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Introduction: Osteoarthritis (OA) is a heterogeneous whole-joint disease that
inconveniences more than 500 million people worldwide. Early diagnostic
methods for OA remain lacking. Peripheral blood mononuclear cells (PBMCs) are
ideal sample sources for the early diagnosis of different diseases. However, only
a few studies have reported on the role of PBMCs in the early diagnosis of OA.
Methods: RNA sequencing was performed on PBMC samples from 27 patients
with OA and 31 healthy controls. We integrated RNA sequencing data from our
internal cohort and microarray data from external cohort to construct a diagnostic
model of OA based on PBMC samples. The receiver operating characteristic
(ROC) curve analysis was used to evaluate the diagnostic model in PBMC samples
and synovial tissue.

Results: In this study, we screened and constructed a six-gene diagnostic model
consisted of the genes THBS1, USP36, GIMAP4, OSM, IL10, and HDC, which could
effectively distinguish patients with OA from healthy controls. The ROC curve
analysis showed that the area under curve (AUC) of this diagnostic model was 0.928
for our internal cohort and 0.915 for the external cohort, respectively. Interestingly,
the gene expression model also had high accuracy (AUC = 0.910) for diagnosing
patients with OA based on expression data from synovial tissue.

Discussion: Given that related studies on several signature genesin our diagnostic
model for OA are lacking, our study provides novel potential biomarkers for the
early diagnosis of OA based on PBMC samples.

KEYWORDS
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Introduction

Osteoarthritis (OA) is a heterogeneous whole-joint disease that can cause pain and result
in disability and premature work loss, affecting more than 500 million people worldwide (1,
2). Its prevalence is mainly attributed to aging, obesity, and joint injuries (1, 3). Although
physical examination, radiographic indicators and biochemical markers have significantly
advanced the diagnosis of OA, these conventional techniques might detect OA only at
advanced stages, thereby limiting early detection (4, 5). Therefore, novel diagnostic methods
are urgently needed for early detection of OA.

Peripheral blood mononuclear cells (PBMCs) are a large accessible sample source for
developing early diagnostic methods for different diseases due to their non-invasiveness, ease
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of preparation, and rich content of molecular markers (DNA, RNA,
and protein). PBMCs are also an important sample type investigated
in OA. Studies involving PBMCs have been used in studies to
characterize immune cell dysfunction (6, 7), molecular dysfunction
(8, 9), and OA treatment (10, 11). However, few studies have
comprehensively reported the role of PBMCs in the early
diagnosis of OA.

In this study, we performed RNA sequencing on PBMC samples
from 27 OA patients and 31 healthy controls. By integrating our
sequencing data and a public external dataset, we further identified
a six-gene expression signature that could effectively distinguish OA
patients from healthy controls. Our six-gene diagnostic model
consisted of THBS1, USP36, GIMAP4, OSM, IL10, and HDC,
several of which have not previously been studied in OA. Moreover,
the diagnostic model demonstrated high accuracy for distinguishing
OA patients based on expression data of synovial tissue.

Materials and methods
Sample collection and RNA extraction

The blood samples were collected from 27 OA patients and 31
healthy controls at Peking University People’s Hospital, Qingdao,
between December 2024 and January 2025 (Supplementary Table S1).
Sample collection was approved by the Ethical Committees of Peking
University People’s Hospital, and all participants signed the written
informed consent.

PBMC:s were isolated from blood within 2 h by density gradient
centrifugation using Ficoll solution (Sigma-Aldrich, United States)
and subsequently stored at —80 °C until RNA extraction. Total RNAs
were extracted from PBMC samples with TRIzol LS reagent (Thermo
Fisher Scientific, United States), and quality check was measured by
Qubit 3.0 (Thermo Fisher Scientific, United States) and Agilent 2100
Bioanalyzer (Agilent Technologies, United States).

Library construction, mRNA sequencing,
and analysis

mRNAs were isolated using oligo-dT method with VAHTS
mRNA Capture Beads (Vazyme, China), and mRNA sequencing
library was prepared according to the protocol of VAHTS Universal
V6 RNA-seq Library Prep Kit for Illumina (Vazyme, China) at
Genesky Biotechnologies Inc., Shanghai, China. The library was
evaluated with Qubit 3.0 (Thermo Fisher Scientific, United
States) and Agilent 2100 Bioanalyzer (Agilent Technologies,
United States). Sequencing was performed with paired-end
150 bp on the Illumina NovaSeq 6000 platform (Illumina,
United States).

Raw sequencing reads (6 G data per sample, approximately 2x)
were evaluated for quality using FastQC (version 0.11.8). Sequencing
primers, and low-quality reads, and remaining reads shorter than
40 bp were removed. Clean reads (Q30 >94.22%, approximately 25.86
million reads per sample) were mapped to the human reference
genome, hg38, achieving an average of 97.72% aligned bases per
sample, using STAR (version 2.7.10b). StringTie (version 1.3.5) was
used for transcript assembly and quantification. The differentially
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expressed genes (DEGs) between patients with OA and healthy
controls were identified by DESeq2 package (version 1.10.1) with the
absolute value of log2 (fold change) > 1 and p-value < 0.05.

Gene expression dataset and analysis

The gene expression data of 139 PBMC samples from 106 OA
patients and 33 healthy controls were obtained from the GSE48556
dataset of the Gene Expression Omnibus (GEO) database.' The
healthy controls were sex- and age-matched with the patients.
Expression profiles were analyzed by GPL6947 platform (Illumina
HumanHT-12 V3.0 expression beadchip). The DEGs with 1.2-fold
change and p-value <0.05 were identified between OA patients and
healthy controls using Limma (linear models for microarray data,
version 3.40.6) in R programming language. The gene expression data
of 20 synovial tissue samples from 10 OA patients and 10 healthy
controls were also obtained from the GSE55235 dataset of GEO for
the validation of the diagnostic model.

Random forest analysis

The internal RNA-seq data were wused to screen
candidate genes by the random forest analysis using randomForest
(version 4.7.1.1), which calculates an importance score of each gene.
Genes with mean decrease accuracy >2.0 were selected as

candidate genes.

Reverse transcription-quantitative
polymerase chain reaction

RNA extraction was conducted as described above, and cDNA
was synthesized using 40 randomly selected OA and healthy control
samples by Reverse Transcriptase M-MLV (Takara, Japan) in
accordance with instructions. In addition, reverse transcription-
quantitative polymerase chain reaction (RT-qPCR) was performed
with SYBR® Premix Ex Taq™ II (Takara, Japan). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as an endogenous
control for the candidate genes. All primers of these genes were listed
in Supplementary Table S2. The relative expression of each gene
between OA and healthy control samples was compared using 2744
method, with ACt = Ctge,e — Cteappn

Gene pathway analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
was conducted to identify significant pathways enriched in DEGs
between OA patients and healthy controls using clusterProfiler
package (version 4.4.4) in R (12). Pathways with adjusted p-value
<0.05 (Bnejamini & Hochberg) were considered as significantly
enriched.

1 https://www.ncbi.nlm.nih.gov/geo/
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Statistical analysis

All data processing was performed using R 4.2.1 software. The
Wald test was used for the differential expression analysis of mRNA
sequencing between OA and control samples. The Wilcoxon rank-
sum test was adopted for the differential analysis of the six genes
between two groups from different datasets, as well as for the
RT-qPCR analysis of these genes. Multifactor logistic regression
analysis was implemented to determine independent predictive
models, and receiver operating characteristic (ROC) curve was used
to evaluate the distinguishing effect of the model by employing
package “pROC” (version 1.18.0) in R. Uniform Manifold
Approximation and Projection (UMAP) was performed to analyze the
mRNA sequencing data with package “UMAP” (version 0.2.10.0). The
results were visualized by ggplot2 (version 3.4.4). All statistical results
with a p-value <0.05 were considered to be significant.

10.3389/fmed.2025.1632348

Results

Differential expression analysis of PBMC
samples from OA patients and controls in
internal cohort

The UMAP showed that most of 27 OA and 31 control samples
were clearly separated, indicating that the expression profiles in the
PBMCs of OA patients had changed compared to those of the control
(Figure 1A). A total of 833 DEGs were identified in PBMCs between
OA patients and healthy controls, with 372 up-regulated and 461
down-regulated genes [|log, (fold change)| >1, p-value <0.05] in the
OA group (Figure 1B). The top up-regulated genes were
ENSG00000260836, PRSS50, ENSG00000289027, NALF2, and
GLYATL2, while the top down-regulated genes were TINAGL1, ARSI,
CAMK2A, OR52H1, and SOX18 (Figure 1C). The pathway analysis of
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FIGURE 1

analysis of DEGs; the size of the dot represents the count of DEGs.

DEGs between 27 OA and 31 control samples in the internal cohort. (A) UMAP plot showing the dimension reduction of all genes in 27 OA and 31
control samples. (B) Heatmap of 833 DEGs between OA and control samples, with expression levels normalized by z-score. (C) Volcano plot of 372
up-regulated (red) and 461 down-regulated genes (green) between OA and control, with the top five genes labeled. (D) KEGG pathway enrichment
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these DEGs showed that cytochrome P450-related pathways, cytokine—
cytokine receptor interaction, and glutathione metabolism were
significantly enriched (Figure 1D).

Differential expression analysis of PBMC
samples from OA patients and controls in
external cohort

We used the GSE48556 dataset from the GEO database to
compare differences in gene expression in PBMC samples from 106
OA patients and 33 healthy controls. A total of 426 genes were
differentially expressed (124 up-regulated and 302 down-regulated)
with fold change >1.2 and p-value <0.05 (Figure 2A). The top
up-regulated genes included HSPA1B, ADRB2, ALAS2, ID3, and
GPR18, while the top down-regulated genes included EGR1, CXCL3,
RPS4Y1, NBPF9, and NUFIP2 (Figure 2B). The KEGG pathway
enrichment analysis of the above DEGs showed that a series of
immunity-related pathways were significantly enriched, including
chemokine signaling pathway, IL-17 signaling pathway, and cytokine—
cytokine receptor interaction. In addition, osteoclast differentiation
was significantly enriched (Figure 2C).

Identification of signature genes for
predicting OA patients based on expression
data of PBMC samples

To identify the candidate signature genes for distinguishing OA
patients from healthy controls based on gene expression data of
PBMC samples, we firstly performed random forest analysis on our
internal PBMC data and identified several candidate genes for further
evaluation. We selected the top nine genes (PPP1R16B, MRPS31,
DDIT4L, GRIN2C, PHKG1, UGDH, GTPBP1, LRRC4B, and SMIMS,
ROC
(Supplementary Figure SIA). In our internal cohort, these genes

with mean decrease accuracy >2.0) for analysis
showed significant differences between OA and control samples
(p < 0.05, Supplementary Figure S1B), and each gene could accurately

distinguish OA samples from control samples with a high area under

10.3389/fmed.2025.1632348

curve (AUC) value (Supplementary Figure S1C). However, in the
external PBMC cohort, some genes (GRIN2C, LRRC4B, GTPBP1,
PHKG1, and UGDH) did not show significant differences between
OA and control samples (Supplementary Figure S1D), and the AUC
values of most genes, except for MRPS31, were less than 0.7
(Supplementary Figure S1E). Therefore, we did not select these genes
identified by random forest analysis for model construction. As an
alternative, we obtained intersecting DEGs in the internal cohort and
external cohort, including 15 genes, namely CXCR5, THBS1, CXCR3,
CEMIP2, USP36, GIMAP4, EAF2, GNG11, OSM, TFPI, IL10,
CLEC1B, SH3BGRL2, PVALB, and HDC (Supplementary Table S3).
However, only six genes THBS1, USP36, GIMAP4, OSM, IL10, and
HDC demonstrated consistent changes in the internal and external
cohort. GIMAP4 was up-regulated, while the other five genes were
down-regulated in OA patients compared to healthy controls
(Figures 3A,B). Therefore, we screened these six genes as candidate
signature genes for distinguishing OA patients and healthy controls.
The RT-qPCR results validated that the expression of GIMAP4 was
significantly up-regulated, and those of THBS1, USP36, OSM, IL10,
and HDC were consistently down-regulated in OA patients compared
to healthy controls (Supplementary Table S4 and Figure 3C). The AUC
of ROC curve was used to evaluate the diagnostic efficacy of six genes
for predicting OA on the basis of PBMC samples. We obtained AUC
values of 0.754 for THBS1, 0.909 for USP36, 0.798 for GIMAP4, 0.816
for OSM, 0.723 for 1110, and 0.840 for HDC in the internal cohort
(Figure 4A). Our combined six-gene model had an AUC of 0.928, with
a sensitivity of 0.871 and specificity of 0.963 for the internal cohort
(Figure 4B). We obtained AUC values of 0.663 for THBSI, 0.836 for
USP36, 0.771 for GIMAP4, 0.702 for OSM, 0.730 for IL10, and 0.615
for HDC in the external cohort (Figure 4C). Our combined six-gene
model had an AUC of 0.915, with a sensitivity of 0.909 and specificity
of 0.858 for the internal cohort (Figure 4D). These results suggested
that our six-gene diagnostic model had high accuracy for predicting
patients with OA based on the expression data of PBMC samples. The
screening strategy employing intersecting DEGs from different
detection platform might yield robust candidate results, as it ensures
the consistency of genes across different platforms or cohorts and
reduces biases arising from platform differences. In addition,
considering that USP36 and GIMAP4 have not been reported in
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OA-related studies, our current analysis could identify novel signature
genes for diagnosing patients with OA.

Validation of the diagnostic model for
predicting OA based on synovial tissue
samples

To further validate the diagnostic efficacy of the six genes for
distinguishing patients with OA from healthy controls in tissue
samples, we analyzed the gene expression data of synovial tissue from
10 OA patients and 10 healthy controls in the GSE55235 dataset from
GEO database. Most of these six genes, except for HDC, showed
consistent changes or significances in PBMC samples and synovial
samples (Figure 5A). We obtained AUC values of 0.840 for THBSI,
0.830 for USP36, 0.640 for GIMAP4, 0.620 for OSM, 0.820 for IL10,
and 0.840 for HDC in GSE55235 (Figure 5B). Our combined six-gene
model had an AUC of 0.910, with a sensitivity of 0.7 and specificity of
1 (Figure 5C). These results validated that our six-gene diagnostic
model also had high accuracy for predicting patients with OA based
on the gene expression data of synovial tissue. Therefore, these genes
serve as ideal biomarkers for the early diagnosis of OA.
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Discussion

Although joint imaging is still the primary method for diagnosing and
monitoring of OA in clinical practice (13), early detection of the disease
remains limited. Previous studies reported several related diagnosis models
for OA based on gene expression information. However, most of them had
relatively small sample size, which affects the diagnostic efficacy. For
instance, Zengs et al. (14) study only contained 24 patients with OA and
24 controls from public data, Chen’s study included 28 patients with OA
and 26 controls (15). Liang et al. (16) found APOLD1 and EPYC as
diagnostic genes from 20 patients with OA and 20 controls.

In addition, other studies constructed the diagnosis model of OA
that relied on the external public data entirely, including the above
studies with small sample size. For instance, Tu et al. (17) reported the
role of arachidonic acid metabolism-related genes for OA diagnosis
based on public datasets. Similar studies included the diagnostic
model of anoikis-related genes (18), macrophage-associated genes
(19), and lactate metabolism-related gene signature (20). Unlike these,
our study combined our internal cohort (27 OA patients and 31
controls) and public cohort (106 OA patients and 33 controls) with
more samples to develop a six-gene model for OA diagnosis, which
had better predicting performance. Notably, we not only established a
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prediction model in PBMC samples but also conducted validation in
synovial tissue. We considered that diverse types of immune cells in
PBMC might migrate to synovial tissue, thereby participating in the
onset and progression of OA. For example, CCR2" cells were abundant
in human synovium of OA and that blockade of CCL2/CCR2
signaling markedly attenuated macrophage accumulation, synovitis,
and cartilage damage in mouse OA (21). Another study showed that
end-stage OA knees (including synovial samples) were characterized
with an increased CD4" T cell polarization toward activated Th1 cells
and cytokine secretion (including anti-inflammatory IL10, a
component of our six-gene diagnostic model) compared to peripheral
blood samples (22). These findings indicated that there were multiple
relations between immune cells and synovial tissue, which had
significant impact on OA. Therefore, we selected PBMC and synovial
tissue samples to evaluate our six-gene model for OA diagnosis.

Another advantage of our study was using blood or PBMC
samples, which could realize early and non-invasive diagnosis for OA
based on the expression signatures of blood cells. However, most of
previous related studies constructed diagnostic models using synovial
or cartilage tissue samples (16-19, 23, 24), which were not conducive
to early diagnosis and obtained by invasive methods.

In our study, a six-gene diagnostic model was identified in OA,
including THBS1, USP36, GIMAP4, OSM, IL10, and HDC. Among
them, USP36 or GIMAP4 have not been previously reported in OA,
indicating their potential as novel targets and biomarkers for
OA. Importantly, this study validated that THBS1 partly mediated the
cartilage protective effect by reducing inflammation in OA (25). In
addition, THBS1 was reported to be a shared biomarker between
myocardial infarction and OA (26). The protein level of THBS1 was also
significantly differential in synovial fluid between 24 patients with OA
and 24 healthy persons (27). OSM and IL10 were widely studied in
OA. Oncostatin M (OSM) was found overexpressed in knee OA, and
Notch signaling inhibited OSM-induced cell proliferation and
differentiation (28). As a member of IL6 family, OSM was demonstrated
to drive an inflammation phenotype in knee OA (29). Anti-
inflammatory cytokines, including IL10, have been widely discussed in
the pathogenesis of OA (30). Importantly, targeting IL10 might be an
effective therapy for OA, potentially reducing pain (31) and alleviating
cartilage degeneration (32). Histidine decarboxylase (HDC) could
stimulate the proliferation of human articular chondrocytes, and its
expression by chondrocytes was demonstrated in OA cartilage (33, 34).
In addition, HDC was found as a prototypical mast cell marker in OA
synovial cells by single-cell RNA sequencing (35). Therefore, most genes
played important roles in the pathogenesis or therapy of OA. The
combined gene model outperformed individual genes in distinguishing
OA patients from healthy controls in each cohort, as the combination of
these genes could capture the molecular characteristics of OA from
different dimensions. Therefore, it is necessary to develop the combined
gene model as the predictive tool for OA.

However, the study had some limitations. Firstly, although
we collected 58 PBMC samples from 27 patients with OA and 31
healthy controls, the sample count should be further amplified to
validate the efficacy of our six-gene diagnostic model. Secondly, the
topic of this study was constructing a diagnostic model based on gene
expression signatures. The RNA or protein expression levels of these
six genes should be further validated in PBMC and synovial or
cartilage tissue samples. Thirdly, some signature genes, such as USP36
and GIMAP4, have not be previously studied in OA. Their molecular
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functions could be further explored in OA, for instance, overexpression
or knockdown of USP36/GIMAP4 in vitro could be used to assess
effects on cell proliferation, apoptosis, or the secretion of inflammatory
factors in synovial cells or chondrocytes.

In conclusion, this study integrates the internal and external RNA
data of PBMC samples to construct a diagnostic model for predicting
OA, which could effectively distinguish patients with OA from healthy
controls by six-gene expression signatures of PBMC or synovial tissue
samples. It provides important value for the early diagnosis of OA
based on blood-derived samples, and finds some potential biomarkers
and targets for OA.
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