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Introduction: Interstitial lung disease (ILD) comprises various disorders marked

by pulmonary inflammation and fibrosis. Early diagnosis and risk prediction are

vital for improving patient outcomes.

Methods: We retrospectively analyzed 603 patients who had visited the

Hubin Campus between January 2022 and April 2025, employing a 1:2 case-

control design with age- and gender-matched groups. We collected clinical

information, complete blood count data, lipid metabolism indicators, and

various derived indices.

Conclusion: Six key markers were identified through three machine

learning algorithms (LassoCV, SVMREFCV, and Boruta): neutrophil percentage,

lymphocyte percentage, monocyte percentage, hemoglobin, and two novel

ratios - neutrophil-to-HDL-C and lymphocyte-to-HDL-C. The random forest

model outperformed seven other machine learning approaches, with AUC

values of 0.868 (validation set), 0.885 (test set), and 0.849 (external cohort),

demonstrating consistent predictive accuracy.

Discussion: Based on these findings, we developed an online prediction tool to

assist primary care clinicians in assessing the risk of ILD in suspected cases. Our

results indicate that the random forest model exhibits high accuracy and clinical

utility for early ILD prediction, providing a novel tool and methodology for early

diagnosis and intervention. Future studies will focus on further optimizing the

model and validating it in larger multicenter cohorts.
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interstitial lung disease, routine blood test, inflammatory-metabolic indices, machine
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1 Introduction 

Interstitial lung disease (ILD) encompasses various disorders 
involving lung tissue inflammation and scarring, with complex 
etiologies, diverse clinical manifestations, and significant 
prognostic variability (1). Due to aging populations and 
increasing environmental pollution, ILD incidence has risen 
significantly, emerging as a major global health challenge. 
Although considerable progress has been made in ILD diagnosis 
and treatment in recent years, the incomplete understanding of its 
pathological mechanisms continues to pose substantial challenges 
for early diagnosis and personalized therapy. Therefore, in-depth 
investigation of ILD pathogenesis and identification of eective 
biomarkers are of paramount importance for improving patient 
outcomes. 

Currently, ILD diagnosis primarily relies on high-resolution 
computed tomography (HRCT) and pulmonary function tests, but 
these methods have limitations including radiation exposure, high 
costs, and operational complexity. Blood biomarkers (including 
KL-6, -D and MMPs) (2–4) are increasingly used because they’re 
non-invasive, convenient, and reproducible. Research shows that 
both systemic inflammation and immune dysregulation contribute 
significantly to ILD development, driving interest in related blood 
biomarkers (5, 6). However, most existing studies concentrate 
on single or limited combinations of biomarkers, lacking 
comprehensive analysis and integration of multidimensional blood 
parameters, which hinders a complete reflection of ILD’s complex 
pathophysiology. 

Although prior investigations have linked single hematological 
indicators to ILD (7, 8), a systematic appraisal of composite, 
blood-derived inflammatory indices—such as the systemic 
inflammation response index (SIRI) and the systemic immune-
inflammation index (SII)—is still lacking. Second, conventional 
statistical methods employed in most studies are inadequate for 
handling high-dimensional data and non-linear relationships, 
constraining biomarker screening and diagnostic association 
model development. Finally, the absence of large-scale, 
multicenter validation studies compromises the reliability 
and generalizability of findings. Therefore, there is an urgent 
need to employ advanced machine learning algorithms combined 
with multidimensional blood parameters to develop eÿcient and 
accurate ILD prediction models. 

This retrospective cohort study enrolled 603 patients 
(including 201 ILD cases) from three campuses of Zhejiang 
Provincial Hospital of Traditional Chinese Medicine. We collected 
multidimensional data encompassing complete blood counts, lipid 
metabolism indicators, and various blood-derived parameters, 
using least absolute shrinkage and selection operator (LASSO) 
regression to identify ILD-associated features. Innovatively, this 
study applied eight machine learning algorithms (including 
XGBoost, logistic regression, and LightGBM) to construct ILD 
prediction models. Model performance was evaluated through 
calibration plots, sensitivity, specificity, accuracy, predictive values, 
and area under the curve (AUC), with an online prediction tool 
developed to provide primary care physicians with convenient ILD 
risk assessment. 

This study aims to integrate multidimensional blood 
parameters using advanced machine learning algorithms to 
develop accurate ILD prediction models and corresponding 

online tools. The findings may oer novel approaches for early 
diagnosis and personalized treatment of ILD, while serving as a 
reference for biomarker research in other complex diseases. By 
bridging key research gaps through machine learning analysis of 
multidimensional biomarkers, this study aims to transform ILD 
diagnosis and treatment paradigms, potentially enhancing both 
survival rates and patients’ daily functioning. 

2 Materials and methods 

We conducted a retrospective case–control study among 
individuals who underwent chest CT at Hubin Campus between 
January 2022 and April 2025. A total of 603 subjects were enrolled: 
201 with interstitial lung disease (ILD) and 402 without. The 
diagnosis of all ILD cases was established by a multidisciplinary 
team (MDT) consensus that included at least three experts from 
pulmonology, radiology, rheumatology, and pathology, based on 
integrated evaluation of HRCT, pulmonary-function testing, and 
targeted serum autoantibody panels. The ILD cohort included 22 
IPF, 175 CTD-ILD, and 4 other subtypes. The non-ILD cohort 
was selected from contemporaneous CT recipients. This group 
comprised available connective-tissue-disease (CTD) patients 
without ILD and a representative subset of other pulmonary 
conditions, all explicitly adjudicated as free of interstitial lung 
disease. They were frequency-matched 1:2 to the ILD group on 
age (±3 years) and sex. Among these controls, 106 had underlying 
connective tissue disease but no evidence of ILD, and 296 had other 
pulmonary disorders (COPD, n = 219; asthma, n = 40; pulmonary 
edema, n = 37). Absence of ILD was independently verified by CT 
and by a respiratory physician, and blood samples were collected 
during the same outpatient visit or hospitalization. 

Additionally, we collected data from 288 patients at two other 
campuses for external validation of the model. We extracted 
patient data (electronic medical records and laboratory results) 
from the hospital information system. Inclusion criteria were: (1) 
complete clinical data availability, (2) complete blood count and 
lipid panel data, and (3) age exceeding 50 years. The exclusion 
criteria included: (1) active infection, (2) concurrent diagnosis of 
malignant tumors or severe hematological disorders, and (3) on 
lipid-lowering medication. The relevant exclusion criteria and flow 
chart are shown in Supplementary Figure 1. 

We systematically collected baseline clinical characteristics 
from enrolled patients, including demographic information (age, 
sex), comorbidities, HRCT findings, and results from standard 
peripheral blood tests. Our analysis included complete blood 
count parameters (leukocyte counts with dierentials, erythrocyte 
indices, and platelet measurements) along with lipid metabolism 
markers (triglycerides [TG], total cholesterol [CHOL], high-density 
lipoprotein cholesterol [HDL-C], and low-density lipoprotein 
cholesterol [LDL-C]). All blood-derived data were collected within 
7 days after the diagnosis of ILD. This timing ensured that the 
results reflected early inflammation and metabolic status. Full 
parameter definitions are provided in Supplementary Table 1. 

We calculated the following derived hematological indices: 
neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-
to-lymphocyte ratio (dNLR), monocyte-to-lymphocyte ratio 
(MLR), neutrophil-monocyte-to-lymphocyte ratio (NMLR), 
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TABLE 1 Baseline characteristics of the two groups of patients. 

Characteristics Normal control (n = 402) ILD group (n = 201) P-value 

Sex, N (%) Female 174 (43.3%) 92 (45.8%) 0.622 

Male 228 (56.7%) 109 (54.2%) 

Age, median [IQR] 70.000 [64.500;77.000] 70.000 [64.000;77.000] 0.623 

Variable category 

WBC, median [IQR] 5.850 [4.900;6.900] 7.000 [5.800;8.500] <0.001 

NE%, median [IQR] 56.550 [50.700;61.600] 66.500 [57.500;76.000] <0.001 

LY%, median [IQR] 32.900 [28.200;38.100] 26.800 [19.700;32.700] <0.001 

MO%, median [IQR] 7.200 [6.200;8.200] 8.000 [6.500;9.400] <0.001 

EO%, median [IQR] 2.100 [1.325;3.000] 2.200 [1.300;4.300] 0.214 

BA%, median [IQR] 0.600 [0.400;0.800] 0.500 [0.300;0.700] <0.001 

NE, median [IQR] 3.300 [2.600;4.000] 4.400 [3.300;6.700] <0.001 

LY, median [IQR] 1.900 [1.500;2.375] 1.700 [1.300;2.200] 0.001 

MO, median [IQR] 0.400 [0.300;0.500] 0.600 [0.400;0.700] <0.001 

EO, median [IQR] 0.120 [0.070;0.190] 0.140 [0.080;0.250] 0.006 

BA, median [IQR] 0.040 [0.020;0.050] 0.030 [0.020;0.050] 0.111 

RBC, median [IQR] 4.545 [4.272;4.820] 4.150 [3.720;4.490] <0.001 

HGB, median [IQR] 141.000 [133.000;149.000] 127.000 [112.000;138.000] <0.001 

RDW, median [IQR] 13.300 [13.000;13.700] 13.800 [13.200;14.600] <0.001 

PLT, median [IQR] 209.000 [172.000;243.000] 209.000 [170.000;255.000] 0.832 

PDW, median [IQR] 16.800 [16.500;17.200] 16.700 [16.300;17.200] 0.053 

TG, median [IQR] 1.295 [0.950;1.750] 1.130 [0.890;1.560] 0.009 

CHOL, median [IQR] 4.775 [4.152;5.395] 4.380 [3.570;5.110] <0.001 

HDLC, mean (±SD) 1.565 (0.300) 1.299 (0.359) <0.001 

LDLC, median [IQR] 2.615 [2.015;3.128] 2.425 [1.703;2.960] 0.006 

NLR, median [IQR] 1.714 [1.337;2.197] 2.571 [1.889;3.700] <0.001 

dNLR, median [IQR] 0.848 [0.818;0.872] 0.875 [0.822;0.930] <0.001 

MLR, median [IQR] 0.222 [0.176;0.284] 0.314 [0.241;0.421] <0.001 

NMLR, median [IQR] 1.951 [1.553;2.462] 2.818 [2.188;4.250] <0.001 

SIRI, median [IQR] 0.722 [0.506;1.023] 1.511 [0.911;2.444] <0.001 

SII, median [IQR] 353.920 [256.170;481.996] 555.929 [316.800;817.765] <0.001 

MHR, median [IQR] 0.271 [0.207;0.347] 0.476 [0.325;0.640] <0.001 

NHHR, median [IQR] 1.206 [1.135;1.334] 1.282 [1.184;1.423] <0.001 

LHR, median [IQR] 1.233 [0.933;1.597] 1.364 [1.000;1.800] 0.007 

PHR, median [IQR] 131.816 [109.233;165.622] 158.974 [121.477;212.605] <0.001 

NHR, median [IQR] 2.116 [1.592;2.763] 3.750 [2.386;5.294] <0.001 

systemic inflammation response index (SIRI), systemic immune-
inflammation index (SII), neutrophil-to-HDL cholesterol 
ratio (NHR), lymphocyte-to-HDL cholesterol ratio (LHR), 
monocyte-to-HDL cholesterol ratio (MHR), platelet-to-HDL 

cholesterol ratio (PHR), and non-HDL-to-HDL cholesterol 
ratio (NHHR). The calculation is as follows: NLR = neutrophil 
counts (109/L)/lymphocyte count (109/L), dNLR = Neutrophil 
count (109/L)/(white blood cell count-lymphocyte count) 
(109/L), MLR = monocyte count (109/L)/lymphocyte count 

(109/L), NMLR = (monocyte count + neutrophil count) 
(109/L)/lymphocyte count (109/L), SIRI = neutrophil 
count(109/L) monocyte count (109/L)/lymphocyte count 
(109/L), SII = platelet count (109/L) neutrophil count 
(109/L)/lymphocytecount (109/L). NHR = Neutrophil count 
(109/L)/HDL cholesterol (mmol/L); LHR = lymphocyte count 
(109/L)/HDL cholesterol (mmol/L); MHR = monocyte count 
(109/L)/HDL cholesterol (mmol/L); PHR = PLT (109/L)/HDL 

cholesterol (mmol/L); NHHR = [cholesterol (mmol/L) – HDL 
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FIGURE 1 

Least absolute shrinkage and selection operator (LASSO) regression analysis and 10-fold cross-validation of risk factors associated with ILD. 
(A) Sixteen non-zero coefficient risk factors were identified using the LASSO method. (B) Coefficient plot of generated log (λ) sequence. 

FIGURE 2 

Subject operating characteristic (ROC) curves with different factors predicting the occurrence of ILD. 
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FIGURE 3 

Feature screening. (A) Sixteen factors were selected using the Boruta method; (B) fifteen factors were selected using the SVMREFCV method; (C) 
seven factors were selected using the LassoCV method; (D) venn diagram of the three machine learning algorithms. 

cholesterol (mmol/L)]/HDL cholesterol (mmol/L). Based on HRCT 

findings, the 603 patients were divided into two groups: interstitial 
lung disease and normal controls. 

Statistical analysis was performed using the Beckman Colter 

DxAI platform (https://www.xsmartanalysis.com/beckman/login). 
Least absolute shrinkage and selection operator (LASSO) regression 

was employed to identify factors associated with interstitial lung 

disease. We evaluated eight machine learning models (listed in 

Methods) using calibration plots, assessing sensitivity, specificity, 
accuracy, predictive values, and AUC. After randomly allocating 

15.0% of samples as a hold-out test set, we performed 2-fold cross-
validation on the remaining 85% (50% training, 50% validation per 

fold). The validation set achieved an AUC of 0.915 ± 0.034. The 

final model demonstrated an AUC of 0.885 ± 0.028 and accuracy of 

0.868 in the test set, allowing identification of the optimal machine 

learning model. The selected model was subsequently validated in 

an independent external test cohort. 
SPSS Modeler (version 16.0) and R (version 4.2.3) were 

employed in this study. For continuous data, we used 

t-tests (normal distributions) or Wilcoxon tests (non-normal 
distributions); for categorical data, we employed chi-square tests. 
The t-test was applied to data with normal distribution and 

homogeneity of variance, whereas the Wilcoxon signed-rank test 
was used for non-normally distributed or heteroscedastic variance. 
LASSO regression analysis was performed to identify predictors 
for ILD and to evaluate their predictive performance via receiver 

operating characteristic (ROC) curves. The statistical significance 

threshold was set at P < 0.05. 
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FIGURE 4 

Performance comparison between multiple models. (A) ROC curve for the test cohort; (B) ROC curve for the validation cohort; (C) decision curve of 
the machine learning model; (D) calibration curve for the specific machine learning model; (E) forest area (AUC) in each area under the curve. 

3 Results 

3.1 Baseline features 

Table 1 presents the baseline characteristics of 603 patients. 
Among these patients, 201 (33.3%) were diagnosed with interstitial 
lung disease, including 92 females (45.8%) and 109 males (54.2%). 
The control group included 402 patients (66.7%), comprising 
174 females (43.3%) and 228 males (56.7%). In this study, 
no significant intergroup dierences were observed in age 
(P = 0.623), sex (P = 0.622), monocyte percentage (MO%, 
P = 0.214), basophil count (BA, P = 0.111), platelet count (PLT, 
P = 0.832), or platelet distribution width (PDW, P = 0.053). 
All remaining measured parameters demonstrated statistically 
significant intergroup dierences (P < 0.05). 

3.2 Identification of feature factors 
associated with interstitial lung disease 

Using LASSO regression analysis, this study identified multiple 
factors associated with interstitial lung disease risk, as detailed 
in Table 1. The analysis identified sixteen significant biomarkers 
associated with interstitial lung disease (Figure 1), including 
neutrophil percentage (NE%), lymphocyte percentage (LY%), and 
14 other hematological and biochemical parameters. Subsequently, 

we assessed the diagnostic performance of these factors by 
calculating their area under the curve (AUC) values through 
ROC analysis (Figure 2). The AUC values ranged from 0.565 to 
0.793, with neutrophil-to-high density lipoprotein cholesterol ratio 
(NHR) showing the highest predictive value (AUC = 0.793) and 
eosinophil count (EO) the lowest (AUC = 0.568). Complete results 
are presented in Figure 2. 

3.3 ML algorithm for feature 
identification 

The algorithms LassoCV, SVMREFCV, and Boruta were 
employed to identify biomarkers, with results shown in Figures 3A– 
C respectively, and the resulting Venn diagram (Figure 3D) was 
generated using R. The intersection of results from all three 
algorithms revealed six overlapping biomarkers were identified: 
neutrophil percentage (NE%), lymphocyte percentage (LY%), 
monocyte percentage (MO%), hemoglobin (HGB), LHR, and 
NHR. 

3.4 Optimal model identification 

The random forest model demonstrated superior predictive 
accuracy among eight evaluated models (Figure 4 and Table 2), 
with AUC values of 0.868 and 0.885 in validation and test 
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TABLE 2 The diagnostic effect of the eight classification models in the training and validation cohorts. 

Classifier Cohorts AUC Cutoff Accuracy Sensitivity Specificity Positive predictive 
value 

Negative predictive 
value 

F1 

Logistic Training 0.918 0.342 0.877 0.846 0.892 0.799 0.919 0.822 

Validation 0.863 0.342 0.822 0.727 0.867 0.719 0.872 0.723 

XGBoost Training 1.000 0.840 1.000 1.000 1.000 1.000 1.000 1.000 

Validation 0.861 0.840 0.843 0.660 0.924 0.794 0.863 0.716 

LightGBM Training 1.000 0.811 1.000 1.000 1.000 1.000 1.000 1.000 

Validation 0.893 0.811 0.777 0.515 0.974 0.931 0.734 0.657 

RandomForest Training 1.000 0.500 0.992 0.997 0.989 0.979 0.998 0.988 

Validation 0.915 0.500 0.880 0.781 0.928 0.831 0.901 0.803 

AdaBoost Training 0.971 0.494 0.894 0.923 0.881 0.786 0.960 0.849 

Validation 0.825 0.494 0.798 0.738 0.835 0.729 0.840 0.732 

DecisionTree Training 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Validation 0.770 1.000 0.789 0.712 0.828 0.667 0.853 0.687 

GBDT Training 0.993 0.328 0.960 0.955 0.962 0.926 0.978 0.939 

Validation 0.913 0.328 0.847 0.854 0.843 0.763 0.909 0.805 

GNB Training 0.875 0.025 0.813 0.795 0.822 0.693 0.889 0.740 

Validation 0.831 0.025 0.736 0.684 0.763 0.585 0.833 0.627 
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FIGURE 5 

Performance of the predicted modes. (A) ROC curve for the test cohort; (B) ROC curve for the test cohort; (C) ROC curve for the validation cohort; 
(D) AUC for the test cohort; (E) calibration curve analysis; (F) decision curve analysis; (G) confounding matrix for the training set; (H) confounding 
matrix for the test set; (I) KS statistic plot for the test cohort; (J) parallel coordinates for 6 features. 
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phases respectively. This performance was further supported by 
calibration curve analysis and decision curve analysis, confirming 
both model robustness and clinical applicability. 

3.5 Random forest model analysis 

As shown in Figures 5A–C and Table 3, the AUC values of 
the test cohort were comparable to those of the validation cohort. 
Figure 5D shows comparable performance between validation 
and training cohorts, demonstrating the model’s appropriate fit 
without overfitting. As shown in Table 3, the model achieved >70% 
accuracy, sensitivity, and specificity in the test cohort. 

Furthermore, the calibration curve showed strong agreement 
between actual and predicted probabilities, with points closely 
following the diagonal (Figure 5E), while the decision curve 
analysis confirmed the model’s substantial clinical utility 
(Figure 5F), thereby validating the excellent performance of 
the random forest model. 

The confusion matrix results demonstrated variations in 
model performance across dierent datasets. In the training set 
(Figure 5G). The model showed consistent performance across 
datasets with training set sensitivity of 74.3% and specificity of 
97.7% (Figure 5G), compared to 70.6% sensitivity and 96.5% 
specificity in the testing set (Figure 5H). Figure 5I shows the KS 
statistic plot for the test cohort, and Figure 5J presents parallel 
coordinates for six features. Additionally, Figure 6 illustrates the 
SHAP values for all covariates that predict the probability of 
interstitial lung disease. 

3.6 External validation of the random 
forest model 

We evaluated the model using an independent external 
validation cohort of 288 patients from two additional medical 
centers. The model showed an AUC of 0.849 (Figure 7A) and 
demonstrated substantial clinical utility in decision curve analysis 
(Figure 7B). 

3.7 Online prediction platform 

Based on the aforementioned analysis, we developed an 
online predictive platform to assist primary care clinicians 
in assessing interstitial lung disease risk in patients with 
suspected symptoms (Figure 8). This platform enables 
users to input six key blood biomarkers (NE%, LY%, 
MO%, HGB, LHR, NHR) to estimate disease probability. 
https://www.xsmartanalysis.com/model/list/predict/model/html? 
mid=26937&symbol=9175488Bp0Bm85Ap4DG1 

4 Discussion 

Interstitial lung disease (ILD) (9) represents a diverse group 
of disorders aecting the lung interstitium through inflammation T
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FIGURE 6 

Overall SHAP explanations. SHAP explanations, red color represents higher values for covariates, while blue represents lower values for covariates. 
The x-axis represents the change in the log probability of ILD. 

FIGURE 7 

External independent test of the random forest (RF) model. (A) Subject operating characteristics (ROC) curves for the external independent testing; 
(B) Test decision curve for the external independent test cohort. 

and fibrosis. Its etiology is complex, involving environmental 
exposures, genetic factors, and autoimmune mechanisms. 
While clinical presentations vary, most ILD patients experience 

progressive dyspnea, dry cough, and declining pulmonary 

function. In advanced cases, these may lead to respiratory 

failure with potentially fatal outcomes. Although high-resolution 

computed tomography (HRCT) remains essential for ILD 

diagnosis (10), significant challenges exist, especially in early-
stage disease detection. Diagnostic challenges are exacerbated 

in resource-limited settings by: (1) restricted HRCT availability, 

(2) insuÿcient physician training, and (3) lack of screening 

instruments. Consequently, developing reliable biomarkers and 

diagnostic association models would substantially enhance early 

ILD detection and risk assessment. 
This study analyzed 891 patient records from Zhejiang 

Provincial Hospital of Traditional Chinese Medicine (including 

Hubin Branch and two others). It aimed to identify ILD-associated 

blood biomarkers and develop machine learning prediction 

models. Using LASSO regression and various machine learning 

algorithms, we selected key indicators including: neutrophil 
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FIGURE 8 

An online prediction tool (A,B) that predicts the probability of ILD based on the random forest (RF) model, according to the online page for six 
indicators to predict risk. 

percentage (%), lymphocyte percentage (%), monocyte percentage 
(%), hemoglobin (g/dL), NHR and LHR. The random forest model 
showed superior performance (accuracy: 86.8%, AUC: 0.885) in 
both internal and external validation compared to other algorithms, 
establishing it as the optimal diagnostic association model. These 
findings equip clinicians with a machine-learning tool that 
leverages routine bloodwork to reliably flag the presence of ILD. 

This study pioneers the integration of multiple blood-derived 
biomarkers with machine learning algorithms to enable early risk 
prediction and diagnosis of ILD. Our feature selection process, 
employing LASSO regression, revealed six clinically significant 
indicators: NE%, LY%, MO%, HGB, NHR, and LHR. While some of 
these parameters have been individually examined, their combined 
application represents a novel approach, particularly the innovative 
use of NHR and LHR ratios in ILD assessment. 

The white blood cell count, particularly neutrophil levels, is 
closely associated with ILD development (9). Studies indicate that 
neutrophils promote fibrosis through the release of proteolytic 
enzymes MMP-9 and NETs (11). As part of the innate immune 
system, monocytes potentially contribute to ILD pathogenesis by 
dierentiating into pulmonary macrophages (12, 13). Research 
has identified circulating hybrid TLR4M2 monocytes as potential 
biomarkers for progressive pulmonary fibrosis in SSc-ILD (14). 

Hemoglobin, the crucial oxygen transport protein, may 
demonstrate reduced levels in ILD patients due to impaired 
alveolar ventilation and diusion capacity. SLE-ILD patients show 
significantly lower hemoglobin levels than non-ILD counterparts 
(P < 0.05), with low hemoglobin levels being an independent risk 
factor (15). This hematologic pattern is also observed in other 
connective tissue disease-related ILDs (16, 17). 

In addition to its role in lipid metabolism, HDL also 
has anti-inflammatory, antioxidant, and antifibrotic properties. 
Emerging evidence reveals its significant association with ILD 
onset, progression, and prognosis. Low HDL-C represents an 
independent risk factor for RA-ILD, while high levels appear 
protective (18). Decreased activity of the functional marker 
PON1 correlates with endothelial damage and increased DM-ILD 
risk (19). 

The novel inflammatory-metabolic indices LHR and NHR, 
integrating monocyte/neutrophil (inflammatory markers) with 
HDL-C (anti-inflammatory/antioxidant marker) ratios, reflect 
the imbalance between inflammatory processes and repair 
mechanisms. These indices have demonstrated prognostic value 
in cardiovascular diseases, sepsis, periodontitis, and depression 
(20–23). 

It is noteworthy that the AUC values for NE%, LY%, MO%, 
HGB, NHR and LHR were 0.752, 0.704, 0.603, 0.741, 0.793, and 
0.567, respectively, while our model achieved an AUC of 0.864. 
This demonstrates that our model both improves the predictive 
performance of individual parameters and shows superior eÿcacy. 
Compared with the study by Qin et al. (8), our research not 
only validates the importance of routine hematological parameters 
in ILD but also identifies the significant role of novel derived 
parameters. Furthermore, our machine learning model significantly 
improves prediction accuracy. Notably, our study pioneers the 
development of an online prediction tool, providing valuable 
diagnostic support for primary care clinicians. 

Our findings provide significant implications and important 
guidance for clinical practice. First, machine learning models 
enable more accurate identification of high-risk ILD patients, 
facilitating early intervention to improve outcomes. Second, the 
blood biomarkers identified in this study oer novel insights into 
ILD pathological mechanisms, particularly the discovery of LHR 
and NHR, which suggests the potential role of lipid metabolism 
and inflammatory responses in ILD. These findings both optimize 
the ILD diagnostic process and suggest new therapeutic targets 
for future treatment strategies. Furthermore, widespread adoption 
of our online prediction tool will enhance primary healthcare 
diagnostics for ILD, reducing errors and creating societal benefits. 

This study has several limitations. First, our sample size 
remains relatively small despite using data from two centers. This 
may limit the results’ broad applicability. Second, the retrospective 
design introduces possible selection and information biases. Third, 
the models’ performance depends on data quality and feature 
selection, despite using multiple machine learning approaches. 
Fourth, the cohort of this study was dominated by CTD-ILD 
(87%), so the generalization ability of the model in other ILD 
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phenotypes (such as IPF, HP, sarcoidosis, etc.) has not been 
verified. In subsequent studies, larger CTD-ILD specimens will be 
included to build a pure cohort training set, systematically evaluate 
the improvement of model performance, and further verify the 
incremental value of this dedicated tool in clinical decision-making. 
Finally, our online prediction tool requires additional validation 
before clinical implementation. 

5 Conclusion 

This study employed the lasso regression method to identify 
key biomarkers associated with interstitial lung disease, including 
neutrophil percentage (NE%), lymphocyte percentage (LY%), 
monocyte percentage (MO%), hemoglobin (HGB), LHR, and NHR. 
After evaluating eight dierent machine learning models, the 
random forest (RF) model demonstrated the best performance, 
showing exceptional predictive accuracy and clinical utility. 
The model performed excellently in both internal and external 
validations, indicating significant clinical application potential. 
Additionally, our developed web-based predictive tool oers 
primary care physicians an easy-to-use method for risk assessment. 
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