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Utilization of large language
models in decision-making for
sustainability in radiology
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Introduction: Radiology has a significant environmental impact, but guidance
on how to effectively implement sustainable practices in this field is limited.
This study investigated the performance of large language models (LLMs) in
providing sustainability advice for radiology.

Methods: Four state-of-the-art LLMs, namely ChatGPT-4.0 (CGT), Claude
3.5 Sonnet (CS), Gemini Advanced (GA), and Meta Llama 3.1 405b (ML), were
evaluated based on their answers to 30 standardized questions covering
sustainability topics such as energy consumption, waste management,
digitalization, best practices, and carbon footprint. Three experienced
readers rated their response for quality (OQS), understandability (US), and
implementability (IS) using a 4-point scale. A mean quality score (MQS) was
derived from these three attributes.

Results: The overall intraclass correlation was good (ICC = 0.702). Across the 30
questions on sustainability in radiology, all four LLMs showed good to very good
performances, with the highest ratings being achieved in understandability (CGT/
GA/ML 391 + 0.29; CS 3.99 + 0.11), underlining the excellent language skills of
these models. CS emerged as the top performer across most topics, with an MQS
of 3.95 + 0.22, frequently achieving the highest scores. ML showed the second
highest performance with an MQS of 3.84 + 0.37, followed by CGT with an MQS of
3.78 + 042 and GA with an MQS of 3.73 + 0.44. Accordingly, CGT and GA showed
comparable results, while GA consistently received lower mean scores than the
other LLMs. None of the LLMs provided answers that were rated insufficient.
Conclusion: Our findings highlight the potential of LLMs such as Claude 3.5
Sonnet, ChatGPT-4.0, Meta Llama 3.1, and Gemini Advanced to advance
sustainable practices in radiology, with thoughtful model selection further
enhancing their positive impact due to model variations.
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Introduction

The healthcare sector’s environmental impact has garnered increasing attention, with
radiology emerging as a particularly resource-intensive specialty. Radiological practices rely
heavily on advanced imaging technologies, thereby significantly contributing to energy
consumption, waste production, and carbon emissions (1, 2). Radiological devices such as CT and
MRI scanners are significant energy consumers, with each unit contributing up to 26,226 kWh
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and 134,037 kWh per unit annually, respectively (3). Energy use for
cooling systems alone contributed 492,624 kWh across multiple scanners,
representing 44.5% of the total energy consumption. Furthermore, the
overall energy consumption of MRI and CT scanners is predominantly
driven by the idle periods rather than the short, high-energy peaks
during image acquisition (3-5). Between scans, continuous power is
required to maintain system readiness, cooling mechanisms, and, in the
case of MR, superconducting magnet stability, resulting in significantly
higher cumulative energy demand in standby mode compared to active
scanning. Hence, in MRI, the unproductive idle status consumes up to
four times more energy than during imaging acquisition, accounting for
72-91% of total MRI energy consumption (4, 6, 7). Given that radiology
is responsible for a considerable portion of a hospital’s overall energy
usage, there is an urgent need to implement more sustainable practices
within this field (8, 9). Beyond energy consumption, another key
sustainability challenge in MRI is its reliance on helium, a non-renewable
resource essential for cooling superconducting magnets. As the largest
helium consumer, the healthcare sector is responsible for one-third of
worldwide resource consumption (10). Sustainable aspects, resource
shortages, and increasing costs have raised concerns about
MRI-associated helium consumption, prompting the development of
conservation strategies such as zero-boil-off systems and helium recycling
technologies (11). One example of such innovation is Philips’ BlueSeal
magnet technology, which has already saved more than 1,000,000 L of
helium since 2018, with nearly 600 units installed globally (12).
Implementing these measures is crucial for reducing helium waste in an
environmentally responsible manner. Waste management and the use of
contrast agents in radiology also present critical concerns due to their
substantial environmental and health impacts, with waste and water
consumption contributing up to 5% of the healthcare sector’s
CO2-equivalent emissions (13). Studies indicate that a significant portion
of medical waste in radiology is generated by single-use materials such as
syringes, contrast agent vials, and protective covers, contributing to the
overall healthcare waste burden (13, 14). Contrast agents, particularly
iodinated contrast media (ICM) used in CT scans, pose environmental
risks when excreted by patients and enter wastewater systems, where they
can persist and potentially impact aquatic ecosystems (15, 16). Strategies
to reduce contrast agent waste, such as dose optimization and closed-loop
contrast delivery systems, are being explored to minimize environmental
impact while maintaining diagnostic efficacy (7, 15, 17). Thus,
sustainability in radiology encompasses various critical issues, including
reducing energy consumption, waste management, and minimizing the
carbon footprint associated with imaging procedures.

Additionally, digitalization and teleradiology have significantly
transformed radiological practice, leading to increased efficiency,
improved diagnostic accuracy, and enhanced accessibility to imaging
services. Studies show that adopting digital radiology systems can reduce
report turnaround time by up to 50%, enabling faster diagnoses (18, 19).
In teleradiology, the remote interpretation of imaging studies has
expanded rapidly, resulting in more efficient workload distribution,
increased radiologist productivity, and the ability to provide 24/7
coverage for urgent cases (20, 21). Digital solutions, particularly artificial
intelligence (AI), are advancing diagnostic accuracy significantly. In a
recent study, Al-assisted detection rates for lung nodules in radiographs
reached 0.59%, compared to 0.25% in non-Al-supported diagnoses,
showing increased lung nodule detection (22). These advances highlight
the critical role of digital solutions in optimizing radiology workflows
and expanding access to care through teleradiology. With the advent of
large language models (LLMs), there is growing interest in leveraging

Frontiers in Medicine

10.3389/fmed.2025.1632925

these advanced Al tools to provide expert advice across various domains,
including sustainability in radiology (23-26). A nationwide survey in
Germany on sustainability in radiology revealed that 16% of employees
and employers state that qualifications for implementing sustainable
measures in radiology are one of the major obstacles (7). LLMs such as
ChatGPT, Claude, Gemini, and Meta Al are designed to process and
generate human-like text based on vast datasets, making them potentially
valuable resources for radiologists seeking guidance on sustainable
practices. However, the effectiveness of these models in delivering
accurate, practical, and relevant advice specific to sustainability in
radiology remains largely unexplored. Given the unique challenges and
sustainability requirements in radiology; assessing if and how these LLMs
can support healthcare professionals in implementing environmentally
responsible practices is imperative. Therefore, the primary objective of
this study is to evaluate the performance of various LLMs in offering
sustainability advice in radiology. Specifically, this study will compare the
capabilities of ChatGPT 4.0 (CGT), Claude 3.5 Sonnet (CS), Gemini
Advanced (GA), and Meta Al based on Llama 3.1 405b (ML) in
addressing key sustainability topics relevant to radiologists.

Materials and methods
LLMs and questions

This study presents a comparative analysis of four state-of-the-art
large language models (LLM:s) to evaluate their performance across key
dimensions of sustainability in radiology. The selected LLMs included
the following: ChatGPT-4.0 (OpenAl, United States), Gemini Advanced
(Google, United States), Meta Al based on Llama 3.1 405B (Meta Al,
United States), and Claude 3.5 Sonnet (Anthropic, United States). Each
model was prompted with an identical set of 30 standardized questions
designed to assess its capabilities in addressing sustainability-related
challenges and concepts within the field of radiology.

The development of these 30 questions followed a structured, multi-
source approach. Questions were derived from a combination of current
literature, professional guidelines, search engine (Google), and LLM
queries. This ensured a broad and representative coverage of relevant
topics. The initial draft of questions was rigorously designed and
reviewed by four board-certified radiologists, each with more than
5 years of experience and specialized knowledge in sustainable healthcare
practices. Their expertise was instrumental in ensuring the questions’
clinical relevance, evidence-based accuracy, and thematic coherence.

Through a consensus-driven process, the reviewers finalized the
question set, making appropriate modifications and categorizing the
questions into five key thematic areas:

. Radiological Devices.
. Waste Management.
. Digitalization.

. Practices and Policies.

G W N =

. Environmental Impact.

Each category contained six refined, focused questions, resulting
in a total of 30 comprehensive prompts that reflect critical issues in
sustainable radiology (see Supplementary material). A final manual
re-review validated the question set for completeness and alignment
with current best practices. These standardized prompts were then
submitted to each LLM to ensure a consistent basis for comparative
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evaluation. We performed a first-input scheme for that part of the
study as this is the most realistic real-world scenario.

Analysis from radiologists

The responses from the chatbots were assessed using three
customized scoring systems: (1) Overall Quality Score (OQS), (2)
Understandability Score (US), and (3) Implementability Score (IS)
(27, 28). The average of these three scores was plotted to a Mean
Quality Score (MQS). The OQS represents the accuracy, completeness,
and relevance of the responses. We evaluated clarity and ease of
understanding, while the IS assessed the practicality and applicability
of the recommendations. Each pattern was rated on a four-point scale:
1 - insufficient, 2 - moderate, 3 — good, and 4 - very good (28).
Responses rated as insufficient lacked key information, were poorly
structured, were difficult to understand, or were impractical to
implement. Moderate responses contained some relevant information
but were marked by noticeable gaps, issues with clarity, or difficulties
in implementation. Good responses were largely coherent, distinct,
mostly complete, and practical, with only minor shortcomings. Very
good responses were comprehensive, precise, well-organized, and easy
to implement. For example, an IS score of 4 implies a recommendation
that can be directly implemented in radiological workflow without
further modification, such as “adopting energy-efficient imaging
devices with standby power reduction modes.”

Three senior radiologists with expertise in greening radiology and
sustainability management independently reviewed each of the 30
responses from the four chatbots using this scoring system, resulting
in 1170 ratings (Figure 1). The performance of each LLM version was
evaluated for each individual question, with a consensus established
to determine superiority.

Attributes of the scoring system

L. Overall Quality Score (OQS; evaluation of answer content by

accuracy, completeness, and relevance) comprising the

following points:

1. Insufficient: The answer is incomplete, incorrect, or does not
address the question adequately.

. Moderate: The answer addresses the question but is missing
some key points or has some inaccuracies.

10.3389/fmed.2025.1632925

. Good: The answer is accurate and covers most critical points
with minor omissions.

. Very Good: The answer is thorough, accurate, and covers all
key points effectively.

I
and readability) comprising the following points:

—

. Understandability Score (US; assessing LLM answer by clarity

1. Insufficient: The answer is confusing, poorly organized, or
difficult to read.

. Moderate: The answer is somewhat clear but has issues with
organization or language that affect understanding.

. Good: The answer is clear and easy to understand, with
minor issues.

. Very Good: The answer is very clear, well-organized, and easy
to read.

III. Implementability Score (IS; practical applicability of
recommendations) comprising the following points:

1. Insufficient: The recommendations are impractical, unrealistic,
or too vague to implement.

. Moderate: Some recommendations are practical, but others are
vague or unrealistic.

. Good: The recommendations are practical and mostly feasible,
with minor adjustments needed.

. Very Good: The recommendations are highly practical, feasible,
and easily implemented.

Statistics

Data were presented as mean values [with standard deviation
(SD)], numerical counts, or percentages. Descriptive statistics were
used where appropriate. Intraclass correlation was assessed by
calculating the intraclass correlation coefficient (ICC). The ICC was
categorized as moderate (0.41-0.6), good (0.61-0.8), or excellent
(0.81-1.0). The Kruskal-Wallis test was used to identify differences
between the groups. A post-hoc Mann-Whitney-U-Test was
performed to determine the significant groups separately. Statistical
significance was set at a p-value of < 0.05. The p-values indicate
whether there are overall differences between the LLMs and
differences within each subcategory. Analyses were conducted using
IBM-SPSS version 28.0 (IBM, Armonk, NY, United States), and

Topics:
1. Energy Consumption
2. Waste management
3. Digitalization
4. Practices & Policies
5. Environmental Impact

Q

->n=30 questions

FIGURE 1
Flowchart of study design.

.G

Scoring:
Mean Quality Scoring System
1170 Ratings

*:>
N
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Python 3.12
generate charts.

(Python Software Foundation) was used to

Figure 1 presents the study concept and flowchart.

Results

The three reviewers provided 1,170 ratings in total. The OQS, IS,
and US were consistently high for all four LLMs in each subcategory.
The overall intraclass correlation was good (ICC = 0.702). Specifically,
CGT achieved the highest agreement (ICC = 0.765), followed by GA
(ICC =0.709), CS (ICC = 0.626), and ML (ICC = 0.599). This finding
indicates a solid level of consistency in evaluating responses across
different models, with CGT demonstrating the highest alignment with
expert ratings. These results suggest varying reliability between
models, with notable strengths in CGT and slightly lower
consistency in ML.

Subjective superiority

Radiological devices

For questions about energy consumption and energy-efficient
technologies, the US consistently scored the highest score (US 4)
across all four models. OQS performance was also very good for CGT
and GA (OQS 4), with only ML (OQS 3.61 +0.5) and CS (OQS
3.89 + 0.32) achieving moderately lower scores, reflecting strong
quality and applicability of LLM advice on sustainability in radiology.
CS (IS 4) and ML (IS 3.93 + 0.26) scored the highest in IS, while CGT
(IS 3.47 £ 0.52) and GA (IS 3.44 + 0.53) offered solid, practical insights
but achieved a slightly lower score. The MQS showed no significant
differences between the LLMs in this subgroup.

Waste management

CS led in terms of OQS (4) and US (4), scoring consistently the
highest. ML and GA scored lower, however, with overall good scores
in all three categories (range: 3.44 + 0.51 to 3.83 + 0.38), showing
particular strength in practical recommendations. CGT scored the
lowest, particularly in IS (3.28 + 0.46) and overall quality (3.22 + 0.43),
indicating that their responses were less actionable. The MQS reached
by CGT was significantly lower compared to the other three LLMs
(p < 0.001 to 0.008).

Digitalization

CS outperformed the other LLMs in this domain as well, achieving
the highest scores across OQS (4), US (4), and MQS (3.91 £ 0.29). ML
and GA performed very well in the US (GA 4; ML 3.89 +0.32),
achieved marginally lower scores in IS (ML 3.78 +0.43; GA
3.94 +0.24) and OQS (ML 3.78 + 0.43; GA 3.61 +0.5), and almost
equal MQS (ML 3.82 + 0.38; GA 3.85 + 0.36). CGT showed the lowest
scores in OQS (3.61 £ 0.5) and MQS (3.77 + 0.42), struggling to
articulate the nuances of digital transformation’s impact on
sustainability. Despite these minor variations, the differences in the
MQS across all LLMs were not statistically significant.

Practices and policies

CS was the top performer in this category, achieving the highest
scores in OQS and IS (4) by providing structured and detailed
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frameworks. ML and CGT achieved equally slightly lower ratings in
MQS (CGT 3.88 + 0.32; ML 3.87 + 0.34). GA performed very well in
US and IS (3.83 + 0.38) but showed lower results in OQS (3.06 + 0.24;
P <0.001), resulting in a lower MQS (3.57 + 0.5; p < 0.001).

Environmental impact

CGT achieved the highest scores across all three categories (4),
resulting in the top MQS (4). CS received top scores in US and IS (4)
with slightly lower OQS (3.94 + 0.24) and MQS (3.98 + 0.14). ML
received consistently very good ratings in the US (3.94 + 0.24) and IS
(4), with slightly lower performance in OQS (3.83 + 0.37), showing a
limited grasp of this complex topic. GA offered solid practical
measures but did not score as highly in comprehensiveness, with lower
scores in OQS and consecutively in MQS (OQS 3.39 +0.5; US
3.89 +0.32; IS 4; MQS 3.75 + 0.43). Compared to GA, the other three
LLMs achieved significantly higher MQS (p < 0.001 to 0.018).

Summary of results

Across all 30 questions on sustainability advice for radiologists, all
four LLMs showed very good to good performance, with the highest
(CGT/ML/GA 3.91+029; CS
3.99 + 0.11), underlining the excellent language skills of the models.
OQS (3.52-3.97) and IS (3.68-3.89) were also rated as good to very
good among all LLMs, suggesting that practicability and usability

ratings in understandability

meet expectations; they tend to show slightly lower scores in these
categories compared to the US.

CS emerged as the top performer across most topics with MQS of
3.95+0.22, frequently achieving the highest scores (p < 0.001),
followed by ML (MQS 3.84 £ 0.37) and CGT (MQS 3.78 + 0.42). GA
received the lowest MQS (3.73 £ 0.44; p < 0.001 to 0.003).

The superior performance of CS can be attributed to its
consistently clearer structure, radiology-specific contextualization,
and more actionable recommendations, which led to higher US, OQS,
and IS ratings and consequently higher MQS. Overall, the strong
results across all models reflect their ability to synthesize established
sustainability ~ principles  into  practical  advice  for
radiological workflows.

Table 1 and Figure 2 present a summary of the results.

Discussion

This study investigated the performance of LLMs in providing
sustainability advice in radiology. Radiology accounts for a significant
portion of a hospital’s overall energy consumption, highlighting an
urgent need for more sustainable practices in this field (8, 9). In
addition to the high energy demands and resource-intensive systems
(e.g., helium-based technologies) (10), challenges such as waste
management and material usage (e.g., the use of contrast agents) (13)
underscore the necessity for improvements in sustainable practices
within radiology. The importance of sustainability in radiology cannot
be overstated, as the medical imaging field significantly contributes to
environmental impact through those aspects. Therefore, integrating
sustainable practices is essential to minimize radiology’s ecological
footprint while maintaining high standards of patient care (7, 29, 30).
A nationwide survey in Germany highlighted that 74.3% of radiology
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TABLE 1 Comparison of ChatGPT-4.0 (ChatGPT/CGT), Gemini Advanced (Gemini/GA), Meta Al Llama 3.1 (Meta/ML), and Claude 3.5 Sonnet (Claude/CS)
regarding overall quality score (OQS), understandability score (US) and implementability score (IS).

Scoring ChatGPT Gemini Significant p
values (range)

0Qs 4 4 3.61+0.5 3.89 +0.32 0.004
us 4 4 4 4 -

' 1s 347 £0.52 3.44%0.53 3.93%0.26 4 <0.001 to 0.017
MQ$ 3.82 037 3.81+0.32 3.84+037 3.96+0.2 -
0Qs 3224043 3.56 +0.51 3.56 +0.51 4 <0.001 to 0.045
Us 36105 3.83+0.38 3.83+0.38 4 0.004

: IS 3.28+0.46 3.44 +0.51 3.83+0.38 3.72+0.46 0.001 to 0.018
MQS$ 337049 3.61%0.49 3.74 %044 3.91+0.29 <0.001 to 0.008
0Qs 36105 36105 3.78 +0.43 4 0.004 to 0.039
Us 3.94 +0.24 4 3.89 +0.32 4 -

’ 1s 3.78+0.43 3.94%0.24 3.78+0.43 3.72%0.46 -
MQ$ 3.77 +0.42 3.85+0.36 3.82+0.39 3.91+0.29 -
0Qs 3.830.38 3.06 +0.24 3.83+0.38 4 <0.001
Us 4 3.83+0.38 3.89%0.32 3.94%0.24 -

! 1s 3.83+0.38 3.83+0.38 3.89+0.32 4 -
MQS$ 3.88+0.32 357+0.5 3.87 +0.34 3.98 +0.14 <0.001
0Qs 4 339%0.5 3.83%0.37 3.94%0.24 <0.001 to 0.008
Us 4 3.89+0.32 3.94+0.24 4 -

’ 1S 4 4 4 4 -
MQS$ 4 3.75+0.43 3.93+0.26 3.98 % 0.14 <0.001 to 0.018
0Qs 3734045 352+0.5 3.72+0.45 3.97+0.18 <0.001 to 0.006
Us 3.91+0.29 3.91£0.29 3.91+0.29 3.99 % 0.11 -

Al Is 3.68 + 0.47 3.77 043 3.89+0.32 3.89 +0.32 <0.001 to 0.041
MQS 3.78 +0.42 3.73+0.44 3.84 +0.37 3.95+0.22 <0.001 to 0.003

In addition, the mean quality score (MQS) is presented. Each topic (1-5) is illustrated separately. Mean values with standard deviations (SD) are shown. The presented range of p-values
indicates whether significant differences were observed between the LLMs. A “~” in the p-value fields denotes that no significant differences were found between the LLMs.

« »

ChatGPT Gemini MetaAl Claude

FIGURE 2

Distribution of ratings across the four evaluated LLMs. The vertical axis indicates the rating value, while the horizontal placement separates the models.
Bubble chart presents the total number of ratings for answers provided by the four LLMs. The bubble sizes correlate with the rated scores for each
chatbot. Crosses demonstrate the mean rated score for each LLM. This visualization highlights the overall performance level and variability of
responses across models.
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professionals consider sustainability important or very important in
their work environment (7). However, only 38% of respondents
reported that specific sustainability measures had been implemented
at their institutions (7). This gap also underscores the need for
actionable strategies and practical solutions to enhance sustainability
in radiology. However, 16% of participants reported needing
additional training and support due to insufficient knowledge to
implement effectively sustainable practices (7).

In this study, LLMs were evaluated based on their overall quality,
implementability, and understanding of sustainability measures in
radiology. Overall, OQS, IS, and US scores were high for all four LLMs
across all sustainability subcategories. The best ratings were
consistently observed in understandability across all models,
demonstrating uniformly strong performance. Beyond this, CS
emerged as the best-performing model, dominating most categories
with consistently high scores, followed by the other three LLMs. GA
received slightly lower overall quality and IS ratings but performed
well across all categories. As noted in previous studies (23, 25, 31),
careful consideration of technical capabilities and LLMs’ performance
is crucial for integrating Al tools in radiology later.

The performance of the tested LLMs in addressing sustainability
aspects of radiology presents significant opportunities and essential
challenges for the field. Our analysis demonstrates that current LLM
technology has achieved a level of sophistication that enables
meaningful contributions to sustainable radiological practices, similar
to prior applications in other radiological subsections (32). The high
quality scores across all evaluated models, particularly in
understandability, align with the recent findings by Khanna et al. and
suggest a promising foundation for clinical implementation (33). As
previously emphasized, the environmental impact of radiological
procedures necessitates innovative solutions, and LLMs appear well-
positioned to contribute to this endeavor (34). Modest lower
implementability scores indicate differences between a controlled
setting and reality, as Al and LLMs have been shown to underperform
in real-life environments in several different settings (35, 36).

However, our findings also reveal substantial variability in the
intraclass correlation coeflicients (ICCs) across the four LLMs
evaluated, indicating that the quality and consistency of sustainability
advice are highly model-dependent. While the overall results suggest
that LLMs hold promise as tools for supporting sustainability
initiatives, their robustness is not uniform. This variability highlights
the importance of model selection when deploying LLMs for
sustainability-related applications.

In our study design, we intentionally adopted a first-input
scheme, as this approach most closely reflects real-world user
behavior, where a single prompt is submitted and the initial response
is used. While LLMs are known to exhibit some stochasticity in their
outputs, our concept focused on evaluating the quality of first
responses to align with practical application scenarios. Although
we acknowledge that a broader analysis of output variability would
offer additional insights, such an investigation was beyond the
intended scope of this work. However, preliminary findings from our
ongoing larger-scale studies suggest that newer LLMs show relatively
low variability in their outputs. However, as Williams et al.
highlighted, the complexity of clinical decision-making often extends
beyond the capabilities of even advanced LLMs (37), leading to the
need for further developments of LLMs (e.g., focused on different
disciplines such as radiology).
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Also, LLMs performance is inherently influenced by the
limitations of their training data, which may not fully capture the
diversity and complexity of radiological practices at the moment.
While sustainability challenges in healthcare are well recognized, the
application of LLMs to support sustainability efforts—particularly in
medicine and radiology—is still a novel and evolving area. Looking
ahead, longitudinal evaluations will be essential to monitor the
consistency and reliability of LLM performance over time, as clinical
practices and sustainability standards continue to develop. Future
studies should therefore adopt a multidirectional approach,
simultaneously addressing aspects such as technological integration,
clinical validation, environmental impact, and cybersecurity.
Establishing
contributions to medical sustainability—incorporating metrics like

standardized frameworks for evaluating LLM
resource optimization and ecological footprint—would further
strengthen the field. Moreover, integrating LLMs into existing
radiological workflows, supported by robust validation studies, will
be crucial to ensure efficiency gains are realized without compromising
patient safety or data security.

Ultimately, these models show advanced possibilities driving
forward sustainable directions in radiology, but evidence-based
practices must guide implementation. Model selection should
consider response quality, clarity, and implementability, as well as
practical factors like accessibility, updates, transparency, and cost.
Future research should explore the development of LLMs specifically
trained on radiological sustainability data and prospectively evaluate
their effectiveness in clinical workflows after implementation.

Overall, LLMs demonstrate significant potential as decision-
support tools for implementing multidimensional sustainable
practices in radiology, complementing clinical expertise to enhance
resource efficiency while fostering new sustainable horizons in
scientific research and clinical practice in radiology. However, such
frameworks,
interoperability with existing hospital IT infrastructures, and

integration  requires  addressing  regulatory
validation in real-world clinical workflows (23, 25). While our findings
highlight the potential of LLMs to provide high-quality,
understandable, and implementable sustainability advice, translating
these outputs into clinical decision-support tools would necessitate
dedicated research efforts to ensure reliability, safety, and clinical
acceptance. Additionally, the application of AI and LLMs in
sustainability decision-making and clinical education raises important
ethical considerations. These include questions of transparency,
accountability, and potential biases in model outputs, as well as the
responsibility of clinicians when relying on Al-generated advice (25).
While addressing these issues in depth was beyond the scope of this
study, future research and guidelines should explicitly incorporate
such moral dimensions to ensure responsible and trustworthy
integration of LLMs into radiology practice.

Our study has several limitations. First, we conducted a first-
input study design. While this approach reflects a realistic real-
world scenario, the use of multiple or varying inputs may influence
the quality of LLM outputs. This potential variability warrants
further investigation in future studies. Second, although we aimed
to address the most relevant aspects of sustainability in radiology,
some minor areas with comparatively lower impact may have been
overlooked. Moreover, as the question set was derived from
literature and expert consensus, selection bias in topic selection
cannot be fully excluded. Another limitation of this study is that no
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direct comparison with human expert decision strategies in greening
radiology was performed, which could provide valuable insights
into complementarities and differences between human and
LLM-based approaches. An additional limitation of this study is the
omission of energy costs associated with digitalization, which is a
contributing factor in the utilization of LLM for decision making in
medical imaging. Further, the evaluation of effectiveness of these
sustainable measures was beyond its scope and should be addressed
in prospective implementation studies with dedicated study design.
Future research should address these different dimensions to
provide a more comprehensive evaluation of sustainability
in radiology.

Conclusion

Our findings demonstrate the potential of LLMs in advancing
sustainability initiatives in radiology. The high performance of Claude
3.5 Sonnet, ChatGPT-4.0, Meta Llama 3.1, and Gemini Advanced
across multiple dimensions suggests a promising future for
LLM-assisted sustainable practices in radiology. However, careful
consideration must be given to variabilities across the models and
their responses, showing the importance of model selection when
deploying LLMs for sustainability-related questions. Future research
should explore the development of LLMs specifically trained on
radiological sustainability data to address the field’s unique needs.
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