuring 
that the curvature reflects intrinsic geometric properties of the 
curve. A larger value of K  indicates a sharper turn or higher 
bending intensity at that point on the curve.

 • Calculate Eyelid Curvature: Based on the center coordinates 
( ),c m n  and radius r  of the cornea, the curvature values of the 

upper and lower eyelid lines can be calculated using the fitting 
functions of the eyelid lines within the horizontal coordinate 
range − +  ,m r m r .

The overall process and details of the eyelid line curvature 
measurement are shown in Figure 6.

3 Experiments and results

3.1 Segmentation results

This study used the AtDU-Net network based on U-Net for 
segmenting the palpebral fissure and corneal regions. The detailed 
segmentation evaluation results are shown in Table 1. To assess the 
performance of the segmentation network, this study compared 
multiple classic networks through experimental validation. The 
comparative results of the segmentation performance of different 
models are shown in Table 2. From the segmentation results in Table 2, 
AtDU-Net demonstrated significant advantages in segmentation 
performance, with stronger performance in boundary consistency and 
detail preservation. However, the IoU values of AtDU-Net and 
Unet++ were the same, which may be  because when the model’s 
segmentation capability has already reached a high level in capturing 
the overall region, further improvement in IoU values could 
be  constrained by data characteristics and evaluation standards. 
Moreover, the scale of the dataset and the precision of annotations 

could affect the differences in IoU. In this context, although there was 
no significant improvement in IoU, AtDU-Net exhibited higher 
consistency and boundary recognition capabilities in the Dice 
coefficient through superior edge feature processing. Table 3 presents 
the segmentation results for the palpebral fissure and corneal regions.

To further elucidate the structural advantages of AtDU-Net, a 
series of ablation experiments were systematically designed and 
conducted by selectively removing or combining key modules. The 
experimental results are presented in Table 4. It can be observed that 
introducing the HAS module into the baseline network (Basenet) 
significantly improves both the Dice coefficient and IoU metrics, 
primarily due to the module’s enhanced capability in capturing fine-
grained local details. Similarly, incorporating the SAD module 
effectively boosts segmentation performance by strengthening global 
feature modeling. When the HAS and SAD modules are integrated 
simultaneously, a complementary relationship between local detail 
extraction and global contextual modeling is established, leading to 
further performance gains. Moreover, when segmentation is 
performed separately on either the palpebral fissure region or the 
corneal region, the overall network performance declines. In contrast, 
jointly segmenting both regions enhances the complementarity within 
the feature space and improves context awareness, thereby achieving 
more accurate boundary localization and region separation.

FIGURE 4

Structure of split axial detail module.

FIGURE 5

Schematic diagram of eyelid line curvature measurement range.
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3.2 Curvature measurement results

After segmenting the palpebral fissure and corneal regions, the 
next step is to fit the upper and lower eyelid lines, as shown in Figure 7, 
which includes four images that demonstrate the complete process of 
fitting the target upper and lower eyelid lines. In these images, red dots 
represent the original coordinates of the upper eyelid line, orange dots 
represent the original coordinates of the lower eyelid line, and blue dots 
indicate the coordinates of the fitted upper and lower eyelid lines. 
Specifically, after performing Canny edge detection on the palpebral 
fissure region, a coordinate system is established with the bottom-left 
corner of the image as the origin. This coordinate system is then used 
to provide the reference for fitting the upper and lower eyelid lines. 
Using this coordinate system, the list of coordinates for all points on 
the upper and lower eyelid lines is accurately extracted. To avoid cases 
where multiple vertical coordinates correspond to the same horizontal 
coordinate, the coordinate list is converted into a set to ensure that each 
horizontal coordinate corresponds to a unique vertical coordinate. This 
study uses the coordinates of the pixel points to fit the upper and lower 

eyelid lines. Unlike traditional methods, the fitting approach proposed 
here does not rely on manually labeled points on the eyelid contour, 
thus significantly reducing the influence of subjectivity. This method 
not only improves the accuracy of the fitting results but also greatly 
enhances the reproducibility of the measurement outcomes.

Table 4 presents the curvature values of the target upper and lower 
eyelid lines measured manually and automatically. Table 5 shows the 
2r  for the curvature measurements of the target upper and lower eyelid 

lines using both methods, with all 2r  exceeding 0.9. This indicates a 
high degree of consistency between the automatic and manual 
measurements, demonstrating that the automatic measurement 
method has high reliability for practical applications. Table 6 presents 
the mean absolute error (MAE) and root mean square error (RMSE) 
between the automatic and manual measurements. The results 
indicate that the automatic measurement method performs excellently 
in terms of accuracy, with small errors, demonstrating high practical 
value and reliability.

The Bland–Altman plots are shown in Figure 8. The x-axis of the 
Bland–Altman plot represents the mean of automatic and manual 
measurements, while the y-axis represents the difference between the 
automatic and manual measurements. Specifically, (a) is the Bland–
Altman plot for the upper eyelid curvature, and (b) is the Bland–
Altman plot for the lower eyelid curvature. From the Bland–Altman 
plots, it can be observed that the upper eyelid curvature plot contains 
27 data points, with 25 points falling within the limits of agreement, 
accounting for 92.6%. Similarly, the lower eyelid curvature plot 
contains 27 data points, with 26 points falling within the limits of 
agreement, accounting for 96.3%. This confirms that the automatic and 
manual measurements show good consistency in the analysis of both 
upper and lower eyelid curvatures. Moreover, the narrow limits of 
agreement reflect small measurement errors, indicating that the 
measurement system has high accuracy and robustness.

FIGURE 6

Overall process diagram of eyelid line curvature measurement.

TABLE 1 Segmentation evaluation metrics for palpebral fissure and corneal regions.

Region IoU Dice coefficient HD95 ASSD

Palpebral fissure region 0.980 0.990 9.120 2.309

Corneal region 0.974 0.987 7.975 2.695

TABLE 2 Quantitative performance comparison of different models.

Models IoU Dice coefficient

U-Net 0.972 0.985

Attention U-Net 0.975 0.987

Unet++ 0.979 0.988

Swin-UNet 0.973 0.983

TransUNet 0.978 0.986

AtDU-Net 0.979 0.989

Bold values indicate the segmentation results of the proposed method.

https://doi.org/10.3389/fmed.2025.1631468
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wu et al. 10.3389/fmed.2025.1631468

Frontiers in Medicine 08 frontiersin.org

TABLE 3 Examples of segmentation results for palpebral fissure and corneal region.

Original image Palpebral fissure mask Palpebral fissure prediction Corneal mask Corneal prediction

TABLE 4 Ablation study results.

BaseNet HAS module SAD module Palpebral fissure region Corneal region IoU Dice coefficient

√ 0.963 0.977

√ √ 0.979 0.981

√ √ 0.973 0.978

√ √ √ √ 0.971 0.984

√ √ √ √ 0.970 0.983

√ √ √ √ √ 0.979 0.989

Bold values indicate the segmentation results of the proposed method.

FIGURE 7

Detailed fitting of upper and lower eyelid lines. (a) Original image (b) Fitted upper and lower eyelid margin curves (c) Detailed fitting of the upper eyelid 
margin curve (d) Detailed fitting of the lower eyelid margin curve in addition, the titles of the figures have been revised to detailed eyelid margin curve fitting 
for upper and lower eyelids.
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To further validate the robustness of our method under 
exceptional conditions, this study takes an upper eyelid test sample as 
an example. We  calculated the curvature at three key positions 
( −m r, m, +m r,) based on both automatic measurements and manual 
annotations, with the fitting results shown in the Table 7 and the fitted 
images shown in Figure 9. We found that the main source of error 
arises from slight pixel-level deviations along the predicted mask 
boundary, which affect the extraction of edge points. Since curvature 
calculation is highly sensitive to local variations of the fitted boundary, 
such deviations may lead to amplified curvature differences. In future 
work, we plan to incorporate mechanisms for outlier detection and 
analysis to further enhance the model’s robustness and 
practical applicability.

To comprehensively display the morphological characteristics of 
the eyelids, this study selects six representative feature points on the 
upper and lower eyelid lines for curvature measurement. These points 
are located at the intersections of the upper and lower eyelid lines with 
three vertical lines: one at the tangent points on both sides of the 
cornea and two passing through the center of the cornea. The 
intersection closer to the outer canthus is referred to as the left point, 
denoted as lU ; the intersection passing through the center of the 
cornea is referred to as the center point, denoted as mU ; and the 

intersection closer to the inner canthus is referred to as the right point, 
denoted as rU . In the curvature analysis of these feature points, 
Tables 6, 8 present the fitting results of the upper and lower eyelid 
lines, along with their corresponding feature points’ manually and 
automatically measured curvature values. In these tables, the first 
value in each row of the last three columns represents the manually 
measured result, while the second value represents the automatically 
measured result. This method allows for a direct comparison between 
manual and automatic measurements of curvature at each feature 
point, thus verifying the accuracy and robustness of the automatic 
measurement system (Table 9).

4 Discussion

This study proposes a deep learning-based automated eyelid line 
curvature measurement method, which achieves efficient measurement 
of the upper  and lower eyelid line curvatures through precise 
segmentation of the palpebral fissure and corneal areas, as well as eyelid 
margin curve fitting of the target eyelid lines (Table 10). This method not 
only significantly reduces the workload of manual intervention but also 
overcomes the limitations of traditional methods, providing a 
standardized and repeatable solution for precise ocular surface 
morphology analysis. It also offers reliable data support for ophthalmic 
clinical diagnosis and research. From the segmentation results, the 
designed AtDU-Net model achieved an IoU of 0.979 and a Dice 
coefficient of 0.989, significantly outperforming the traditional U-Net and 
its variants, fully validating the proposed model’s efficiency and accuracy 
in segmentation tasks. As for curvature measurement, the correlation 
between automatic and manual measurement results reached 0.9032 for 
the upper eyelid line and 0.9154 for the lower eyelid line. Combined with 
the Bland–Altman analysis, the measurement errors for most points fall 
within the limits of agreement, further demonstrating the advantages of 
the proposed automatic measurement method in terms of accuracy 
and robustness.

Compared to traditional curvature measurement methods 
that rely on manual annotation, this study significantly improves 
measurement efficiency and achieves breakthroughs in accuracy 
and consistency through the organic combination of automatic 

TABLE 5 Curvature measurement results for target upper and lower 
eyelid margin curves using manual and automatic methods.

Measurement 
method

Upper eyelid line 
curvature (mm-1)

Lower eyelid line 
curvature (mm-1)

Manual measurement 0.247±0.005 0.203±0.007

Automatic measurement 0.242±0.005 0.197±0.006

TABLE 6 Error comparison between manual and automatic curvature 
measurements of upper and lower eyelid margin curves.

Accuracy 
indicators

Upper eyelid Lower eyelid

MAE 0.0075 0.0068

RMSE 0.0122 0.0090

Bold values indicate the segmentation results of the proposed method.

FIGURE 8

Bland–Altman plot of upper and lower eyelid curvature in the test set. (a) Bland-Altman plot for upper eyelid curvature (b) Bland-Altman plot for lower 
eyelid curvature.

https://doi.org/10.3389/fmed.2025.1631468
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wu et al. 10.3389/fmed.2025.1631468

Frontiers in Medicine 10 frontiersin.org

TABLE 9 Curvature test results of upper eyelid feature points.

Original image Upper eyelid margin curve fitting Ul Um Ur

0.212

0.214

0.236

0.237

0.193

0.195

0.261

0.258

0.263

0.261

0.191

0.193

0.230

0.231

0.282

0.287

0.238

0.242

segmentation and eyelid margin curve fitting. In terms of 
segmentation, the proposed AtDU-Net network, with its dual 
U-shaped decoder structure and hierarchical feature-sharing 
mechanism, effectively meets the specific demands of corneal and 

palpebral fissure regions in segmentation tasks. Traditional 
segmentation models often struggle to handle the unique features 
of multiple anatomical regions simultaneously. However, the 
decoder design of AtDU-Net achieves precise capture of multi-
region features in complex scenarios by creating separate 
decoding paths for the corneal and palpebral fissure regions. 
Additionally, the HASM and SADM modules further enhance the 
network’s performance. The HASM module excels in multi-scale 
feature extraction and focusing on key regions, effectively 
strengthening attention on detailed areas, while the SADM 
module plays a critical role in global context modeling, allowing 
the network to balance global information with local details. This 
ensures that the network maintains high-precision segmentation 
even in complex scenarios. These improvements not only provide 
more reliable input for subsequent eyelid margin curve fitting but 
also lay the foundation for the robustness of the overall 
segmentation process.

In terms of eyelid margin curve fitting, this study overcomes the 
shortcomings of traditional manual annotation. The automated eyelid 
margin curve fitting process, combined with segmentation results and 
pixel point coordinate extraction, allows for precise capture of the 
geometric features of the upper and lower eyelid lines. This effectively 
eliminates the inaccuracies in curvature calculation caused by errors 
in manual operation details. Moreover, compared to traditional 
methods that rely on manually annotated points, this study employs 
a fully automated eyelid margin curve fitting strategy, enhancing the 
accuracy and repeatability of the measurements.

However, this study still has certain limitations. First, the 
dataset used is relatively small. Although the model shows strong 
generalization ability, its performance still needs further validation 
on larger and more diverse datasets. Second, for curvature 
measurement, only the feature points in the middle section of the 
upper and lower eyelid lines were selected for calculation, and a 
fine-grained analysis of the entire eyelid curve was not performed. 
Future research could focus on the following directions: On one 
hand, introducing larger-scale and more diverse annotated 
datasets along with transfer learning techniques can further 

TABLE 7 Comparison of curvature values at key positions between 
automatic measurements and manual annotations.

Measurement 
method

m-r m m+r

Manual measurement 0.286 0.291 0.197

Automatic 

measurement
0.267 0.265 0.188

FIGURE 9

Fitted curvature curves at key positions.

TABLE 8 Consistency between manual and automatic curvature 
measurements of upper and lower eyelid margin curves.

Fit 
consistency

Upper eyelid line Lower eyelid line

2r 0.9032 0.9154
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improve the model’s robustness and universality. On the other 
hand, combining other fitting algorithms to conduct a more 
in-depth study of the overall shape of the eyelid curve could 
expand the model’s application scenarios in ophthalmic 
clinical practice.

5 Conclusion

This study proposes an automated eyelid line curvature 
measurement method based on deep learning, which integrates a 
precise segmentation model with an efficient curvature measurement 
technique. In the segmentation task, the proposed AtDU-Net model 
combines a shared feature extraction backbone network with a dual-
decoder structure, significantly improving segmentation efficiency 
while maintaining high accuracy. Based on the segmentation results, 
the measurement module employs a pixel-point eyelid margin curve 
fitting method, effectively enhancing the accuracy of the 
automatically measured curvature values. Compared with traditional 
curvature measurement methods that rely on manual annotations, 
this non-invasive system not only improves measurement accuracy 
but also reduces manual intervention and the influence of subjective 
factors, greatly enhancing efficiency and repeatability. It holds 
significant value for the diagnosis, treatment, and postoperative 
evaluation of eyelid-related diseases.
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TABLE 10 Curvature test results of lower eyelid feature points.

Original image Lower eyelid margin curve fitting Ul Um Ur

0.166

0.171

0.190

0.193

0.177

0.179

0.216

0.210

0.250

0.241

0.216

0.211

0.214

0.214

0.239

0.238

0.203

0.201
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