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Introduction: Osteoarthritis (OA) is a heterogeneous whole-joint disease that 
inconveniences more than 500 million people worldwide. Early diagnostic 
methods for OA remain lacking. Peripheral blood mononuclear cells (PBMCs) are 
ideal sample sources for the early diagnosis of different diseases. However, only 
a few studies have reported on the role of PBMCs in the early diagnosis of OA.
Methods: RNA sequencing was performed on PBMC samples from 27 patients 
with OA and 31 healthy controls. We integrated RNA sequencing data from our 
internal cohort and microarray data from external cohort to construct a diagnostic 
model of OA based on PBMC samples. The receiver operating characteristic 
(ROC) curve analysis was used to evaluate the diagnostic model in PBMC samples 
and synovial tissue.
Results: In this study, we screened and constructed a six-gene diagnostic model 
consisted of the genes THBS1, USP36, GIMAP4, OSM, IL10, and HDC, which could 
effectively distinguish patients with OA from healthy controls. The ROC curve 
analysis showed that the area under curve (AUC) of this diagnostic model was 0.928 
for our internal cohort and 0.915 for the external cohort, respectively. Interestingly, 
the gene expression model also had high accuracy (AUC = 0.910) for diagnosing 
patients with OA based on expression data from synovial tissue.
Discussion: Given that related studies on several signature genes in our diagnostic 
model for OA are lacking, our study provides novel potential biomarkers for the 
early diagnosis of OA based on PBMC samples.
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Introduction

Osteoarthritis (OA) is a heterogeneous whole-joint disease that can cause pain and result 
in disability and premature work loss, affecting more than 500 million people worldwide (1, 
2). Its prevalence is mainly attributed to aging, obesity, and joint injuries (1, 3). Although 
physical examination, radiographic indicators and biochemical markers have significantly 
advanced the diagnosis of OA, these conventional techniques might detect OA only at 
advanced stages, thereby limiting early detection (4, 5). Therefore, novel diagnostic methods 
are urgently needed for early detection of OA.

Peripheral blood mononuclear cells (PBMCs) are a large accessible sample source for 
developing early diagnostic methods for different diseases due to their non-invasiveness, ease 
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of preparation, and rich content of molecular markers (DNA, RNA, 
and protein). PBMCs are also an important sample type investigated 
in OA. Studies involving PBMCs have been used in studies to 
characterize immune cell dysfunction (6, 7), molecular dysfunction 
(8, 9), and OA treatment (10, 11). However, few studies have 
comprehensively reported the role of PBMCs in the early 
diagnosis of OA.

In this study, we performed RNA sequencing on PBMC samples 
from 27 OA patients and 31 healthy controls. By integrating our 
sequencing data and a public external dataset, we further identified 
a six-gene expression signature that could effectively distinguish OA 
patients from healthy controls. Our six-gene diagnostic model 
consisted of THBS1, USP36, GIMAP4, OSM, IL10, and HDC, 
several of which have not previously been studied in OA. Moreover, 
the diagnostic model demonstrated high accuracy for distinguishing 
OA patients based on expression data of synovial tissue.

Materials and methods

Sample collection and RNA extraction

The blood samples were collected from 27 OA patients and 31 
healthy controls at Peking University People’s Hospital, Qingdao, 
between December 2024 and January 2025 (Supplementary Table S1). 
Sample collection was approved by the Ethical Committees of Peking 
University People’s Hospital, and all participants signed the written 
informed consent.

PBMCs were isolated from blood within 2 h by density gradient 
centrifugation using Ficoll solution (Sigma-Aldrich, United States) 
and subsequently stored at −80 °C until RNA extraction. Total RNAs 
were extracted from PBMC samples with TRIzol LS reagent (Thermo 
Fisher Scientific, United States), and quality check was measured by 
Qubit 3.0 (Thermo Fisher Scientific, United States) and Agilent 2100 
Bioanalyzer (Agilent Technologies, United States).

Library construction, mRNA sequencing, 
and analysis

mRNAs were isolated using oligo-dT method with VAHTS 
mRNA Capture Beads (Vazyme, China), and mRNA sequencing 
library was prepared according to the protocol of VAHTS Universal 
V6 RNA-seq Library Prep Kit for Illumina (Vazyme, China) at 
Genesky Biotechnologies Inc., Shanghai, China. The library was 
evaluated with Qubit 3.0 (Thermo Fisher Scientific, United   
States) and Agilent 2100 Bioanalyzer (Agilent Technologies, 
United  States). Sequencing was performed with paired-end 
150 bp on the Illumina NovaSeq  6000 platform (Illumina, 
United States).

Raw sequencing reads (6 G data per sample, approximately 2×) 
were evaluated for quality using FastQC (version 0.11.8). Sequencing 
primers, and low-quality reads, and remaining reads shorter than 
40 bp were removed. Clean reads (Q30 >94.22%, approximately 25.86 
million reads per sample) were mapped to the human reference 
genome, hg38, achieving an average of 97.72% aligned bases per 
sample, using STAR (version 2.7.10b). StringTie (version 1.3.5) was 
used for transcript assembly and quantification. The differentially 

expressed genes (DEGs) between patients with OA and healthy 
controls were identified by DESeq2 package (version 1.10.1) with the 
absolute value of log2 (fold change) > 1 and p-value < 0.05.

Gene expression dataset and analysis

The gene expression data of 139 PBMC samples from 106 OA 
patients and 33 healthy controls were obtained from the GSE48556 
dataset of the Gene Expression Omnibus (GEO) database.1 The 
healthy controls were sex- and age-matched with the patients. 
Expression profiles were analyzed by GPL6947 platform (Illumina 
HumanHT-12 V3.0 expression beadchip). The DEGs with 1.2-fold 
change and p-value <0.05 were identified between OA patients and 
healthy controls using Limma (linear models for microarray data, 
version 3.40.6) in R programming language. The gene expression data 
of 20 synovial tissue samples from 10 OA patients and 10 healthy 
controls were also obtained from the GSE55235 dataset of GEO for 
the validation of the diagnostic model.

Random forest analysis

The internal RNA-seq data were used to screen 
candidate genes by the random forest analysis using randomForest 
(version 4.7.1.1), which calculates an importance score of each gene. 
Genes with mean decrease accuracy >2.0 were selected as 
candidate genes.

Reverse transcription-quantitative 
polymerase chain reaction

RNA extraction was conducted as described above, and cDNA 
was synthesized using 40 randomly selected OA and healthy control 
samples by Reverse Transcriptase M-MLV (Takara, Japan) in 
accordance with instructions. In addition, reverse transcription-
quantitative polymerase chain reaction (RT-qPCR) was performed 
with SYBR® Premix Ex Taq™ II (Takara, Japan). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as an endogenous 
control for the candidate genes. All primers of these genes were listed 
in Supplementary Table S2. The relative expression of each gene 
between OA and healthy control samples was compared using 2−ΔΔCt 
method, with ∆Ct = Ctgene − CtGAPDH.

Gene pathway analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis 
was conducted to identify significant pathways enriched in DEGs 
between OA patients and healthy controls using clusterProfiler 
package (version 4.4.4) in R (12). Pathways with adjusted p-value 
<0.05 (Bnejamini & Hochberg) were considered as significantly  
enriched.

1  https://www.ncbi.nlm.nih.gov/geo/
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Statistical analysis

All data processing was performed using R 4.2.1 software. The 
Wald test was used for the differential expression analysis of mRNA 
sequencing between OA and control samples. The Wilcoxon rank–
sum test was adopted for the differential analysis of the six genes 
between two groups from different datasets, as well as for the 
RT-qPCR analysis of these genes. Multifactor logistic regression 
analysis was implemented to determine independent predictive 
models, and receiver operating characteristic (ROC) curve was used 
to evaluate the distinguishing effect of the model by employing 
package “pROC” (version 1.18.0) in R. Uniform Manifold 
Approximation and Projection (UMAP) was performed to analyze the 
mRNA sequencing data with package “UMAP” (version 0.2.10.0). The 
results were visualized by ggplot2 (version 3.4.4). All statistical results 
with a p-value <0.05 were considered to be significant.

Results

Differential expression analysis of PBMC 
samples from OA patients and controls in 
internal cohort

The UMAP showed that most of 27 OA and 31 control samples 
were clearly separated, indicating that the expression profiles in the 
PBMCs of OA patients had changed compared to those of the control 
(Figure 1A). A total of 833 DEGs were identified in PBMCs between 
OA patients and healthy controls, with 372 up-regulated and 461 
down-regulated genes [|log2 (fold change)| >1, p-value <0.05] in the 
OA group (Figure  1B). The top up-regulated genes were 
ENSG00000260836, PRSS50, ENSG00000289027, NALF2, and 
GLYATL2, while the top down-regulated genes were TINAGL1, ARSI, 
CAMK2A, OR52H1, and SOX18 (Figure 1C). The pathway analysis of 

FIGURE 1

DEGs between 27 OA and 31 control samples in the internal cohort. (A) UMAP plot showing the dimension reduction of all genes in 27 OA and 31 
control samples. (B) Heatmap of 833 DEGs between OA and control samples, with expression levels normalized by z-score. (C) Volcano plot of 372 
up-regulated (red) and 461 down-regulated genes (green) between OA and control, with the top five genes labeled. (D) KEGG pathway enrichment 
analysis of DEGs; the size of the dot represents the count of DEGs.
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these DEGs showed that cytochrome P450-related pathways, cytokine–
cytokine receptor interaction, and glutathione metabolism were 
significantly enriched (Figure 1D).

Differential expression analysis of PBMC 
samples from OA patients and controls in 
external cohort

We used the GSE48556 dataset from the GEO database to 
compare differences in gene expression in PBMC samples from 106 
OA patients and 33 healthy controls. A total of 426 genes were 
differentially expressed (124 up-regulated and 302 down-regulated) 
with fold change >1.2 and p-value <0.05 (Figure  2A). The top 
up-regulated genes included HSPA1B, ADRB2, ALAS2, ID3, and 
GPR18, while the top down-regulated genes included EGR1, CXCL8, 
RPS4Y1, NBPF9, and NUFIP2 (Figure  2B). The KEGG pathway 
enrichment analysis of the above DEGs showed that a series of 
immunity-related pathways were significantly enriched, including 
chemokine signaling pathway, IL-17 signaling pathway, and cytokine−
cytokine receptor interaction. In addition, osteoclast differentiation 
was significantly enriched (Figure 2C).

Identification of signature genes for 
predicting OA patients based on expression 
data of PBMC samples

To identify the candidate signature genes for distinguishing OA 
patients from healthy controls based on gene expression data of 
PBMC samples, we firstly performed random forest analysis on our 
internal PBMC data and identified several candidate genes for further 
evaluation. We selected the top nine genes (PPP1R16B, MRPS31, 
DDIT4L, GRIN2C, PHKG1, UGDH, GTPBP1, LRRC4B, and SMIM8, 
with mean decrease accuracy >2.0) for ROC analysis 
(Supplementary Figure S1A). In our internal cohort, these genes 
showed significant differences between OA and control samples 
(p < 0.05, Supplementary Figure S1B), and each gene could accurately 
distinguish OA samples from control samples with a high area under 

curve (AUC) value (Supplementary Figure S1C). However, in the 
external PBMC cohort, some genes (GRIN2C, LRRC4B, GTPBP1, 
PHKG1, and UGDH) did not show significant differences between 
OA and control samples (Supplementary Figure S1D), and the AUC 
values of most genes, except for MRPS31, were less than 0.7 
(Supplementary Figure S1E). Therefore, we did not select these genes 
identified by random forest analysis for model construction. As an 
alternative, we obtained intersecting DEGs in the internal cohort and 
external cohort, including 15 genes, namely CXCR5, THBS1, CXCR3, 
CEMIP2, USP36, GIMAP4, EAF2, GNG11, OSM, TFPI, IL10, 
CLEC1B, SH3BGRL2, PVALB, and HDC (Supplementary Table S3). 
However, only six genes THBS1, USP36, GIMAP4, OSM, IL10, and 
HDC demonstrated consistent changes in the internal and external 
cohort. GIMAP4 was up-regulated, while the other five genes were 
down-regulated in OA patients compared to healthy controls 
(Figures 3A,B). Therefore, we screened these six genes as candidate 
signature genes for distinguishing OA patients and healthy controls. 
The RT-qPCR results validated that the expression of GIMAP4 was 
significantly up-regulated, and those of THBS1, USP36, OSM, IL10, 
and HDC were consistently down-regulated in OA patients compared 
to healthy controls (Supplementary Table S4 and Figure 3C). The AUC 
of ROC curve was used to evaluate the diagnostic efficacy of six genes 
for predicting OA on the basis of PBMC samples. We obtained AUC 
values of 0.754 for THBS1, 0.909 for USP36, 0.798 for GIMAP4, 0.816 
for OSM, 0.723 for IL10, and 0.840 for HDC in the internal cohort 
(Figure 4A). Our combined six-gene model had an AUC of 0.928, with 
a sensitivity of 0.871 and specificity of 0.963 for the internal cohort 
(Figure 4B). We obtained AUC values of 0.663 for THBS1, 0.836 for 
USP36, 0.771 for GIMAP4, 0.702 for OSM, 0.730 for IL10, and 0.615 
for HDC in the external cohort (Figure 4C). Our combined six-gene 
model had an AUC of 0.915, with a sensitivity of 0.909 and specificity 
of 0.858 for the internal cohort (Figure 4D). These results suggested 
that our six-gene diagnostic model had high accuracy for predicting 
patients with OA based on the expression data of PBMC samples. The 
screening strategy employing intersecting DEGs from different 
detection platform might yield robust candidate results, as it ensures 
the consistency of genes across different platforms or cohorts and 
reduces biases arising from platform differences. In addition, 
considering that USP36 and GIMAP4 have not been reported in 

FIGURE 2

DEGs between 106 OA and 33 control samples in the external cohort. (A) Heatmap of 426 DEGs between 106 OA and 33 control samples, with 
expression levels normalized by z-score. (B) Volcano plot showing 124 up-regulated (red) and 302 down-regulated genes (green) between OA and 
control, with top the top genes labeled. (C) KEGG pathway enrichment analysis of DEGs; the size of the dot represents the count of DEGs.
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OA-related studies, our current analysis could identify novel signature 
genes for diagnosing patients with OA.

Validation of the diagnostic model for 
predicting OA based on synovial tissue 
samples

To further validate the diagnostic efficacy of the six genes for 
distinguishing patients with OA from healthy controls in tissue 
samples, we analyzed the gene expression data of synovial tissue from 
10 OA patients and 10 healthy controls in the GSE55235 dataset from 
GEO database. Most of these six genes, except for HDC, showed 
consistent changes or significances in PBMC samples and synovial 
samples (Figure 5A). We obtained AUC values of 0.840 for THBS1, 
0.830 for USP36, 0.640 for GIMAP4, 0.620 for OSM, 0.820 for IL10, 
and 0.840 for HDC in GSE55235 (Figure 5B). Our combined six-gene 
model had an AUC of 0.910, with a sensitivity of 0.7 and specificity of 
1 (Figure 5C). These results validated that our six-gene diagnostic 
model also had high accuracy for predicting patients with OA based 
on the gene expression data of synovial tissue. Therefore, these genes 
serve as ideal biomarkers for the early diagnosis of OA.

Discussion

Although joint imaging is still the primary method for diagnosing and 
monitoring of OA in clinical practice (13), early detection of the disease 
remains limited. Previous studies reported several related diagnosis models 
for OA based on gene expression information. However, most of them had 
relatively small sample size, which affects the diagnostic efficacy. For 
instance, Zeng’s et al. (14) study only contained 24 patients with OA and 
24 controls from public data, Chen’s study included 28 patients with OA 
and 26 controls (15). Liang et  al. (16) found APOLD1 and EPYC as 
diagnostic genes from 20 patients with OA and 20 controls.

In addition, other studies constructed the diagnosis model of OA 
that relied on the external public data entirely, including the above 
studies with small sample size. For instance, Tu et al. (17) reported the 
role of arachidonic acid metabolism-related genes for OA diagnosis 
based on public datasets. Similar studies included the diagnostic 
model of anoikis-related genes (18), macrophage-associated genes 
(19), and lactate metabolism-related gene signature (20). Unlike these, 
our study combined our internal cohort (27 OA patients and 31 
controls) and public cohort (106 OA patients and 33 controls) with 
more samples to develop a six-gene model for OA diagnosis, which 
had better predicting performance. Notably, we not only established a 

FIGURE 3

Signature genes for distinguishing OA patients from healthy controls based on expression data of PBMC samples. (A) Violin plots showing the relative 
expression levels of six signature genes between OA and control in internal cohort. (B) Violin plots showing the relative expression levels of six 
signature genes between OA and control in external GSE48556 cohort. (C) Relative expression levels of six signature genes between OA and control by 
RT-qPCR. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 4

ROC curve analysis of six signature genes and their combination signature for distinguishing OA patients from the controls in two cohorts. (A,B) ROC 
curve showing the predictive efficiency of six signature genes (A) and their combination (B) for distinguishing OA patients from healthy controls in our 
internal cohort. (C,D) ROC curve showing the predictive efficiency of six signature genes (C) and their combination (D) for distinguishing OA patients 
from healthy controls in external GSE48556 cohort.

FIGURE 5

Signature genes for distinguishing OA patients from healthy controls based on expression data of synovial tissue samples. (A) Violin plots showing the 
relative expression levels of six signature genes between OA and control in external GSE55235 cohort. (B,C) ROC curve showing the predictive 
efficiency of six signature genes (B) and their combination (C) for distinguishing OA patients from healthy controls in external GSE55235 cohort. 
*p < 0.05, **p < 0.01, and ***p < 0.001.
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prediction model in PBMC samples but also conducted validation in 
synovial tissue. We considered that diverse types of immune cells in 
PBMC might migrate to synovial tissue, thereby participating in the 
onset and progression of OA. For example, CCR2+ cells were abundant 
in human synovium of OA and that blockade of CCL2/CCR2 
signaling markedly attenuated macrophage accumulation, synovitis, 
and cartilage damage in mouse OA (21). Another study showed that 
end-stage OA knees (including synovial samples) were characterized 
with an increased CD4+ T cell polarization toward activated Th1 cells 
and cytokine secretion (including anti-inflammatory IL10, a 
component of our six-gene diagnostic model) compared to peripheral 
blood samples (22). These findings indicated that there were multiple 
relations between immune cells and synovial tissue, which had 
significant impact on OA. Therefore, we selected PBMC and synovial 
tissue samples to evaluate our six-gene model for OA diagnosis.

Another advantage of our study was using blood or PBMC 
samples, which could realize early and non-invasive diagnosis for OA 
based on the expression signatures of blood cells. However, most of 
previous related studies constructed diagnostic models using synovial 
or cartilage tissue samples (16–19, 23, 24), which were not conducive 
to early diagnosis and obtained by invasive methods.

In our study, a six-gene diagnostic model was identified in OA, 
including THBS1, USP36, GIMAP4, OSM, IL10, and HDC. Among 
them, USP36 or GIMAP4 have not been previously reported in OA, 
indicating their potential as novel targets and biomarkers for 
OA. Importantly, this study validated that THBS1 partly mediated the 
cartilage protective effect by reducing inflammation in OA (25). In 
addition, THBS1 was reported to be  a shared biomarker between 
myocardial infarction and OA (26). The protein level of THBS1 was also 
significantly differential in synovial fluid between 24 patients with OA 
and 24 healthy persons (27). OSM and IL10 were widely studied in 
OA. Oncostatin M (OSM) was found overexpressed in knee OA, and 
Notch signaling inhibited OSM-induced cell proliferation and 
differentiation (28). As a member of IL6 family, OSM was demonstrated 
to drive an inflammation phenotype in knee OA (29). Anti-
inflammatory cytokines, including IL10, have been widely discussed in 
the pathogenesis of OA (30). Importantly, targeting IL10 might be an 
effective therapy for OA, potentially reducing pain (31) and alleviating 
cartilage degeneration (32). Histidine decarboxylase (HDC) could 
stimulate the proliferation of human articular chondrocytes, and its 
expression by chondrocytes was demonstrated in OA cartilage (33, 34). 
In addition, HDC was found as a prototypical mast cell marker in OA 
synovial cells by single-cell RNA sequencing (35). Therefore, most genes 
played important roles in the pathogenesis or therapy of OA. The 
combined gene model outperformed individual genes in distinguishing 
OA patients from healthy controls in each cohort, as the combination of 
these genes could capture the molecular characteristics of OA from 
different dimensions. Therefore, it is necessary to develop the combined 
gene model as the predictive tool for OA.

However, the study had some limitations. Firstly, although 
we collected 58 PBMC samples from 27 patients with OA and 31 
healthy controls, the sample count should be  further amplified to 
validate the efficacy of our six-gene diagnostic model. Secondly, the 
topic of this study was constructing a diagnostic model based on gene 
expression signatures. The RNA or protein expression levels of these 
six genes should be  further validated in PBMC and synovial or 
cartilage tissue samples. Thirdly, some signature genes, such as USP36 
and GIMAP4, have not be previously studied in OA. Their molecular 

functions could be further explored in OA, for instance, overexpression 
or knockdown of USP36/GIMAP4 in vitro could be used to assess 
effects on cell proliferation, apoptosis, or the secretion of inflammatory 
factors in synovial cells or chondrocytes.

In conclusion, this study integrates the internal and external RNA 
data of PBMC samples to construct a diagnostic model for predicting 
OA, which could effectively distinguish patients with OA from healthy 
controls by six-gene expression signatures of PBMC or synovial tissue 
samples. It provides important value for the early diagnosis of OA 
based on blood-derived samples, and finds some potential biomarkers 
and targets for OA.
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SUPPLEMENTARY FIGURE S1

Signature genes screening and evaluation by random forest analysis in 
internal and external PBMC samples. (A) Random forest analysis showed the 
mean decrease accuracy of top genes. (B) Violin plots showed the relative 
expression levels of nine signature genes between OA and control in our 
internal cohort. (C) The ROC curve showed the predictive efficiency of nine 
genes for distinguishing OA patients from healthy controls in internal cohort. 
(D) Violin plots showed the relative expression levels of nine signature genes 
between OA and control in external GSE48556 cohort. (E) The ROC curve 
showed the predictive efficiency of nine genes for distinguishing OA patients 
from healthy controls in external GSE48556 cohort. *p < 0.05, **p < 0.01, 
and ***p < 0.001.
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