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1 Introduction

Pancreatic cancer is a prevalent digestive system malignancy that poses a significant

threat to human health. It ranks among the most lethal cancers, with an overall 5-year

relative survival rate of ∼11% (1). This disease is distinguished by non-specific early

symptoms, high invasiveness, highmortality, and low curability. In 2024, pancreatic cancer

is projected to cause ∼66,440 new cases and ∼51,750 deaths, making it the third leading

cause of cancer-related death, surpassing breast cancer (2). According to global cancer

statistics, pancreatic cancer is projected to become the second leading cause of cancer-

related death by 2030 (3, 4). The primary factor contributing to its high mortality rate

is the lack of prominent early clinical symptoms, as well as the absence of definitive

early diagnostic markers and effective screening strategies. Consequently, by the time of

diagnosis, many patients have already progressed to advanced stages, missing the optimal

treatment window (5, 6). However, if pancreatic cancer could be accurately diagnosed in

its early stages, both survival and cure rates could be substantially increased (7). Thus, the

development of objective methods for the early, rapid, and precise diagnosis of pancreatic

cancer remains a critical challenge.

Currently, puncture biopsy remains the gold standard for diagnosing pancreatic

cancer. However, it is invasive, costly, time-consuming, and associated with a high risk of

complications such as infection, bleeding, and pancreatitis. Moreover, the heterogeneity

of tumor tissues may compromise the representativeness of sampling, thereby limiting

the accuracy of the test results. In recent years, the potential of non-invasive and

comprehensive imaging techniques for the early diagnosis of pancreatic cancer has

garnered significant research attention. Studies have demonstrated that multimodal

medical imaging technologies, including endoscopic ultrasound (EUS), CT, and MRI,

are widely applied during the preoperative evaluation of pancreatic cancer patients

and have achieved promising results in early detection. Nevertheless, relying solely on

imaging features for pancreatic cancer diagnosis heavily depends on physicians’ visual

assessments and diagnostic experience. This approach has several limitations, such as low

sensitivity, atypical imaging characteristics of some pancreatic cancers, and susceptibility to

misdiagnosis or missed diagnosis due to interobserver variability (8). With advancements

in artificial intelligence (AI), AI-based models leveraging medical imaging technology
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have shown remarkable diagnostic accuracy and efficiency in

assisting with pancreatic cancer diagnosis. By employing advanced

algorithms to analyze large-scale medical image datasets, these

models can rapidly and precisely identify subtle imaging features

of pancreatic cancer that are imperceptible to the human

eye, providing clinicians with reliable diagnostic references and

significantly increasing the efficiency and quality of early pancreatic

cancer diagnosis.

In this work, we argue that, considering the critical importance

of early pancreatic cancer diagnosis and the limitations of existing

diagnostic methods, organically integrating multimodal medical

imaging technologies—such as EUS, CT, and MRI—with distinct

imaging principles to leverage their complementary strengths

and comprehensively extract pancreatic cancer-related information

represents a key breakthrough for achieving early and rapid

diagnosis. Building on this foundation, developing an innovative

AI-assisted framework for early pancreatic cancer diagnosis holds

substantial importance. This framework should not only enable

deep mining of potential key features embedded in multimodal

image data but also increase diagnostic accuracy and stability

through algorithm optimization. The ultimate aim is to provide

clinicians with fast and reliable decision support, enabling them to

make more efficient and accurate judgments in complex pancreatic

cancer diagnostic scenarios while offering a promising direction

for future advancements in the precise diagnosis of early-stage

pancreatic cancer.

2 Current status of artificial
intelligence and multimodal medical
imaging for the assisted diagnosis of
pancreatic cancer

Early detection of pancreatic cancer remains an extremely

challenging task. Owing to its high-resolution imaging ability,

precise biopsy capability, and staging evaluation value, EUS has

emerged as a critical tool for the early diagnosis, pathologic

confirmation, and preoperative assessment of pancreatic cancer,

particularly for small lesions, complex cases, or scenarios requiring

minimally invasive interventions. Studies have demonstrated

that EUS outperforms CT or MRI in diagnosing pancreatic

cancer, with superior sensitivity for lesions ≤2 cm in diameter.

Specifically, EUS can detect tumors as small as 5mm in diameter,

highlighting its significant advantages in this context (9, 10). Recent

research has indicated that AI can enhance the performance of

EUS, with AI-assisted EUS models achieving diagnostic accuracy

surpassing or matching that of human interpretation (11). A

retrospective study (12) analyzed EUS images from 216 patients

using a support vector machine (SVM) model to differentiate

normal tissue from pancreatic cancer. The results revealed an

accuracy of 98%, sensitivity of 94.3%, and specificity of 99.5%.

Furthermore, a systematic review of 11 studies evaluating AI-

assisted EUS modeling for pancreatic cancer diagnosis reported

overall accuracies, sensitivities, and specificities ranging from 80–

97.5%, 83–100%, and 50–99%, respectively (13). On the basis of

current evidence, AI-assisted EUS models demonstrate promising

potential for early pancreatic cancer detection, characterized by

high diagnostic accuracy, despite being in the early stages of

development and clinical application. For example, the Aichi

Cancer Research Center in Japan developed a deep learning-

based AI model capable of distinguishing pancreatic cancer

lesions from non-cancerous lesions using EUS images. In the

validation set, this model achieved an area under the curve

(AUC) of 0.90, a sensitivity of 0.94, and a specificity of

0.82 (14).

CT, which has superior spatial and temporal resolution, is

widely recognized as the preferred non-invasive imaging modality

for pancreatic cancer detection. It plays a critical role in

diagnosing, staging, and evaluating treatment efficacy for patients

with pancreatic cancer. Cao et al. introduced a deep learning

framework named artificial intelligence for pancreatic cancer

detection (PANDA), which was designed to detect and classify

pancreatic lesions using non-contrast CT images. The model

was trained on a single-center dataset of 3,208 patients’ non-

contrast CT scans. In a multicenter validation involving 6,239

patients from 10 centers, the model demonstrated exceptional

performance, achieving an AUC ranging from 0.986 to 0.996

for lesion detection. This model is particularly advantageous for

patients contraindicated for intravenous contrast (15). Mukherjee

et al. developed a radiomic-based machine learning (ML) model

for the prediagnostic detection of pancreatic cancer. Their study

included prediagnostic CT scans from 155 patients with pancreatic

cancer and 265 age-matched controls with a normal pancreas,

and 34 imaging histologic features were selected. Validation was

conducted on 176 in-house patients and 80 external controls.

The SVM-based classifier achieved a sensitivity of 95.5% and an

AUC of 0.98. These findings indicate promising results for early-

stage detection, potentially improving outcomes by identifying

tumors at a resectable stage (16). A study from Zhejiang University

utilized abdominal-enhanced CT images from 319 patients to

train a deep learning model capable of suggesting pancreatic

tumor diagnoses on the basis of original abdominal CT images.

The model achieved an AUC of 0.871 and an F1 score of

88.5%. Across all tumor types, the average diagnostic accuracy

was 82.7%, with differential diagnostic accuracies of 100% for

intraductal papillary mucinous neoplasms (IPMNs) and 87.6% for

pancreatic ductal adenocarcinoma (PDAC) (17). Ma et al. screened

222 pathologically confirmed pancreatic cancer cases and 190

normal pancreas cases and trained a convolutional neural network

(CNN) model for binary classification (presence or absence of

pancreatic cancer) using 7,245 CT images. The model exhibited

an accuracy of 95.47%, sensitivity of 91.58%, and specificity

of 98.27%, showing no significant difference compared with

radiologists (18). In summary, artificial intelligence-assisted CT

imaging for pancreatic cancer diagnosis has garnered substantial

attention in recent years, demonstrating promising potential for

increasing diagnostic accuracy and improving clinical decision-

making.

MRI is a widely used non-ionizing radiation examination

technique in clinical practice and is characterized by high soft

tissue contrast and spatial resolution. It can more accurately

reflect changes in tumor tissue components, such as the degree

of fibrosis, microvessel density, hypoxia, and other alterations

in tissue status and composition. Multiparameter quantitative

analysis of tumor tissues has gradually become an essential
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auxiliary tool for the early diagnosis of pancreatic cancer (19).

Combined multisquence MRI (anatomical and functional) is

widely recognized as a critical tool for diagnosing, staging, and

evaluating treatment efficacy in pancreatic cancer, demonstrating

superior performance compared with CT in detecting small

tumors and assessing vascular invasion. Li et al. developed and

validated an automated MRI-based model for preoperative

differentiation between pancreatic squamous cell carcinoma

and pancreatic ductal adenocarcinoma using conventional

MRI and radiomic features, integrating clinical, radiomic, and

hybrid models. The hybrid model combines MRI and radiomic

features to distinguish pancreatic squamous cell carcinoma

from pancreatic ductal adenocarcinoma (20). Additionally, deep

learning-enhanced MR images, assisted by generative adversarial

networks (GANs), have shown strong potential in discriminating

pancreatic cancer from benign pancreatic diseases (21). Classifiers

constructed on the basis of histogram arrays of MR images

and CNNs were able to differentiate pancreatic cancer from

pancreatic neuroendocrine tumors and solid pseudopapillary

tumors, achieving AUCs of 0.896, 0.846, and 0.839 in the

training, validation, and test groups (22), respectively. A recent

study (23) further demonstrated that the integration of AI,

hyperpolarized metabolic magnetic resonance (HP-MR), and

multimodality imaging information may facilitate the development

of real-time biomarkers for the early detection of pancreatic

cancer, assessment of cancer aggressiveness, and early efficacy

evaluation. However, HP-MR experiments are currently limited

to preclinical models and have not yet been routinely applied in

clinical settings.

In summary, with the continuous advancement of artificial

intelligence, an increasing number of studies have focused

on diagnosing pancreatic cancer using AI-assisted images

from various modalities, and some models have demonstrated

promising diagnostic efficacy. However, current research remains

limited to constructing diagnostic models based on single-

modality images combined with artificial intelligence. Different

imaging modalities possess distinct advantages and limitations.

For example, the sensitivity and specificity of EUS are highly

operator dependent. Less experienced endoscopists may fail

to distinguish subtle imaging differences between early-stage

pancreatic cancer and other pathologies (24–26). CT suffers from

insufficient soft tissue resolution, radiation exposure, and contrast-

related risks, whereas MRI is associated with long examination

times, high costs, and numerous contraindications. Given the

complexity of pancreatic cancer diagnosis and the inherent

limitations of individual imaging modalities, clinicians must

comprehensively evaluate multidimensional patient information,

including pathological characteristics, baseline physical conditions,

and economic affordability. They should carefully weigh the

strengths and weaknesses of EUS, CT, MRI, and other imaging

techniques to develop personalized and precise diagnostic plans,

striving to obtain the most valuable diagnostic information with

minimal medical risk. Multimodal medical images harbor rich

information beyond mere morphological observations, reflecting

not only lesion heterogeneity but also molecular features and

prognosis-related data. In contrast, unimodal images inherently

lack comprehensive information, limiting the amount of hidden

image features that AI can extract. The synergistic integration

of EUS, MRI, and CT provides a multidimensional approach

to pancreatic cancer detection. EUS demonstrates exceptional

sensitivity in identifying subcentimeter lesions, particularly

for early-stage tumors undetectable by conventional imaging.

Similarly, MRI offers superior soft-tissue contrast resolution,

exemplified by sequences such as diffusion-weighted imaging

(DWI) and MR cholangiopancreatography (MRCP), enabling

precise characterization of parenchymal abnormalities and ductal

involvement. Moreover, CT remains indispensable because of

its rapid image acquisition, widespread availability, and superior

performance in assessing local invasion and distant metastases.

This trimodal strategy leverages the unique advantages of each

technique, achieving diagnostic accuracy unattainable with any

single modality alone. To address this, we propose an innovative

strategy to integrate AI with multimodal images (EUS, CT, and

MRI). This approach enables systematic mining of quantitative

image features of pancreatic cancer across different modalities

through high-throughput analysis to accurately elucidate the

intrinsic connections between multimodal data and disease

biological characteristics. On the basis of this integration, the

intelligent diagnostic model for early pancreatic cancer detection,

which is constructed by leveraging multimodal information, is

expected to significantly enhance diagnostic performance and

increase clinical application value.

3 Our opinion

Therefore, we propose that AI can utilize diverse types of

multimodal image data from patients with pancreatic cancer for

extensive AI model training. The aim of this approach is to provide

a robust solution for the early diagnosis of pancreatic cancer by

identifying non-invasive imaging biomarkers for early pancreatic

cancer detection, constructing an end-to-end early screening

system for pancreatic cancer based on multimodal images, and

implementing a comprehensive intelligent visual diagnosis process

from raw data input to clinical decision output.

3.1 Synergistic integration of multimodal
images

The integration of a patient’s EUS, CT, and MR images

is a complex multimodal medical image processing task that

requires a combination of image alignment, normalization,

and fusion techniques. The first step is data preparation and

preprocessing. This first step includes data format unification,

which ensures that all the images are in the DICOM format (the

standard format for medical imaging) or are converted to the

DICOM format and checking whether the metadata are complete.

Then, spatial resolution and orientation alignment, including

resampling and orientation standardization, are performed.

Finally, denoising and enhancement are performed. The second

step is multimodal image alignment, which aligns images of

different modalities to the same anatomical space and extracts

anatomical landmarks, such as vascular bifurcations, for ultrasound

images to correspond with CT/MRI. The third step is image

normalization, which includes intensity normalization and spatial
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standardization. The fourth step is multimodal image fusion,

including pixel-level fusion (displaying bones from CT and

soft tissues from MRI superimposed on each other), feature-

level fusion (extracting features of different modalities, such

as calcified foci from CT and tumor boundaries from MRI,

and then fusing them), and body data fusion. The final

step is the verification of the fusion effect, in which the

clinician evaluates whether the fused image meets the diagnostic

needs, and the quantitative metrics include structural similarity

(SSIM) and peak signal-to-noise ratio (PSNR). The process of

integrating multimodal images must adhere strictly to ethical and

privacy regulations.

3.2 Building an end-to-end diagnostic
model for early pancreatic cancer
detection using artificial intelligence and
multimodal imaging

We propose that the integration of preprocessed and

standardized multimodal data be used to construct an end-to-

end early pancreatic cancer diagnostic model. The first step

is multimodal data feature extraction, including both radiomic

features extracted on the basis of manually delineated regions

of interest (ROIs) and features automatically learned end-to-

end by deep learning models. Radiomic features are extracted

from standardized images using tools such as the PyRadiomics

library, 3D Slicer, and ITK-SNAP. The types of extracted features

include shape features, texture features, and intensity features. Deep

learning automated feature mining requires designing separate

branching networks for each modality, which are implemented

using the feature extraction layer of the pretrained model.

The second step is cross-modal dynamic fusion and feature

alignment and splicing, where radiomic features and deep

learning features are normalized and spliced into multimodal

feature vectors. If the dimensionality of different modal features

varies greatly, they can be mapped to a unified dimension

through the full connectivity layer. The weights of different

modal features are dynamically assigned to suppress redundant

information. The third step is end-to-end model integration,

where the model architecture requires multibranch inputs, and

each modality is independently fed into the branch network.

Then, the multimodal features are fused through the attention

mechanism. The last step is model validation and interpretation,

and the evaluation metrics include the main metrics—AUC–

ROC, sensitivity, and specificity—as well as the auxiliary metrics—

the Dice coefficient (segmentation task) and attention weight

visualization. The whole process faces challenges, such as an

insufficient amount of multimodal data, conflicting information

between modalities, and limited computer resources. We can use

migration learning to synthesize the data, constrained feature

space alignment by contrast learning, mixed-precision training,

distributed data parallelism, etc., to solve these challenges.

Through the above steps, an end-to-end multimodal early

pancreatic cancer diagnosis model with high robustness can

be constructed.

3.3 Application of end-to-end modeling
for the early diagnosis of pancreatic cancer
in clinical settings

We propose that an end-to-end model for early pancreatic

cancer diagnosis can be visualized and integrated into a clinical

decision-making system for seamless deployment and practical

application. For model visualization, heatmaps can be overlaid on

CT and MR images to highlight the tumor regions of interest,

assisting physicians in quickly locating lesions. Additionally, 3D

segmentation of the detected tumor region can provide more

detailed anatomical information. A structured report can be

automatically generated, summarizing key indicators such as tumor

location, size, morphology, probability of malignancy, and risk of

adjacent vascular invasion. To increase model interpretability, the

imaging features relied upon by the model can be demonstrated

and compared with the diagnostic criteria outlined in clinical

guidelines. Multimodel comparisons can also be performed to

showcase the predictive ability and consistency of each sub-

model. For integration with a PACS, intermediate software based

on DCMTK or PyDICOM libraries can be developed to receive

DICOM images from the PACS, preprocess them, and input

them into the model. Customized plug-ins can be developed

for PACS vendors to embed the model results directly into

the film-reading interface. To ensure data flow and security,

anonymization and encryption of data between the PACS system

and the model server are essential. Role-based access control

can be implemented, restricting model access to authorized

radiologists and surgeons while logging all operations. Physicians

should also have the ability to correct ROI and review the

basis of model decisions. The clinical decision-making system

can incorporate a graded warning system, marking malignancy

probabilities with color-coded alerts in the PACS interface and

providing suggestions to recommend further tests or follow-

up intervals.

Finally, clinical validation of the model is necessary.

A multicenter trial involving collaboration with several

hospitals can be conducted to calculate the model’s sensitivity

and specificity and compare its performance against

independent diagnoses made by physicians. We believe that

in the future, it will be feasible to establish a closed-loop

workflow for early pancreatic cancer diagnosis, enabling

physicians to efficiently leverage AI models within the

PACS environment while adhering to medical protocols and

regulatory requirements.

4 Challenges in early pancreatic
cancer diagnosis using artificial
intelligence

Currently, AI technology has demonstrated significant

potential for application in the early screening, diagnosis, surgical

planning, and prognostic assessment of pancreatic cancer.

However, its clinical application still faces several challenges and

issues that need to be addressed.
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4.1 Lack of su�cient evidence

Despite the significant achievements of AI technology in

the medical field, the output of AI models remains largely

uninterpretable and is often regarded as a “black box (27).”

While one can directly observe the model’s input data and

resulting outputs, understanding the internal data processing

mechanisms is challenging. The high accuracy of AI algorithms

may come at the cost of reduced interpretability, making it difficult

to enhance algorithm performance through modifications

to the model’s internal structure (28). Consequently, the

interpretability of AI-assisted pancreatic cancer diagnostic

models remains a critical factor limiting their widespread

clinical adoption and represents a key challenge for future

AI-related research. We contend that the central limitation

of contemporary artificial intelligence models, specifically

their lack of interpretability, can be substantially alleviated

through the integration of an attention mechanism and feature

visualization techniques to establish a dual-analysis framework.

The attention mechanism generates heatmaps to precisely

identify key anatomical regions of diagnostic importance at

the pixel level. For example, in CT lung nodule analysis, the

attention mechanism quantitatively highlights malignant feature

regions that the model prioritizes, such as spiculation and

lobulation. Feature visualization techniques decode the hidden-

layer responses of deep neural networks, visually elucidating

the model’s reasoning process from low-level texture features to

high-level semantic concepts. In pathological slide classification

tasks, for example, this approach reveals the decision-making

rationale for identifying nuclear atypia in cancer cells. This not

only strengthens clinicians’ confidence in AI-driven decisions but

also provides explainable evidence that they comply with medical

AI regulatory standards.

4.2 Limited training samples

Most pancreatic cancer studies are single-center studies

and involve small sample sizes, making them susceptible

to selection bias and recall bias. When applied to other

centers, these models often result in measurement errors

and overfitting, leading to significant fluctuations in accuracy

and a lack of stability (29). To address these challenges, it

is essential to establish a multi-institutional collaborative

framework and conduct prospective, double-blind, multicenter

studies. This approach ensures that the training dataset is

more representative, thereby enhancing the generalizability

and performance of AI models. Additionally, various data

augmentation algorithms can be employed to mitigate these

issues and effectively increase the diversity and volume of

raw data.

4.3 Potential selection bias

Despite advancements in the application of artificial

intelligence models for pancreatic cancer diagnosis, numerous

challenges remain in their clinical implementation. These

include a predominance of retrospective studies, issues of

confounders and bias, and diagnostic false positives and false-

negatives. Additionally, the lack of standardized criteria for

evaluating diagnostic accuracy poses a significant obstacle (30, 31).

Furthermore, computer-assisted diagnostic systems developed by

different researchers across various studies introduce a high risk of

selection bias.

4.4 Ethical and legal concerns

As an emerging technology, the ethical issues associated

with AI must not be overlooked. The use of data should

strictly adhere to the principle of informed consent, involving

both doctors and patients, which to some extent constrains

the application scope of AI technology. In many pancreatic

cancer studies, data are anonymized, and the informed consent

process is bypassed. However, AI is an evolving and iterative

system that requires continuous incorporation of data from

new clinical patients. These new patients effectively expose

their data to the AI system when it is used for diagnosis

and treatment. Finally, there is ongoing debate regarding

accountability when AI makes diagnostic errors, which in turn

challenges AI-related legislation, regulation, and clinical practice

(32). Delineating the responsibilities for AI model development

suppliers is urgently needed in such incidents. To address this

gap in the discussion and promote the practical application

of AI within legal boundaries, introducing and specifically

referencing relevant provisions from existing ethical and regulatory

frameworks for medical AI is strongly recommended. For

example, a thorough examination of the Health Insurance

Portability and Accountability Act (HIPAA) regarding liability

attribution when AI errors lead to patient data breaches or an

analysis of how General Data Protection Regulation (GDPR)

provisions concerning automated decision-making, the right to

explanation, and liable parties apply to scenarios of medical

AI misdiagnosis are needed. By invoking specific clauses from

these established regulations, a solid legal foundation and a

more comprehensive perspective can be provided for defining

the boundaries of developer liability and designing clear dispute

resolution pathways.

5 Conclusion

In conclusion, as research on AI technology has progressed,

there has been a groundbreaking opportunity to transform the

diagnosis and treatment paradigms for early-stage pancreatic

cancer. For future studies, we propose that AI can be integrated

with multimodal medical imaging technologies to develop an end-

to-end automated early pancreatic cancer screening system. This

would facilitate interoperability between the radiology department’s

PACS system and the screening system, enabling full-process

intelligent visualization diagnostics—from raw data input to

clinical decision-making output. Consequently, this approach

would allow pancreatic cancer to be detected and treated at its
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earliest stages, providing a promising pathway to reduce its high

mortality rate.
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