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The review of the current state of knowledge on local and systemic

immunopathological reactions of cellular and humoral origin, as well as the ways

of their interaction, is considered in this article. This study aimed to organize,

standardize, and conceptualize existing knowledge about immunopathological

syndromes associated with innate immunity. It highlights syndromes linked

to type I, II, and III hypersensitivity reactions, while also separately examining

manifestations related to immunosuppression disorders. The review outlines

how to di�erentiate humoral immunity syndromes based on the classes of

immunoglobulins A, M, E, and the four subclasses of immunoglobulin G.

Additionally, it provides a detailed analysis of complement system disorders

and the mechanisms of systemic inflammatory response syndrome, as well

as their role in various pathological processes. The authors advocate for a

unified set of definitions for immunopathological syndromes related to adaptive

immunity, aiming to develop a new concept of their pathogenesis. Currently,

many definitions of these syndromes lack consensus, stemming from varying

interpretations of their manifestations. The authors also propose standardized

tools for assessing immunopathological syndromes, along with guidelines for

staging and treatment optimization.

KEYWORDS
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1 Introduction

Innate immunity acts as the body’s first line of defense against pathogens and other

injuries. It is activated almost immediately by pathogen-associated molecular patterns

and/or products of cell destruction (danger-associated molecular patterns or alarmins).

Innate immunity plays a crucial role in the inflammatory process, localizing infections

and providing protective and healing effects. Autacoids released by innate immunity cells

not only stimulate local inflammation but also trigger systemic inflammatory responses of

varying intensities, such as the acute phase response, leukocytosis, and stress reactions that
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often occur simultaneously. However, all defense mechanisms

come with a cost: excessive systemic action of inflammatory

mediators can lead to significant pathology (1, 2).

The most important stage in diagnosing immunopathological

entities is the detection of local (focal) signs of inflammation and

its systemic correlates. The primary clinical syndrome of local

inflammation is well-known to physicians of any specialty. The

basic signs of inflammation have been described since the time

of Aulus Cornelius Celsus (c. 25 BC–c. 50 AD). Galen (129–216)

described local heat, swelling, pain, redness, and organ dysfunction,

which was later expanded in the 19th century by Rudolf Virchow

(1821–1902) (3, 4).

The primary objective of localized inflammation is to isolate

and eliminate the phlogogen, followed by repairing the damaged

tissue and restoring the impaired barrier function of the body

integument. The loss of the barrier function may result from direct

action of the pathogens, as well as from primary integument defects,

including a decrease in the expression of antimicrobial factors.

Irritation of the non-myelinated type C and thin myelinated type

Aδ nerve fibers, which contribute to the development of itching,

may also be associated with barrier loss. Similarly, dysbacteriosis

occurring at the site of inflammation is associated with the

development of this syndrome (5, 6).

There are over 450 types of primary inherited

immunodeficiencies, as well as numerous secondary acquired

immunopathological conditions. Each type has unique diagnostic

characteristics and necessitates a tailored treatment strategy.

Diagnosing immunopathological syndromes poses a considerable

challenge for healthcare providers due to their wide variety, the

complexities of laboratory verification, and the overlap of their

symptoms with those of other diseases (7).

Given that the immune system is one of the main regulatory

and homeostatic systems of the body, it is directly or indirectly

involved in the formation of all diseases. However, several

syndromes are primarily formed by the immune system itself.

Currently, the definitions of some immunopathological syndromes

are not universally accepted. There is a disagreement on the

interpretation of the manifestations of a particular syndrome.

For example, systemic inflammatory response syndrome (SIRS)

can be easily defined; however, the boundary between the typical

acute phase response accompanying any infection and hyperergic,

unregulated response to infection is blurred. The clinician needs to

Abbreviations: CICs, circulating immune complexes; CM, central memory;

CANDLE, chronic atypical neutrophilic dermatosis with lipodystrophy

and fever; DADA2, adenosine deaminase-2 deficiency or autosomal

recessive autoinflammatory disease; EM, e�ector memory; ILC2,

lymphoid cells of type 2 innate immunity; IgA, Immunoglobulin A; IgG,

immunoglobulin G; IgM, immunoglobulin M; IgE, immunoglobulin E; HLH,

secondary hemophagocytic lymphohistiocytosis syndrome; GOF, gain of

function syndrome; MAS, macrophage hyperactivation syndrome; PRAAS,

proteasome-associated autoinflammatory syndrome; SAVI, associated

vasculopathy with onset in infancy syndrome; SLE, systemic lupus

erythematosus; SIRS, systemic inflammatory response syndrome; SPENCD,

spondyloenhondrodysplasia syndrome; TRM, tissue-resident memory;

TSCM, stem cell-like memory T cells.

recognize such dysregulation in time, as it has both prognostic and

therapeutic implications.

This review aims to systematize, unify, and conceptualize

current knowledge on the immunopathological syndromes

associated with innate immunity.

2 Adaptive immunity

Adaptive immunity is a specific response of the immune

system to antigens that develops throughout a person’s life, leaving

a clear immunological memory, and is provided by specialized

cells of great clonal diversity and molecules capable of precisely

recognizing and neutralizing specific antigens. Adaptive immunity

plays a key role in protecting the organism from various genetically

alien cells and molecules (microorganisms, mutated cells, exo- and

endotoxins, etc.). It is the basis for the action of vaccines that

“train” the immune system to recognize pathogens before their

direct contact (1, 4–6).

The presentation of antigens by specialized cells, including

dendritic cells, veiled cells, Langerhans cells, as well as macrophages

and clonally restricted B-lymphocytes, plays a critical role

in activating adaptive immunity. T-lymphocytes, comprising

cytotoxic T cells and T-helper cells, are responsible for cellular

responses, whereas plasma cells derived from B-lymphocytes

contribute to humoral immunity through the production of

antibodies (immunoglobulins). The results of these interactions

lead to local inflammation, which also involves innate immunity

mechanisms. After the initial exposure to an antigen, adaptive

immunity establishes immunological memory, enabling a quicker

and more effective initiation of a specific immune response in

the future.

Several immunopathological syndromes associated with

cellular and humoral aspects of the immune response are

currently distinguished, based on their pathogenesis (1, 7). The

cellular immune response to a pathogen/antigen, according

to current views, is defined and detailed as T1-, T2-, and

T3-dependent responses (Table 1).

T2-response reactions (EAACI IVb hyperreactions) are

mediated by Th2 cells, which acquire their phenotype under the

influence of IL-4. Th2 cells produce IL-4, IL-5, IL-9, IL-13, IL-31,

and eotaxins (CCL11, CCL24, and CCL26).

IL-4 and IL-13 are key cytokines of the Th2 response. They

switch B-lymphocytes from synthesizing class IgM and IgG1 to

IgE production. IL-13 is also responsible for tissue remodeling.

IL-5 promotes the growth of eosinophils in the bone marrow,

the recruitment of eosinophils to sites of inflammation, and

their survival in tissues. IL-31 is a major cytokine that plays a

mechanistic role in pruritus. Eotaxins belong to the CC subfamily

of chemokines, serving as chemoattractants for eosinophils and

promoting inflammation; some of them also produce anti-

inflammatory mediators. When exposed to IL-4 and TGF-β, Th9

cells differentiate and produce IL-9, which increases IgE synthesis, a

growth factor for eosinophil and basophil bone marrow precursors,

preventing their apoptosis (5, 8–10).

Lymphoid cells of type 2 innate immunity (ILC2) produce type

2 cytokines (IL-5, IL-13, IL-9, and amphiregulin (a protein that

promotes epithelial cell growth), forming a T2 immune response
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TABLE 1 Immunopathological responses are associated with adaptive immunity reactions (cellular response).

Response type Immune response factors Pathological entities

Hyporeactive Hyperreactive

1st type ILC1, CD4+ Th1, plasmacytoid cells (pDCs), and classical
dendritic cells (cDCs1). Cytokines, IL-12, IL-18, IL-15,
IFNγ, TNFα, Effector cells, NK- and CD8+ T-cells, and
tissue macrophages

Viral infections
Intracellular bacterial infections
Oncopathology

EAACI reaction type IVa

2nd type Classical dendritic cells (cDC2), ILC2, CD4+Th2, cytokines,
TSLP, IL-25, IL-33, IL-4, IL-5, IL-9 and IL-13. Effector cells,
eosinophils, mast cells, basophils, and macrophages

Intestinal main infections EAACI reaction type IVb

3rd type cDC2, ILC3, CD4+ Th17 Cytokines, IL-17, IL-22, GM-CSF,
IL-6, IL-23 IL-1β, IL-12, IL-27, IL-35, and IL-39 Effector
cells, monocytes, macrophages, granulocytes

Bacterial infections EAACI reaction type IVc

Immunosuppressive response Treg, Breg, myeloid suppressor cells; anti-idiotypic
antibodies

Autoimmune diseases Infections, oncopathology

against helminths, inducing tissue inflammation, and maintaining

tissue homeostasis. Macrophages, basophils, and ILC2 provide an

early source of IL-4, which is involved in Th2 cell differentiation. In

addition, IL-4 is produced by a unique subset of invariant natural

killer (iNK-T) cells, which contribute to the activation of CD4+

and CD8+ Th2 cells, as well as the initiation and continuation of

Th2 inflammation through the production of IL-4. In addition, a

small fraction of NK- and NKT-cells produce IL-13. IL-4 and IL-13

induce an alternative activation program in macrophages, resulting

in M2 phenotype macrophages that are capable of suppressing

acute inflammation and promoting fibroplasia (11–13).

T3 response reactions (EAACI hypersensitivity reactions type

IVc) are mediated by type 17 T-helper cells, Tc17, ILC3, and other

cells that produce IL-17 family cytokines, with the involvement of

neutrophils, a hallmark of purulent inflammation. IL-17 regulates

innate effectors and orchestrates local inflammation by inducing

the release of pro-inflammatory cytokines and chemokines that

can recruit neutrophils (with their potent production of defensins,

hypochlorous acid, and other reactive oxygen/halogen species able

to disinfect inflammatory foci) and enhance cytokine production

by Th2 cells. Th17 memory cells acquire their phenotype when

exposed to IL-6, IL-21, IL-23, and TGF-β provided by APCs. The

main effector cytokines produced by Th17 cells are IL-17A, IL-

17F, IL-21, IL-22, and granulocyte colony-stimulating factor. IL-

17A and IL-17F are also produced by CD4+ and CD8+ T cells,

T lymphocytes, and NK cells in response to IL-1β and IL-23. Their

primary role is to generate protective immunity against fungi and

extracellular bacteria. IL-17A and IL-17F activate ILC3 and stromal

cells to produce IL-8, which also recruits neutrophils to sites of

inflammation (5, 14–16).

The processes of suppression or downregulation of the immune

response (immunosuppression) and the formation of immune

memory should be considered as its mandatory final stages (1, 7).

The mechanisms behind this downregulation are varied. They

include the suppression of the proliferation and functions of T and

B lymphocytes, leading to an increase in their rates of apoptosis.

Additionally, they involve the activation of different types of

suppressor cell clones around 22 known varieties, including T

regulatory cells (Tregs), B regulatory cells (Bregs), mesenchymal

stem cells, and myeloid-derived suppressor cells. There is also a

shift in the cytokine profile, resulting in an imbalance between pro-

inflammatory and anti-inflammatory activities. Furthermore, anti-

idiotypic autoantibodies and autoantibodies targeting cytokines

and their receptors can have clonally specific downregulatory

effects, indicating that, to some extent, immunity is modulated by

autoimmunity (17–19).

Immunosuppression can occur through various mechanisms:

it may be physiological, such as during pregnancy or after a

well-regulated immune response; natural, as seen in infancy and

old age; or pathological, arising from conditions like parasitic

infections, severe infectious diseases that provoke a strong

immune response, congenital immunodeficiencies, or exposure to

harmful external factors. Additionally, immunoexpressed states

can frequently emerge as iatrogenic effects, particularly in the

context of drug or radiation therapies. A lack of suppressive factors

is linked to the breakdown of self-tolerance, leading to various

autoimmune disorders. Conversely, excessive suppressive activity

can contribute to the development of neoplastic and infectious

diseases (20–23).

T1-response reactions (EAACI hypersensitivity reactions type

IVa) are mediated by type 1 T-helper cells (Th1) and type

1 cytotoxic cells (Tc1), which develop their phenotype under

the influence of IL-12, IL-23, and IFN-γ, produced by antigen-

presenting cells (APC). Th1 cells produce large amounts of IFN-

γ. Lymphotoxin and tumor necrosis factor-alpha (TNF-α), which

are involved in disease pathogenesis due to their essential role

in granuloma formation, the synthesis of IgG1 and IgG3 by

plasma cells, and the ability to activate T-cell cytotoxicity. The

T1-dependent immune response is enhanced by certain cells of

innate immunity, including type 1 innate lymphoid cells (ILC1) and

classically activated macrophages (MCP-1 or M1), but primarily by

NK cells (24). Activated MCP-1 releases inflammatory mediators

(reactive oxygen species (ROS), proteases, and pro-inflammatory

cytokines, etc.), contributing to tissue damage at the site of

antigen exposure. Tissue damage leads to clinical manifestations of

hypersensitivity, whichmay vary depending on the specific antigens

targeted (25–27).

The humoral part of the immune response involves different

classes and subclasses of immunoglobulins. IgA is important in

the mucosal surfaces, preventing pathogens from entering the
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TABLE 2 Humoral immunopathological responses are associated with systemic adaptive immunity reactions.

Type of response Cells and cytokines
involved in the immune
response

Pathological processes

Hyporesponsive Hyperresponsive

Mediated by immunoglobulins A IgA antibodies Recurrent sinus-pulmonary
infections, diarrhea, allergic
reactions, autoimmune pathology,
dysbacteriosis

IgA nephropathy, celiac disease,
Shenzhen-Genoha purpura

Immunoglobulin-
mediated
immunoglobulins G

IgG1 Ig G1 antibodies Bacterial-viral infections,
virus-induced bronchial asthma

Monoclonal gammopathy of
undetermined significance, myeloma
disease, paraproteinemia,
lymphoproliferative diseases
EAACI reaction type II

IgG2 Ig G2 antibodies Predisposition to infections with
capsular microorganisms

IgG3 Ig G3 antibodies Respiratory infections

IgG4 Ig G4 antibodies Sinus-respiratory infections,
recurrent pneumonia, and
bronchiectasis

Autoimmune pancreatitis, Mikulicz
syndrome, and other chronic
inflammatory-fibrotic diseases

Immunoglobulin-mediated immunoglobulins M Ig M antibodies Primary and secondary
immunodeficiencies. Condition after
removal of the spleen

Acute and chronic infections,
autoimmune diseases

Immunoglobulin-mediated immunoglobulins E Ig E antibodies Intestinal infestations Hyperimmunoglobulinemia E
syndrome; Job’s syndrome
EAACI reaction type I,
worm infestations

body. IgA exists in two forms: monomeric (in serum) and dimeric

(secreted by exocrine glands; Table 2).

Immunoglobulin A deficiency is diagnosed when serum IgA

levels are <0.07 g/L (0.4375 µmol/L). It is the most common

primary immunodeficiency. Many patients are asymptomatic, but

some experience recurrent infections of the upper and lower

respiratory tracts, sinuses, ears, as well as infectious and non-

infectious diseases of the gastrointestinal tract (including celiac

disease). This form of immunodeficiency can manifest as allergic

reactions (such as bronchial asthma accompanied by adenoids) or

as autoimmune disorders (such as inflammatory bowel disease,

systemic lupus erythematosus, and chronic active hepatitis). IgA

deficiency is often accompanied by various types of dysbiosis (28).

Several microorganisms (Neisseria gonorrhoeae, Streptococcus

pneumoniae, Haemophilus influenzae type B, Blastocystis)

can secrete enzymes that degrade IgA, leading to acquired

IgA-associated immunodeficiency (29–31). IgA nephropathy,

associated with IgA-containing renal immune complex deposits,

vasculitis, and gluten-sensitive enteropathy, is accompanied by

IgA excess.

Berger’s disease, or IgA nephropathy, is a form of chronic

glomerulonephritis characterized by the accumulation of IgA-

containing immune complexes in the mesangium. The disease was

first described by Jean Berger (1930–2011) in 1968. It is the most

common form of glomerulonephritis worldwide. In young adults, it

often presents with episodic hematuria, usually within a day or two

after the onset of an upper respiratory tract infection. Older patients

may present with asymptomatic microhematuria and proteinuria,

which can only be detected by urinalysis. Renal failure may rarely

develop (32, 33).

A systemic clinical manifestation of IgA-associated disorder,

immunoglobulin A vasculitis (hemorrhagic vasculitis, Henoch-

Schönlein purpura), is closely related to IgA nephropathy. It is a

systemic vasculitis of small blood vessels that, in addition to the

kidneys, affects the skin (purpura), joints (arthritis), and intestines

(melena and abdominal pain) (34–36).

Gluten-sensitive enteropathy, a common genetic disease,

the pathogenesis of which is based on sensitization to the

prolamin proteins of some cereals, most frequently gliadin of

wheat, and also secalin of rye, hordein of barley, etc. In the

presence of genetic predisposition exists, typically associated

with some HLA-DQ2 or HLA-DQ8 alleles, activation of T-cells

and the production of antibodies (most often represented by

IgA) to tissue transglutaminase and to endomysium (a wispy

layer of areolar connective tissue that ensheathe individual

smooth myocytes of intestine) occurs in response to the

presentation of peptide epitopes of the above mentioned

cereal prolamins.

Transglutaminase is involved because it modifies peptides of

prolamins into a form that may stimulate the immune system

more effectively, forming a complex with them prone to antigen

presentation. Endomysium is altered due to the presence of

surface transglutaminase. IL-15 is considered a key player in the

pathogenesis of intestinal villi damage and atrophy in coeliac

disease. Moreover, gliadin and possibly other prolamins may

directly stimulate innate immune cells in a lectin-like manner;

hence, the failure of the membrane digestion of these peptides can

promote a disease (37). The entity is characterized by a wide range

of versatile clinical manifestations and is often comorbid with other

autoimmune diseases (38, 39).
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TABLE 3 Characterization of immunoglobulin G subclasses.

Subclass
IgG

Plasma
concentration (g/L)

Half-life Fc-receptor binding
to phagocytes

Complement
activation

Penetration through
the placenta

1 3.82–9.28 21 days High High Yes

2 2.41–7.00 21 days Low Middle No

3 0.22–1.76 7 days High High No

4 0.04–1.35 21 days Middle Not Yes

Immunoglobulin G (IgG) is the most common class

of antibodies in serum (comprising ∼75%−80% of all

immunoglobulins). It has the longest half-life blood circulation

time (7–21 days) due to the function of the endothelial Fc-

receptor of neonatal type (FcRn or Brambell’s receptor), which

establishes antibody recycling and protection from IgG endosomal

degradation (1, 37). A similar receptor is responsible for the

transmission of IgG across the placenta (38).

This class of immunoglobulins is capable of neutralizing

toxins and viruses. By binding to the antigens of extracellular

bacteria and fungi, it coats the surface of pathogens, facilitating

their phagocytosis (a process known as opsonization), and also

causes their immobilization and binding by agglutination. IgG-

mediated opsonization allows pathogen recognition and uptake

by professional phagocytes and elicits antibody-dependent cell-

mediated cytotoxicity. In addition, IgG activates the classical

pathway of the complement system. Some IgG antibodies against

nuclear antigens can penetrate the nuclei of living cells and alter

genetically determined processes (18, 40). In humans, there are four

subclasses of IgG (about 65% belong to IgG1, 25% to IgG2, 6% to

IgG3, and just 4% to IgG4. All the subclasses are characterized by

different properties (Table 3).

It is considered that the immune response to most antigens

involves a mixture of all four IgG subclasses; however, it creates

difficulty in recognizing which of the subclasses is defective.

Nevertheless, there are specific features that are distinctive for

defects in different IgG subclasses. Attention should be paid

to the temporal dynamics of immunoglobulin production. It

is assumed that IgG3 and IgE are produced early after IgM,

followed by IgG1 and IgG2. If the antigen persists, high-affinity

IgG4 is produced, which, among other functions, has some anti-

inflammatory potential and may facilitate fibroplasia (40).

Themost frequent disorder related to immunoglobulins of class

G is IgG1 deficiency (about 4%). Hypogammaglobulinemia is its

main feature, because this subclass is normally the predominant

one among IgG. Often, IgG1 deficiency is associated with

deficiencies in IgA and IgM. Two groups of disorders dominate its

clinical picture. The first is associated with bacterial-viral diseases

of the respiratory tract, the second with virus-induced bronchial

asthma (41, 42).

IgG2 is associated with the process of antibody formation

toward polysaccharide capsular antigens of microorganisms. In

this regard, IgG2 deficiency is associated with a predisposition to

infections caused by encapsulated bacteria (Neisseria meningitides,

Streptococcus pneumonia, and Haemophilus influenza). Clinically,

it is manifested by otitis media, sinusitis, recurrent bronchitis,

and chronic skin candidiasis. In severe cases, chronic obstructive

pulmonary disease, pneumonia, and meningitis may develop.

It has been established that IgG2 deficiency occurs in ∼10%

of patients with bronchiectasis. Selective IgG2 deficiency may

be associated with Louis-Barr syndrome. A combined form

of IgA and IgG2 immunodeficiency has been described. IgG2

deficiency is also associated with several autoimmune diseases

(SLE, primary Sjögren’s syndrome, juvenile diabetes mellitus,

autoimmune hemocytopenia, and hemorrhagic vasculitis).

IgG3 is involved in the formation of specific immunity against

bacteria colonizing the nasopharynx (Moraxella catarrhalis and

Streptococcus pyogenes). IgG3 deficiency may present as selective

immunodeficiency or in combination with IgG1 deficiency.

Hypogammaglobulinemia is commonly diagnosed in such patients.

These patients frequently exhibit hypogammaglobulinemia. IgG3

deficiency is associated with asthma, frequent exacerbations of

chronic bronchitis, ENT pathologies, gastrointestinal infections,

and herpetic infections.

Diagnosis of IgG4 deficiency is challenging, as this subclass

of immunoglobulins may be present at very low concentrations

in the serum of many healthy adults and all healthy children

under the age of 10. Thus, there may not be enough evidence

of antibody deficiency. Nevertheless, the combined deficiencies

of IgG4 with IgA and IgG2 have been described, which

manifest by sinus-respiratory infections, recurrent pneumonias,

and bronchiectasis (43).

IgG4 excess is typical of a systemic hyper-IgG4 disease, a

multi-organ illness of unknown etiology, characterized by chronic

inflammation and fibrosis, most frequently altering the pancreas,

tear and salivary glands, orbital fat, kidneys, retroperitoneal

space, and thyroid gland. It occurs worldwide, but is most

prevalent in the Japanese population. The local foci of the disease

exhibit lymphocytic infiltration with IgG4-positive plasma cells

and eosinophils, and dense fibrosis, sometimes with obliterating

phlebitis (40, 41). At least 70% of patients have elevated serum IgG4

levels>1.4 g/L. If the IgG4 serum level exceeds twice the upper limit

of normal, it is considered to be a pathognomonic hallmark of the

disease (42).

Elevated IgG4 levels are also observed in several other diseases,

such as pancreatic and biliary cancers, andmay occasionally be seen

in healthy individuals (43).

Quite often, primary and secondary immunodeficiencies of

different Ig subclasses are combined, but at the same time, they

are accompanied by sufficient concentrations of some other classes

or subclasses of immunoglobulins. Thus, IgA deficiency is often

associated with deficiencies in IgG2, IgG4, and IgG3; in such

cases, these antibodies may be absent. Lack of all IgG (IgG1–IgG4

subclasses) is observed in common variable immunodeficiency. In
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Wiskott-Aldrich syndrome, deficiencies in IgG3 and IgG4 are most

commonly identified. In ataxia-telangiectasia, IgG2 and IgG4 levels

are reduced, and sometimes IgG3 deficiency is detected. In chronic

candidiasis of the skin and mucous membranes, patients often have

deficiencies in IgG2 and IgG4, or isolated deficiencies in IgG2 or

IgG3. In HIV infection, there are decreased levels of IgG2 and IgG4,

accompanied by increased levels of IgG1 and IgG3. Both radiation

exposure and chemotherapy often cause decreased levels of IgG2

and IgG4 (7, 39, 40).

Immunoglobulin M (IgM) is the largest (pentamer consisting of

five monomers), and it is the first antibody produced in the primary

immune response to infection (known as acute phase antibodies).

Decreased IgM levels are observed in primary

immune deficiencies (severe combined immune deficiency,

agammaglobulinemia (Bruton’s disease), congenital IgM

deficiency), or secondary immunodepression (inflammatory

diseases of the colon, nephrotic syndrome, burns, and

other conditions associated with protein loss, exposure to

immunosuppressants, cytostatic medicines, and radiation). It is

also common for myeloma disease (of IgA- or IgG-types), for

AIDS, and for the status after spleen removal. There may be a

physiological decrease in IgM level typical in children aged 3–5

months (1).

Elevated IgM in the blood indicates an acute inflammatory

process in acute and chronic bacterial, viral, fungal, and parasitic

infections, autoimmune diseases (rheumatoid arthritis, systemic

lupus erythematosus), in liver diseases (primary biliary cirrhosis,

acute viral hepatitis), and multiple myeloma disease (of IgM-

type). Immunoglobulin M levels can also increase after intense

physical exercise, severe stress, when taking certain drugs

(methylprednisolone, penicillamine, valproic acid, estrogens, oral

contraceptives, antipsychotic and antiepileptic drugs, etc.) (28, 44).

Immunoglobulin E (IgE) is normally present at very low

concentrations in the blood and plays a key role in the immune

response to allergens and parasitic infections by releasing histamine

and other inflammatory mediators through binding to mast cell

and basophil surface receptors. It plays a crucial role in normal

placentogenesis in pregnancy (45, 46). Increased IgE content is

observed in atopic allergic diseases based on anaphylactic reactions

(bronchial asthma, pollinosis, urticaria, atopic Quincke’s edema,

and atopic dermatitis, etc.). Sometimes it accompanies primary

immunodeficiencies (hyperimmunoglobulinemia E syndrome,

Wiskott-Aldrich syndrome), andmay be observed in IgE-myeloma,

as well as in worm infestations and worm larvae migration

syndromes (10).

3 Local immunopathological reactions

Type I interferonopathy should be recognized as a

separate immunopathological syndrome observed during

local inflammation. Class I and III interferons are primarily

the bioregulators of close-distance autocrine, juxtacrine,

and/or paracrine action (autacoids), and play a key role in

the immune defense of the organism against viral infections. In

interferonopathies, their regulatory mechanisms are disturbed,

resulting in either excessive or insufficient production of

interferons (45, 46). Clinical signs of interferon insufficiency

are tumor growth, recurrent acute and chronic viral and other

intracellular infections. In the case of interferon hyperproduction,

the clinical picture may include fever, skin manifestations,

vasculopathies, interstitial lung damage, as well as involvement

of the central nervous system and musculoskeletal system.

The genetically determined interferonopathies are quite rare

(1:100,000–1:10,000,000 individuals). Among them: STING-

associated vasculopathy with onset in infancy (SAVI syndrome),

STAT1 gain of function (GOF syndrome), proteasome-

associated autoinflammatory syndrome (PRAAS), chronic

atypical neutrophilic dermatosis with lipodystrophy and fever

(CANDLE), monogenic systemic lupus erythematosus (SLE),

spondyloenhondrodysplasia (SPENCD syndrome), adenosine

deaminase-2 deficiency or autosomal recessive autoinflammatory

disease DADA2, etc. Acquired interferon deficiency, which

accompanies all acute viral infections and plays a crucial role in

the outcome of the COVID-19 infection, is much more common

(47–51). Interferon unresponsiveness in viral infections may result

from anti-interferon autoantibodies (52, 53). Anti-interferon

receptor antibodies can also exist and may either block or stimulate

interferon receptors, developing as a result of an anti-idiotypic

immune response (47, 48).

4 Systemic immunopathological
reactions

Inflammation is always a local typical pathological process, a

response of vascularized tissue to damage, driven mostly by the

signals produced within its foci, and not by bioregulators that are

external to them. This process is capable of creating barriers that

prevent the systemic spread of pathogens and also limit the general

action of bioregulators participating in focal events. The latter

is known as the informational autochthony of the inflammatory

focus. Preserving its local character, inflammation (together with

neuroendocrine stress reaction proceeding in parallel) prevents

the development of circulatory shock after injuries or infections.

However, losing its locality due to the failure of barriers, it triggers

or aggravates the systemic disorders, moving the body along the

pathogenic pathway. The consequences of increasing systemic

action of inflammatory mediators vary in severity, ranging from

regular moderate acute-phase response and leukocytosis, which

are the defensive systemic correlates of inflammation, to harmful

shock-like states, including circulatory shock. These aspects were

detailed in our recent article published elsewhere (7).

Systemic inflammatory response syndrome (SIRS) is a systemic

correlate of inflammatory reaction in response to severe lesions

of infectious and non-infectious nature, regardless of the

localization of the inflammatory foci, provided their barrier

function is insufficient.

The clinical term SIRS was initially used in 1987 by Cerra (49),

to designate hypermetabolism and multi-organ failure in sepsis

and toxic-septic shock. Later, in 1992, a consensus conference

of the American College of Chest Physicians and the Society of

Critical Care Medicine suggested the definition and set of SIRS

criteria. These criteria include fever or hypothermia, tachypnea,

tachycardia, and leukocytosis or leukopenia with a left shift in

the leukocyte count (39, 40). SIRS is an “old wine in new wine
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skins”: a pre-shock condition or an extreme hyperergic variant of

acute phase response, a typical pathological process well-known in

pathophysiology since the 1950s (7).

As we noted above, local inflammatory reactions are primarily

aimed at the localization and elimination of the damaging

factor (e.g., primarily infection) with subsequent reparative

regeneration. This is achieved by the production of various

inflammatory mediators by epithelial cells, endothelial cells, mast

cells, macrophages, and granulocytes, which in turn activate

hemostasis and complement systems. Cytokines represent the most

extensively studied group of inflammatory mediators. The spread

of small amounts of cytokines from the foci of inflammation

into the systemic bloodstream in normergic inflammation, which

H. Bekemeier called “orthophlogosis,” is one of the main factors

initiating other closely related systemic pathologic processes, such

as stress, fever, and acute phase response (50). These systemic

reactions support the local inflammatory process by enhancing

leukocyte infiltration, increasing energy and substrate availability,

and reinforcing the barrier function surrounding the affected area,

thereby preserving homeostasis (7).

It should be noted that activation of both pro-inflammatory

and anti-inflammatory immune reactions occurs in SIRS (51).

In the case of a balanced interaction of pro-inflammatory and

anti-inflammatory cytokines, the so-called mixed antagonist

response syndrome (MARS) is formed. If one type of cytokine

strongly predominates, a hyperactive systemic inflammatory

response is formed, or a compensatory anti-inflammatory

response (CARS-compensatory anti-inflammatory response) with

immunosuppression prevails (52). These processes can evolve

in a phased manner, for example, in cases of severe polytrauma,

extensive burns, or septic conditions, where the volume and spread

of the inflammation exceed the capacity of the barrier systems

(7, 53). Based on clinical parameters, two of these varieties can

already be distinguished.

Recently, in addition to the general concept of “systemic

inflammatory response,” other close definitions and a variety of

names for the development of the excessive systemic response

of the innate immune system have been coined. These include

“cytokine storm,” “cytokine tempest,” “secondary hemophagocytic

lymphohistiocytosis (HLH) syndrome,” “macrophage activation

syndrome (MAS),” and “virus-induced hyperinflammatory

syndrome.” All these conditions are characterized by uncontrolled

and excessive release of pro-inflammatory cytokines (and other

inflammatory autacoids) into the systemic bloodstream. These

cytokines disrupt blood rheology, induce endothelial expression

of adhesion molecules, and impair tissue perfusion far beyond the

original site of inflammation, eventually leading to multi-organ

failure and death. The diversity of terms often reflects varying

degrees of severity, predominant symptoms, or the conventions of

specific medical disciplines or national schools (7).

Cytokine dysregulation often leads to systemic disorders

of innate immunity, involving activation of macrophages,

dendritic cells, and natural killer (NK) cells. A severe form

of this dysregulation is observed in histiocytic disorders,

marked by clinical signs of excessive systemic cytokine activity,

including hyperferritinemia, coagulopathies, and pathological

hemophagocytosis, where macrophages engulf blood cells

and their precursors in the bone marrow, spleen, liver, and

other tissues. This condition is known as hemophagocytic

lymphohistiocytosis (HLH).

This phenomenon is known as Hemophagocytic

lymphohistiocytosis syndrome (HLH, Hemophagocytic

lymphohistiocytosis). Hemophagocytic lymphohistiocytosis

can be either primary (genetically determined) or secondary,

associated with certain diseases or immunodepressive states (both

physiological and pathological, or even iatrogenic ones).

Primary HLH includes familial HLH and other congenital

immunodeficiencies, such as Chediak-Higashi syndrome, Griscelli

syndrome, X-linked lymphoproliferative syndrome, Wiskott-

Aldrich syndrome, severe combined immunodeficiency, and

Hermansky-Pudlak syndrome.

Secondary or reactive hemophagocytic syndrome is usually

classified by the presence of a specific trigger. Its common triggers

are infections, including viruses (primarily DNA-containing

and also HIV or dengue fever viruses), bacteria (such as

Mycobacteria and spirochetes), fungi (histoplasmosis), parasites

(malaria, leishmaniasis), as well as autoimmune diseases and

malignancies (especially lymphomas). Chronic infection caused

by Epstein-Barr virus (EBV). It is a well-known trigger of

HLH, especially in individuals with primary or secondary

immunodeficiencies or malignancies (54).

The pathogenesis of HLH is linked to the impaired cytotoxicity

of NK cells and cytotoxic T lymphocytes. In primary HLH,

this is due to pathological mutations in granule-dependent

cytotoxicity (mutations in the genes PRF1, SH2D1A, BIRC4, ITK,

UNC13D, STX11, RAB27A, STXBP2, LYST, CD27, and MAGT1).

In secondary HLH, also called macrophage activation syndrome

(MAS, Macrophage activation syndrome) or more precisely

macrophage activation-like syndrome (MALS), it is believed

that hyperproduction of cytokines [specifically, IL-1β, interferon-

γ (INF-γ), tumor necrosis factor alpha, soluble IL-2 receptor

(CD25), IL-12] leads to the depletion of NK cells and cytotoxic T

lymphocytes, accompanied by the activation of tissue macrophages

that produce pro-inflammatory cytokines (IL-1, IL-6, IL-10 and

IL-18). This explains the clinical and laboratory manifestations

of the disease (fever, hypofibrinogenemia, hypertriglyceridemia,

hyperferritinemia, hemophagocytosis, edema, and CNS damage)

(55, 56).

The pathogenesis of HLH depends on a vicious circle: not

only Toll-like receptors of innate immunity cells (primarily

stimulated by pathogen-associated molecular patterns), but also

their receptors for IL-1 and IL-18 (which are stimulated by

excess levels of these interleukins) can, at the post-receptor level,

activate the same intracellular instruments (myeloid differentiation

primary-response protein 88 (MyD88), and IL-1R-associated

kinase (IRAK) proteins). This leads to the continuous assembly

and activation of the stimulating myddosome and inflammasome,

resulting in a further increase in interleukin production by those

cells (57).

Disrupted cytotoxicity also impairs the apoptosis of tumor- or

virus-infected cells, triggering the release of compensatory IFN-

γ and GM-CSF. These, in turn, stimulate macrophages, causing

their uncontrolled activation, phagocytosis of blood cells, and

pro-inflammatory cytokine release. CD163, a scavenger receptor
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TABLE 4 Di�erential diagnosis of syndromes associated with systemic innate immune response.

Indicator Systemic inflammatory
response syndrome

Cytokine dysregulation
syndrome

Macrophage
activation syndrome

Hepatomegaly/splenomegaly/lymphadenopathy – + +++

CNS dysfunction – ++ ++

Hemostasis disorder – ++ +++

Multiple organ failure – +++ ++

Cytopenia with involvement of more than 2 cell
lineages

+/– + +++

Decreased or absent NK-cell and CTL activity – +/– +++

Thrombocytopenia – +/– ++

Increased ferritin +/– ++ +++

Elevated LDH, AST, ALT +/– ++ +++

Hypertriglyceridaemia – + +++

Hemophagocytosis in biopsy specimens – + +++

on macrophages, serves as a key marker of their activation.

CD163 binds to the haptoglobin–hemoglobin complex, activating

heme oxygenase, which degrades heme into biliverdin, carbon

monoxide, and iron. The latter is sequestered by ferritin, leading

to hyperferritinemia, which promotes ROS production, oxidative

stress, and tissue damage (54). This process underlies the synonym

for HLH macrophage activation syndrome (MAS).

Sometimes it is much more difficult to differentiate MAS

from cytokine dysregulation and balanced systemic correlate of

inflammation (acute-phase response). Although SIRS rarely meets

MAS criteria, excessive macrophage activation in sepsis may

resemble MAS in terms of clinical, laboratory, and morphological

characteristics (Table 4).

Another entity associated with macrophage dysfunction is

the syndrome associated with an excessive amount of circulating

immune complexes (CICs). In immune complex diseases, excessive

amounts of CICs are formed and not properly utilized by

phagocytes. The normal clearance of CICs is disturbed, and the

solubility of the formed immune complexes may be reduced.

It leads to their deposition in the vascular wall and the

development of inflammation (vasculitides) (56). Thus, CICs

are deposited in the wall of microcirculatory vessels, mostly

in the areas where blood pressure is relatively high and

capillaries are tortuous (kidney glomeruli, retinal and joint

vasculature, plexus chorioideus, etc.). The relatively low velocity

of blood flow and low local temperature of the skin facilitate

CIC-dependent vasculitis in the dermis. This process activates

complement pathways, leading to the production of anaphylatoxins

and cytokines, which subsequently attract leukocytes to the

walls of small vessels in the skin. According to the EAACI

classification of allergic diseases and hypersensitivity reactions,

this syndrome is classified as a type III immune complex-

mediated reaction.

The complement system is also directly related to the formation

of immune complexes. About 50 proteins and peptides (∼10%

of blood globulins) are related to the complement system. These

components normally circulate in an inactive form (except for

D-factor and C3, which exist in plasma in minor quantities of

active forms prevented from acting on self-cells by their ubiquitous

surface inhibitor (Cinh).

The complement factors are capable of self-assembling

in response to certain immunological and non-immunological

signals. In this process, they act as serine proteases and/or mutually

recognizing receptors, and their short cleavage fragments work

as pro-inflammatory peptide mediators. Hence, the complement

system includes pattern recognition molecules, proteases, cell

surface regulators and receptors, inhibitors, and other protein

components. Most complement proteins are predominantly

produced in the liver, secreted into the plasma, and from there

transferred to extrahepatic tissues and organs. The reason is that

there are some loci with restricted blood serum penetration;

many cells of the immune system (especially macrophages

and dendritic cells, as well as NK and some granulocytes)

are capable of producing the complement components locally

in extrahepatic areas. This is of great significance for close-

distance focal paracrine effects of complement proteins. Moreover,

like antibodies, complement is also able to act not only

between the cells, but within the intracellular space (58).

Complement is a crucial component of humoral innate immunity.

Besides neutralizing microorganisms in cooperation with other

systems, complement opsonizes and thus eliminates immune

complexes, cellular debris, and apoptotic bodies. It also promotes

the normal development of tissues and organs, stimulates

regeneration, and participates in the switching of immunoglobulin

subclasses (58–63).

The complement cascade is activated through three distinct

pathways: the classical, lectin, and alternative. The classical pathway

is initiated by the formation of an antigen-antibody complex.

In the alternative pathway, foreign substances, pathogens, or

damaged cells can bind directly to the C3b component, whereas

the lectin pathway involves binding to mannose-binding lectin

(MBL). All three pathways converge at the third complement

component (C3), leading to the formation of additional effector

components. The proteins C5, C6, C7, C8, and C9 assemble to
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FIGURE 1

Mechanisms underlying clinical manifestations of the excessive systemic response of the innate immune system in SIRS.

form the membrane attack complex (MAC), which disrupts the

membranes of pathogens or antibody-coated cells. Opsonization

by C3b stimulates phagocytosis, and anaphylatoxins C3a and C5a

attract macrophages and neutrophils, which release lysosomal

enzymes and free radicals, thereby causing secondary tissue damage

in the pathogenesis of inflammation (64–67).

Therefore, based on literature data and our studies, we have

identified some clinical manifestations of chronic SIRS, which are

presented in Figure 1.

The reduction of natural killer (NK) cells and cytotoxic

T lymphocytes, whether primary or secondary, leads to the

activation of tissue macrophages. These macrophages release pro-

inflammatory cytokines, which further impair the functionality

of NK cells and cytotoxic T lymphocytes. These inflammatory

mediators initiate the activation of several interconnected blood

plasma protein systems, including the kallikrein-kinin, fibrinolytic,

coagulation, and complement systems, which can potentially

result in disseminated intravascular coagulation (DIC). The

systemic effects of cytokines impact the endothelium, liver, central

nervous system (CNS), and bone marrow. Widespread endothelial

damage, accompanied by the expression of adhesion molecules

on endothelial cells and the depletion of clotting factors due to

systemic coagulation activation, contributes to the onset of DIC.

Multiple organ dysfunction syndrome (MODS), characterized by

the progressive failure of two or more organ systems, is a likely

outcome of DIC.

The complement system also interacts with many factors

and systems in the body. It is tightly coordinated with other

systems based on step-wise proteolysis (kinins, fibrinolysis, and

blood coagulation) and has common activators with them.

Their integrated functioning is sometimes mentioned as the

sentinel polysystem of blood plasma (58). Moreover, complement

coordinates with the clotting system. For example, thrombin

cleaves and activates C5 to anaphylatoxin (C5a). Activation of

the coagulation cascade (a stage of the hemostasis system aimed

at fibrin production) can be considered not only as a process

of preventing and stopping bleeding, but also as an emergency

method to restore tissue integrity (as regards to epithelia, including

endothelium, and to integument) by preventing the penetration of

infection, while working in cooperation with the innate immune

system. Such a commonwealth of complement and fibrin systems

results in immunothrombosis.

4.1 Immunothrombosis

One of the most striking and life-threatening manifestations

of an immune response is immunothrombosis. The concept and

term were introduced in 2013 by Bernd Engelmann (Institut

für Laboratoriumsmedizin) and Steffen Massberg (Medizinische

Klinik und Poliklinik, Klinikum der Universität, Ludwig-

Maximilians-Universität, Munich, Germany), who wrote: “Here,

we summarize recent work suggesting that thrombosis under

certain circumstances has a major physiological role in immune

defense, and we introduce the term immunothrombosis to describe

this process” (68).

Immunothrombosis is a reaction of the innate immune

response that involves the formation of blood clots, primarily
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in microvessels. It facilitates the recognition, containment, and

destruction of pathogens, thereby protecting the integrity of the

body without causing large-scale secondary alterations. However,

under various pathological situations, with excessive, abnormal

activation of coagulation, it may lead to disseminated intravascular

coagulation (DIC) and other thrombotic complications.

Thrombosis associated with DIC is one of the leading causes

of death worldwide (69–71).

The interaction between the immune and coagulation systems

is particularly pronounced in viral and bacterial infections, as

well as in autoimmune diseases. When pathogens enter the

bloodstream, they trigger a variety of immune defensemechanisms,

which in turn activate the coagulation cascade as a strategy to limit

the dissemination of pathogen. The primary cellular effectors in this

process are cells of innate immunity, especially neutrophils. While

eosinophils andmonocytes also express tissue factor (TF), their role

in immunothrombosis has only been elucidated in recent years.

At the molecular level, immunothrombosis is governed

by a complex interplay between the coagulation cascade, the

complement system, and cytokines. These components establish

multiple positive feedback loops, eventually leading to vascular

occlusion when protective anticoagulant mechanisms, such as

DNase I or activated protein C, are overwhelmed. Neutrophil

extracellular traps (NETs), formed by neutrophils, eosinophils, and

monocytes, and primarily aimed at pathogen elimination, also

contribute to this process (72, 73).

A well-documented example of immunothrombosis is COVID-

19. SARS-CoV-2 can induce arterial and venous thrombosis, a

consequence of virus-induced immune dysregulation (cytokine

storm). The pathophysiological reactions to SARS-CoV-2 include

endothelial dysfunction, complement activation with the formation

of C3a and C5a, cell lysis, a cytokine storm, NET formation, TF

release, coagulation cascade activation, elevated PAI-1 secretion

from mast cells and basophils, and suppression of fibrinolysis (74).

These processes contribute to microvascular thrombosis, especially

in the pulmonary circulation (75).

Notably, immunothrombosis in COVID-19 differs significantly

from both overt DIC and sepsis-induced coagulopathy (SIC).

Laboratory findings include elevated fibrinogen levels, significant

increases in D-dimer, absence of bleeding, and predominance of

microthrombosis, particularly in the lung microvasculature (76).

However, the pathogenesis of COVID-19-related thrombosis

is multifactorial. Some authors argue that COVID-19-associated

coagulopathy does not meet the criteria for classical thrombotic

microangiopathy but rather exhibits features of complement-

mediated endothelial injury and von Willebrand factor

dysregulation (77).

The severity of COVID-19 correlates with markers of cellular

and humoral immunity. Pronounced leukopenia, lymphopenia,

elevated lactate dehydrogenase, and procalcitonin levels are

more commonly observed in patients with fatal outcomes

(78). Interleukin-6 has emerged as a key prognostic cytokine,

demonstrating predictive value at the time of hospital admission.

The interplay between immune and hemostatic systems is

also mediated by microvesicular interactions involving blood

cells and the endothelium. These microparticles, enriched with

membrane proteins, organelle contents, and cytoplasmic elements,

serve as potent signaling platforms (79). In COVID-19 patients,

microparticle levels from various sources vary significantly between

admission and discharge, with a decline observed in patients with

favorable outcomes.

Similar mechanisms are observed in autoimmune conditions

such as antiphospholipid syndrome (APS), which is characterized

by arterial and venous thrombosis and pregnancy complications

due to microvascular injury. Contributing mechanisms in APS

include upregulated TF expression, adhesion molecule activation,

complement-mediated endothelial damage via MAC, and the

chemoattractant function of C5a. Monocytes release TF, cytokines

(e.g., TNF-α, interleukins, type I interferons), and microparticles.

Neutrophils produce reactive oxygen species and NETs. Persistent

endothelial activation by antiphospholipid antibodies may result in

progressive occlusive vasculopathy (80).

Thus, immunothrombosis can be considered a mechanism of

thrombosis that develops against the background of dysregulation

of cellular interaction in diseases. Its pathogenesis involves the

activation of immune defense against pathogens in the bloodstream

and autoimmune processes.

The key trigger of immunothrombosis is the inflammasome.

Proteolysis in it (during pyroptosis) results in the release of tissue

factor, which forms a complex with clotting factor VII to activate

factors IX and X, generating thrombin and leading to fibrin

formation and platelet activation. Furthermore, mechanisms of

immunothrombosis formation have been described, involving the

STING (stimulator of interferon response) and HMGB1 (high-

mobility group protein B1 or amphotericin B) proteins (81, 82).

Clinically, immunothrombosis is manifested by the classic DIC

syndrome, which can be classified into three types. The first type of

DIC, characterized by suppressed fibrinolysis, is often observed in

sepsis and is associated with multi-organ failure. It is characterized

by an abnormal increase in coagulation activity. In the second type

of DIC, fibrinolysis is abnormally activated, and sometimes fatal

bleeding may follow. The third type of DIC is an intermediate

one, characterized by a balanced fibrinolysis. To treat the clinical

symptoms of DIC syndrome, the therapeutic intervention should

be performed according to these three types (83).

However, all these manifestations are related to the acute

phase of the disease. If acute inflammatory reactions do not stop

(for example, due to persistence of non-eliminated pathogen or

non-infectious phlogogenic agent, like uric acid salt crystals in

gout), chronic systemic correlate of inflammation (SCI, systemic

chronic inflammation) forms, which can cause secondary damage

to tissues and organs and lead to chronic critical illnesses. SCI is

commonly mild, often goes unnoticed, and can last for months

or even years. The usual classic local signs of inflammation

redness, swelling, local heat, and pain, are virtually absent. Instead,

psycho-emotional and cognitive changes, as well as immune-

related dysfunctions confirmed by laboratory tests, become more

prominent. Uniform criteria for SCI have not yet been defined.

(19, 78, 79). Immunopathological syndromes associated with

adaptive immunity serve as evidence of the importance of a

balanced immune system. Inappropriate activation, deficiency, or

overreaction of various elements of the adaptive immune system

can lead to serious diseases. Moreover, the equilibrium between

local and systemic defensive reactions, as well as the delineation
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FIGURE 2

Types of immune response disorders under the influence of various factors.

of their respective spheres of activity, are essential; otherwise, they

will come into conflict and mutually emasculate their defensive

potential, increasing the costs of defense and promoting self-

harm (7).

The general pattern of immune response disorders is shown in

Figure 2.

5 Conclusion

Innate immunity is the first line of defense of the organism

against pathogens and damage, and maintains homeostasis.

The mechanisms of innate immunity are primarily provided

by localized responses (83–86). Inflammation is aimed at the

localization, dilution, isolation, and elimination of the agent that

caused the damage, as well as the restoration of damaged tissue.

At this stage, it is crucial to distinguish among various

pathological conditions, such as dysregulated local inflammation,

type I interferonopathies, and degenerative disorders. Local

inflammation never occurs in isolation; it is invariably associated

with a complex interplay of systemic processes. The systemic release

of inflammatory mediators (autacoids) can give rise to broader

physiological effects, including the acute-phase response, fever,

leukocytosis, and stress-related responses.

The outcome of these interactions depends on several factors:

the severity and extent of inflammation, the effectiveness of barrier

functions, the anti-inflammatory actions of stress hormones, and

the virulence or pathogenicity of the initiating agent. These factors

collectively determine the nature and intensity of the systemic

inflammatory response.

A balanced acute phase response, aligned with normergic

inflammation, generally represents an adequate and proportionate

reaction to infection or injury. In contrast, an uncontrolled

systemic response, typically following the failure of local

containment mechanisms, results in a pathological surge of

cytokines, dysregulation of the component system, macrophage

hyperactivation, and immunothrombosis. These phenomena are

characteristic of systemic inflammatory syndromes and represent

critical points for clinical intervention. Timely recognition of such

conditions offers new opportunities for diagnosing and treating

immune-mediated disorders.

It should be noted that in primary or secondary

immunodeficiency disorders, adaptive immunity does not

function properly, which leads primarily to the development of

various infections (87–89). In case of the pathogen persistence,

chronic inflammation occurs. Disturbances in the mechanisms of

immune surveillance led to tumor growth.

Autoimmune diseases arise from inappropriate autoreactivity,

whereas allergic disorders result from excessive, misdirected,

or dysregulated immune responses to harmless antigens. These

responses, while originating from the adaptive immune system,

may cause more harm than protection.

A comprehensive understanding of these immunopathological

syndromes, including the mechanisms underlying their onset and

progression, is essential for the development of more precise

diagnostic tools and targeted therapeutic strategies.
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