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Introduction: Radiology has a significant environmental impact, but guidance 
on how to effectively implement sustainable practices in this field is limited. 
This study investigated the performance of large language models (LLMs) in 
providing sustainability advice for radiology.
Methods: Four state-of-the-art LLMs, namely ChatGPT-4.0 (CGT), Claude 
3.5 Sonnet (CS), Gemini Advanced (GA), and Meta Llama 3.1 405b (ML), were 
evaluated  based on their answers to 30 standardized questions covering 
sustainability topics such as energy consumption, waste management, 
digitalization, best practices, and carbon footprint. Three experienced 
readers rated their response for quality (OQS), understandability (US), and 
implementability (IS) using a 4-point scale. A mean quality score (MQS) was 
derived from these three attributes.
Results: The overall intraclass correlation was good (ICC = 0.702). Across the 30 
questions on sustainability in radiology, all four LLMs showed good to very good 
performances, with the highest ratings being achieved in understandability (CGT/
GA/ML 3.91 ± 0.29; CS 3.99 ± 0.11), underlining the excellent language skills of 
these models. CS emerged as the top performer across most topics, with an MQS 
of 3.95 ± 0.22, frequently achieving the highest scores. ML showed the second 
highest performance with an MQS of 3.84 ± 0.37, followed by CGT with an MQS of 
3.78 ± 0.42 and GA with an MQS of 3.73 ± 0.44. Accordingly, CGT and GA showed 
comparable results, while GA consistently received lower mean scores than the 
other LLMs. None of the LLMs provided answers that were rated insufficient.
Conclusion: Our findings highlight the potential of LLMs such as Claude 3.5 
Sonnet, ChatGPT-4.0, Meta Llama 3.1, and Gemini Advanced to advance 
sustainable practices in radiology, with thoughtful model selection further 
enhancing their positive impact due to model variations.
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Introduction

The healthcare sector’s environmental impact has garnered increasing attention, with 
radiology emerging as a particularly resource-intensive specialty. Radiological practices rely 
heavily on advanced imaging technologies, thereby significantly contributing to energy 
consumption, waste production, and carbon emissions (1, 2). Radiological devices such as CT and 
MRI scanners are significant energy consumers, with each unit contributing up to 26,226 kWh 
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and 134,037 kWh per unit annually, respectively (3). Energy use for 
cooling systems alone contributed 492,624 kWh across multiple scanners, 
representing 44.5% of the total energy consumption. Furthermore, the 
overall energy consumption of MRI and CT scanners is predominantly 
driven by the idle periods rather than the short, high-energy peaks 
during image acquisition (3–5). Between scans, continuous power is 
required to maintain system readiness, cooling mechanisms, and, in the 
case of MRI, superconducting magnet stability, resulting in significantly 
higher cumulative energy demand in standby mode compared to active 
scanning. Hence, in MRI, the unproductive idle status consumes up to 
four times more energy than during imaging acquisition, accounting for 
72–91% of total MRI energy consumption (4, 6, 7). Given that radiology 
is responsible for a considerable portion of a hospital’s overall energy 
usage, there is an urgent need to implement more sustainable practices 
within this field (8, 9). Beyond energy consumption, another key 
sustainability challenge in MRI is its reliance on helium, a non-renewable 
resource essential for cooling superconducting magnets. As the largest 
helium consumer, the healthcare sector is responsible for one-third of 
worldwide resource consumption (10). Sustainable aspects, resource 
shortages, and increasing costs have raised concerns about 
MRI-associated helium consumption, prompting the development of 
conservation strategies such as zero-boil-off systems and helium recycling 
technologies (11). One example of such innovation is Philips’ BlueSeal 
magnet technology, which has already saved more than 1,000,000 L of 
helium since 2018, with nearly 600 units installed globally (12). 
Implementing these measures is crucial for reducing helium waste in an 
environmentally responsible manner. Waste management and the use of 
contrast agents in radiology also present critical concerns due to their 
substantial environmental and health impacts, with waste and water 
consumption contributing up to 5% of the healthcare sector’s 
CO2-equivalent emissions (13). Studies indicate that a significant portion 
of medical waste in radiology is generated by single-use materials such as 
syringes, contrast agent vials, and protective covers, contributing to the 
overall healthcare waste burden (13, 14). Contrast agents, particularly 
iodinated contrast media (ICM) used in CT scans, pose environmental 
risks when excreted by patients and enter wastewater systems, where they 
can persist and potentially impact aquatic ecosystems (15, 16). Strategies 
to reduce contrast agent waste, such as dose optimization and closed-loop 
contrast delivery systems, are being explored to minimize environmental 
impact while maintaining diagnostic efficacy (7, 15, 17). Thus, 
sustainability in radiology encompasses various critical issues, including 
reducing energy consumption, waste management, and minimizing the 
carbon footprint associated with imaging procedures.

Additionally, digitalization and teleradiology have significantly 
transformed radiological practice, leading to increased efficiency, 
improved diagnostic accuracy, and enhanced accessibility to imaging 
services. Studies show that adopting digital radiology systems can reduce 
report turnaround time by up to 50%, enabling faster diagnoses (18, 19). 
In teleradiology, the remote interpretation of imaging studies has 
expanded rapidly, resulting in more efficient workload distribution, 
increased radiologist productivity, and the ability to provide 24/7 
coverage for urgent cases (20, 21). Digital solutions, particularly artificial 
intelligence (AI), are advancing diagnostic accuracy significantly. In a 
recent study, AI-assisted detection rates for lung nodules in radiographs 
reached 0.59%, compared to 0.25% in non-AI-supported diagnoses, 
showing increased lung nodule detection (22). These advances highlight 
the critical role of digital solutions in optimizing radiology workflows 
and expanding access to care through teleradiology. With the advent of 
large language models (LLMs), there is growing interest in leveraging 

these advanced AI tools to provide expert advice across various domains, 
including sustainability in radiology (23–26). A nationwide survey in 
Germany on sustainability in radiology revealed that 16% of employees 
and employers state that qualifications for implementing sustainable 
measures in radiology are one of the major obstacles (7). LLMs such as 
ChatGPT, Claude, Gemini, and Meta AI are designed to process and 
generate human-like text based on vast datasets, making them potentially 
valuable resources for radiologists seeking guidance on sustainable 
practices. However, the effectiveness of these models in delivering 
accurate, practical, and relevant advice specific to sustainability in 
radiology remains largely unexplored. Given the unique challenges and 
sustainability requirements in radiology, assessing if and how these LLMs 
can support healthcare professionals in implementing environmentally 
responsible practices is imperative. Therefore, the primary objective of 
this study is to evaluate the performance of various LLMs in offering 
sustainability advice in radiology. Specifically, this study will compare the 
capabilities of ChatGPT 4.0 (CGT), Claude 3.5 Sonnet (CS), Gemini 
Advanced (GA), and Meta AI based on Llama 3.1 405b (ML) in 
addressing key sustainability topics relevant to radiologists.

Materials and methods

LLMs and questions

This study presents a comparative analysis of four state-of-the-art 
large language models (LLMs) to evaluate their performance across key 
dimensions of sustainability in radiology. The selected LLMs included 
the following: ChatGPT-4.0 (OpenAI, United States), Gemini Advanced 
(Google, United States), Meta AI based on Llama 3.1 405B (Meta AI, 
United States), and Claude 3.5 Sonnet (Anthropic, United States). Each 
model was prompted with an identical set of 30 standardized questions 
designed to assess its capabilities in addressing sustainability-related 
challenges and concepts within the field of radiology.

The development of these 30 questions followed a structured, multi-
source approach. Questions were derived from a combination of current 
literature, professional guidelines, search engine (Google), and LLM 
queries. This ensured a broad and representative coverage of relevant 
topics. The initial draft of questions was rigorously designed and 
reviewed by four board-certified radiologists, each with more than 
5 years of experience and specialized knowledge in sustainable healthcare 
practices. Their expertise was instrumental in ensuring the questions’ 
clinical relevance, evidence-based accuracy, and thematic coherence.

Through a consensus-driven process, the reviewers finalized the 
question set, making appropriate modifications and categorizing the 
questions into five key thematic areas:

	 1.	 Radiological Devices.
	 2.	 Waste Management.
	 3.	 Digitalization.
	 4.	 Practices and Policies.
	 5.	 Environmental Impact.

Each category contained six refined, focused questions, resulting 
in a total of 30 comprehensive prompts that reflect critical issues in 
sustainable radiology (see Supplementary material). A final manual 
re-review validated the question set for completeness and alignment 
with current best practices. These standardized prompts were then 
submitted to each LLM to ensure a consistent basis for comparative 
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evaluation. We performed a first-input scheme for that part of the 
study as this is the most realistic real-world scenario.

Analysis from radiologists

The responses from the chatbots were assessed using three 
customized scoring systems: (1) Overall Quality Score (OQS), (2) 
Understandability Score (US), and (3) Implementability Score (IS) 
(27, 28). The average of these three scores was plotted to a Mean 
Quality Score (MQS). The OQS represents the accuracy, completeness, 
and relevance of the responses. We  evaluated clarity and ease of 
understanding, while the IS assessed the practicality and applicability 
of the recommendations. Each pattern was rated on a four-point scale: 
1 – insufficient, 2 – moderate, 3 – good, and 4 – very good (28). 
Responses rated as insufficient lacked key information, were poorly 
structured, were difficult to understand, or were impractical to 
implement. Moderate responses contained some relevant information 
but were marked by noticeable gaps, issues with clarity, or difficulties 
in implementation. Good responses were largely coherent, distinct, 
mostly complete, and practical, with only minor shortcomings. Very 
good responses were comprehensive, precise, well-organized, and easy 
to implement. For example, an IS score of 4 implies a recommendation 
that can be directly implemented in radiological workflow without 
further modification, such as “adopting energy-efficient imaging 
devices with standby power reduction modes.”

Three senior radiologists with expertise in greening radiology and 
sustainability management independently reviewed each of the 30 
responses from the four chatbots using this scoring system, resulting 
in 1170 ratings (Figure 1). The performance of each LLM version was 
evaluated for each individual question, with a consensus established 
to determine superiority.

Attributes of the scoring system

I. Overall Quality Score (OQS; evaluation of answer content by 
accuracy, completeness, and relevance) comprising the 
following points:

	 1.	 Insufficient: The answer is incomplete, incorrect, or does not 
address the question adequately.

	 2.	 Moderate: The answer addresses the question but is missing 
some key points or has some inaccuracies.

	 3.	 Good: The answer is accurate and covers most critical points 
with minor omissions.

	 4.	 Very Good: The answer is thorough, accurate, and covers all 
key points effectively.

II. Understandability Score (US; assessing LLM answer by clarity 
and readability) comprising the following points:

	 1.	 Insufficient: The answer is confusing, poorly organized, or 
difficult to read.

	 2.	 Moderate: The answer is somewhat clear but has issues with 
organization or language that affect understanding.

	 3.	 Good: The answer is clear and easy to understand, with 
minor issues.

	 4.	 Very Good: The answer is very clear, well-organized, and easy 
to read.

III. Implementability Score (IS; practical applicability of 
recommendations) comprising the following points:

	 1.	 Insufficient: The recommendations are impractical, unrealistic, 
or too vague to implement.

	 2.	 Moderate: Some recommendations are practical, but others are 
vague or unrealistic.

	 3.	 Good: The recommendations are practical and mostly feasible, 
with minor adjustments needed.

	 4.	 Very Good: The recommendations are highly practical, feasible, 
and easily implemented.

Statistics

Data were presented as mean values [with standard deviation 
(SD)], numerical counts, or percentages. Descriptive statistics were 
used where appropriate. Intraclass correlation was assessed by 
calculating the intraclass correlation coefficient (ICC). The ICC was 
categorized as moderate (0.41–0.6), good (0.61–0.8), or excellent 
(0.81–1.0). The Kruskal-Wallis test was used to identify differences 
between the groups. A post-hoc Mann–Whitney-U-Test was 
performed to determine the significant groups separately. Statistical 
significance was set at a p-value of < 0.05. The p-values indicate 
whether there are overall differences between the LLMs and 
differences within each subcategory. Analyses were conducted using 
IBM-SPSS version 28.0 (IBM, Armonk, NY, United  States), and 

FIGURE 1

Flowchart of study design.
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Python 3.12 (Python Software Foundation) was used to 
generate charts.

Figure 1 presents the study concept and flowchart.

Results

The three reviewers provided 1,170 ratings in total. The OQS, IS, 
and US were consistently high for all four LLMs in each subcategory. 
The overall intraclass correlation was good (ICC = 0.702). Specifically, 
CGT achieved the highest agreement (ICC = 0.765), followed by GA 
(ICC = 0.709), CS (ICC = 0.626), and ML (ICC = 0.599). This finding 
indicates a solid level of consistency in evaluating responses across 
different models, with CGT demonstrating the highest alignment with 
expert ratings. These results suggest varying reliability between 
models, with notable strengths in CGT and slightly lower 
consistency in ML.

Subjective superiority

Radiological devices
For questions about energy consumption and energy-efficient 

technologies, the US consistently scored the highest score (US 4) 
across all four models. OQS performance was also very good for CGT 
and GA (OQS 4), with only ML (OQS 3.61 ± 0.5) and CS (OQS 
3.89 ± 0.32) achieving moderately lower scores, reflecting strong 
quality and applicability of LLM advice on sustainability in radiology. 
CS (IS 4) and ML (IS 3.93 ± 0.26) scored the highest in IS, while CGT 
(IS 3.47 ± 0.52) and GA (IS 3.44 ± 0.53) offered solid, practical insights 
but achieved a slightly lower score. The MQS showed no significant 
differences between the LLMs in this subgroup.

Waste management
CS led in terms of OQS (4) and US (4), scoring consistently the 

highest. ML and GA scored lower, however, with overall good scores 
in all three categories (range: 3.44 ± 0.51 to 3.83 ± 0.38), showing 
particular strength in practical recommendations. CGT scored the 
lowest, particularly in IS (3.28 ± 0.46) and overall quality (3.22 ± 0.43), 
indicating that their responses were less actionable. The MQS reached 
by CGT was significantly lower compared to the other three LLMs 
(p < 0.001 to 0.008).

Digitalization
CS outperformed the other LLMs in this domain as well, achieving 

the highest scores across OQS (4), US (4), and MQS (3.91 ± 0.29). ML 
and GA performed very well in the US (GA 4; ML 3.89 ± 0.32), 
achieved marginally lower scores in IS (ML 3.78 ± 0.43; GA 
3.94 ± 0.24) and OQS (ML 3.78 ± 0.43; GA 3.61 ± 0.5), and almost 
equal MQS (ML 3.82 ± 0.38; GA 3.85 ± 0.36). CGT showed the lowest 
scores in OQS (3.61 ± 0.5) and MQS (3.77 ± 0.42), struggling to 
articulate the nuances of digital transformation’s impact on 
sustainability. Despite these minor variations, the differences in the 
MQS across all LLMs were not statistically significant.

Practices and policies
CS was the top performer in this category, achieving the highest 

scores in OQS and IS (4) by providing structured and detailed 

frameworks. ML and CGT achieved equally slightly lower ratings in 
MQS (CGT 3.88 ± 0.32; ML 3.87 ± 0.34). GA performed very well in 
US and IS (3.83 ± 0.38) but showed lower results in OQS (3.06 ± 0.24; 
p < 0.001), resulting in a lower MQS (3.57 ± 0.5; p < 0.001).

Environmental impact
CGT achieved the highest scores across all three categories (4), 

resulting in the top MQS (4). CS received top scores in US and IS (4) 
with slightly lower OQS (3.94 ± 0.24) and MQS (3.98 ± 0.14). ML 
received consistently very good ratings in the US (3.94 ± 0.24) and IS 
(4), with slightly lower performance in OQS (3.83 ± 0.37), showing a 
limited grasp of this complex topic. GA offered solid practical 
measures but did not score as highly in comprehensiveness, with lower 
scores in OQS and consecutively in MQS (OQS 3.39 ± 0.5; US 
3.89 ± 0.32; IS 4; MQS 3.75 ± 0.43). Compared to GA, the other three 
LLMs achieved significantly higher MQS (p < 0.001 to 0.018).

Summary of results

Across all 30 questions on sustainability advice for radiologists, all 
four LLMs showed very good to good performance, with the highest 
ratings in understandability (CGT/ML/GA 3.91 ± 029; CS 
3.99 ± 0.11), underlining the excellent language skills of the models. 
OQS (3.52–3.97) and IS (3.68–3.89) were also rated as good to very 
good among all LLMs, suggesting that practicability and usability 
meet expectations; they tend to show slightly lower scores in these 
categories compared to the US.

CS emerged as the top performer across most topics with MQS of 
3.95 ± 0.22, frequently achieving the highest scores (p < 0.001), 
followed by ML (MQS 3.84 ± 0.37) and CGT (MQS 3.78 ± 0.42). GA 
received the lowest MQS (3.73 ± 0.44; p < 0.001 to 0.003).

The superior performance of CS can be  attributed to its 
consistently clearer structure, radiology-specific contextualization, 
and more actionable recommendations, which led to higher US, OQS, 
and IS ratings and consequently higher MQS. Overall, the strong 
results across all models reflect their ability to synthesize established 
sustainability principles into practical advice for 
radiological workflows.

Table 1 and Figure 2 present a summary of the results.

Discussion

This study investigated the performance of LLMs in providing 
sustainability advice in radiology. Radiology accounts for a significant 
portion of a hospital’s overall energy consumption, highlighting an 
urgent need for more sustainable practices in this field (8, 9). In 
addition to the high energy demands and resource-intensive systems 
(e.g., helium-based technologies) (10), challenges such as waste 
management and material usage (e.g., the use of contrast agents) (13) 
underscore the necessity for improvements in sustainable practices 
within radiology. The importance of sustainability in radiology cannot 
be overstated, as the medical imaging field significantly contributes to 
environmental impact through those aspects. Therefore, integrating 
sustainable practices is essential to minimize radiology’s ecological 
footprint while maintaining high standards of patient care (7, 29, 30). 
A nationwide survey in Germany highlighted that 74.3% of radiology 
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TABLE 1  Comparison of ChatGPT-4.0 (ChatGPT/CGT), Gemini Advanced (Gemini/GA), Meta AI Llama 3.1 (Meta/ML), and Claude 3.5 Sonnet (Claude/CS) 
regarding overall quality score (OQS), understandability score (US) and implementability score (IS).

Topic Scoring ChatGPT Gemini Meta Claude Significant p 
values (range)

1

OQS 4 4 3.61 ± 0.5 3.89 ± 0.32 0.004

US 4 4 4 4 –

IS 3.47 ± 0.52 3.44 ± 0.53 3.93 ± 0.26 4 <0.001 to 0.017

MQS 3.82 ± 0.37 3.81 ± 0.32 3.84 ± 0.37 3.96 ± 0.2 –

2

OQS 3.22 ± 0.43 3.56 ± 0.51 3.56 ± 0.51 4 <0.001 to 0.045

US 3.61 ± 0.5 3.83 ± 0.38 3.83 ± 0.38 4 0.004

IS 3.28 ± 0.46 3.44 ± 0.51 3.83 ± 0.38 3.72 ± 0.46 0.001 to 0.018

MQS 3.37 ± 0.49 3.61 ± 0.49 3.74 ± 0.44 3.91 ± 0.29 <0.001 to 0.008

3

OQS 3.61 ± 0.5 3.61 ± 0.5 3.78 ± 0.43 4 0.004 to 0.039

US 3.94 ± 0.24 4 3.89 ± 0.32 4 –

IS 3.78 ± 0.43 3.94 ± 0.24 3.78 ± 0.43 3.72 ± 0.46 –

MQS 3.77 ± 0.42 3.85 ± 0.36 3.82 ± 0.39 3.91 ± 0.29 –

4

OQS 3.83 ± 0.38 3.06 ± 0.24 3.83 ± 0.38 4 <0.001

US 4 3.83 ± 0.38 3.89 ± 0.32 3.94 ± 0.24 –

IS 3.83 ± 0.38 3.83 ± 0.38 3.89 ± 0.32 4 –

MQS 3.88 ± 0.32 3.57 ± 0.5 3.87 ± 0.34 3.98 ± 0.14 <0.001

5

OQS 4 3.39 ± 0.5 3.83 ± 0.37 3.94 ± 0.24 <0.001 to 0.008

US 4 3.89 ± 0.32 3.94 ± 0.24 4 –

IS 4 4 4 4 –

MQS 4 3.75 ± 0.43 3.93 ± 0.26 3.98 ± 0.14 <0.001 to 0.018

All

OQS 3.73 ± 0.45 3.52 ± 0.5 3.72 ± 0.45 3.97 ± 0.18 <0.001 to 0.006

US 3.91 ± 0.29 3.91 ± 0.29 3.91 ± 0.29 3.99 ± 0.11 –

IS 3.68 ± 0.47 3.77 ± 0.43 3.89 ± 0.32 3.89 ± 0.32 <0.001 to 0.041

MQS 3.78 ± 0.42 3.73 ± 0.44 3.84 ± 0.37 3.95 ± 0.22 <0.001 to 0.003

In addition, the mean quality score (MQS) is presented. Each topic (1–5) is illustrated separately. Mean values with standard deviations (SD) are shown. The presented range of p-values 
indicates whether significant differences were observed between the LLMs. A “–” in the p-value fields denotes that no significant differences were found between the LLMs.

FIGURE 2

Distribution of ratings across the four evaluated LLMs. The vertical axis indicates the rating value, while the horizontal placement separates the models. 
Bubble chart presents the total number of ratings for answers provided by the four LLMs. The bubble sizes correlate with the rated scores for each 
chatbot. Crosses demonstrate the mean rated score for each LLM. This visualization highlights the overall performance level and variability of 
responses across models.
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professionals consider sustainability important or very important in 
their work environment (7). However, only 38% of respondents 
reported that specific sustainability measures had been implemented 
at their institutions (7). This gap also underscores the need for 
actionable strategies and practical solutions to enhance sustainability 
in radiology. However, 16% of participants reported needing 
additional training and support due to insufficient knowledge to 
implement effectively sustainable practices (7).

In this study, LLMs were evaluated based on their overall quality, 
implementability, and understanding of sustainability measures in 
radiology. Overall, OQS, IS, and US scores were high for all four LLMs 
across all sustainability subcategories. The best ratings were 
consistently observed in understandability across all models, 
demonstrating uniformly strong performance. Beyond this, CS 
emerged as the best-performing model, dominating most categories 
with consistently high scores, followed by the other three LLMs. GA 
received slightly lower overall quality and IS ratings but performed 
well across all categories. As noted in previous studies (23, 25, 31), 
careful consideration of technical capabilities and LLMs’ performance 
is crucial for integrating AI tools in radiology later.

The performance of the tested LLMs in addressing sustainability 
aspects of radiology presents significant opportunities and essential 
challenges for the field. Our analysis demonstrates that current LLM 
technology has achieved a level of sophistication that enables 
meaningful contributions to sustainable radiological practices, similar 
to prior applications in other radiological subsections (32). The high 
quality scores across all evaluated models, particularly in 
understandability, align with the recent findings by Khanna et al. and 
suggest a promising foundation for clinical implementation (33). As 
previously emphasized, the environmental impact of radiological 
procedures necessitates innovative solutions, and LLMs appear well-
positioned to contribute to this endeavor (34). Modest lower 
implementability scores indicate differences between a controlled 
setting and reality, as AI and LLMs have been shown to underperform 
in real-life environments in several different settings (35, 36).

However, our findings also reveal substantial variability in the 
intraclass correlation coefficients (ICCs) across the four LLMs 
evaluated, indicating that the quality and consistency of sustainability 
advice are highly model-dependent. While the overall results suggest 
that LLMs hold promise as tools for supporting sustainability 
initiatives, their robustness is not uniform. This variability highlights 
the importance of model selection when deploying LLMs for 
sustainability-related applications.

In our study design, we  intentionally adopted a first-input 
scheme, as this approach most closely reflects real-world user 
behavior, where a single prompt is submitted and the initial response 
is used. While LLMs are known to exhibit some stochasticity in their 
outputs, our concept focused on evaluating the quality of first 
responses to align with practical application scenarios. Although 
we acknowledge that a broader analysis of output variability would 
offer additional insights, such an investigation was beyond the 
intended scope of this work. However, preliminary findings from our 
ongoing larger-scale studies suggest that newer LLMs show relatively 
low variability in their outputs. However, as Williams et  al. 
highlighted, the complexity of clinical decision-making often extends 
beyond the capabilities of even advanced LLMs (37), leading to the 
need for further developments of LLMs (e.g., focused on different 
disciplines such as radiology).

Also, LLMs’ performance is inherently influenced by the 
limitations of their training data, which may not fully capture the 
diversity and complexity of radiological practices at the moment. 
While sustainability challenges in healthcare are well recognized, the 
application of LLMs to support sustainability efforts—particularly in 
medicine and radiology—is still a novel and evolving area. Looking 
ahead, longitudinal evaluations will be  essential to monitor the 
consistency and reliability of LLM performance over time, as clinical 
practices and sustainability standards continue to develop. Future 
studies should therefore adopt a multidirectional approach, 
simultaneously addressing aspects such as technological integration, 
clinical validation, environmental impact, and cybersecurity. 
Establishing standardized frameworks for evaluating LLM 
contributions to medical sustainability—incorporating metrics like 
resource optimization and ecological footprint—would further 
strengthen the field. Moreover, integrating LLMs into existing 
radiological workflows, supported by robust validation studies, will 
be crucial to ensure efficiency gains are realized without compromising 
patient safety or data security.

Ultimately, these models show advanced possibilities driving 
forward sustainable directions in radiology, but evidence-based 
practices must guide implementation. Model selection should 
consider response quality, clarity, and implementability, as well as 
practical factors like accessibility, updates, transparency, and cost. 
Future research should explore the development of LLMs specifically 
trained on radiological sustainability data and prospectively evaluate 
their effectiveness in clinical workflows after implementation.

Overall, LLMs demonstrate significant potential as decision-
support tools for implementing multidimensional sustainable 
practices in radiology, complementing clinical expertise to enhance 
resource efficiency while fostering new sustainable horizons in 
scientific research and clinical practice in radiology. However, such 
integration requires addressing regulatory frameworks, 
interoperability with existing hospital IT infrastructures, and 
validation in real-world clinical workflows (23, 25). While our findings 
highlight the potential of LLMs to provide high-quality, 
understandable, and implementable sustainability advice, translating 
these outputs into clinical decision-support tools would necessitate 
dedicated research efforts to ensure reliability, safety, and clinical 
acceptance. Additionally, the application of AI and LLMs in 
sustainability decision-making and clinical education raises important 
ethical considerations. These include questions of transparency, 
accountability, and potential biases in model outputs, as well as the 
responsibility of clinicians when relying on AI-generated advice (25). 
While addressing these issues in depth was beyond the scope of this 
study, future research and guidelines should explicitly incorporate 
such moral dimensions to ensure responsible and trustworthy 
integration of LLMs into radiology practice.

Our study has several limitations. First, we conducted a first-
input study design. While this approach reflects a realistic real-
world scenario, the use of multiple or varying inputs may influence 
the quality of LLM outputs. This potential variability warrants 
further investigation in future studies. Second, although we aimed 
to address the most relevant aspects of sustainability in radiology, 
some minor areas with comparatively lower impact may have been 
overlooked. Moreover, as the question set was derived from 
literature and expert consensus, selection bias in topic selection 
cannot be fully excluded. Another limitation of this study is that no 
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direct comparison with human expert decision strategies in greening 
radiology was performed, which could provide valuable insights 
into complementarities and differences between human and 
LLM-based approaches. An additional limitation of this study is the 
omission of energy costs associated with digitalization, which is a 
contributing factor in the utilization of LLM for decision making in 
medical imaging. Further, the evaluation of effectiveness of these 
sustainable measures was beyond its scope and should be addressed 
in prospective implementation studies with dedicated study design. 
Future research should address these different dimensions to 
provide a more comprehensive evaluation of sustainability 
in radiology.

Conclusion

Our findings demonstrate the potential of LLMs in advancing 
sustainability initiatives in radiology. The high performance of Claude 
3.5 Sonnet, ChatGPT-4.0, Meta Llama 3.1, and Gemini Advanced 
across multiple dimensions suggests a promising future for 
LLM-assisted sustainable practices in radiology. However, careful 
consideration must be given to variabilities across the models and 
their responses, showing the importance of model selection when 
deploying LLMs for sustainability-related questions. Future research 
should explore the development of LLMs specifically trained on 
radiological sustainability data to address the field’s unique needs.
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