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1 Introduction 

Resistance training causes muscle hypertrophic remodeling, primarily through 
mammalian target of rapamycin (mTOR)-mediated protein synthesis (1). Endurance 
training upregulates adenosine monophosphate-activated protein kinase (AMPK) and 
peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), enhancing 
mitochondrial biogenesis in skeletal muscle (2). Previous in vitro studies proposed 
antagonistic crosstalk between mTOR and PGC-1α pathways, wherein their signaling axes 
compete for transcriptional/translational resources in certain cell types (3). For example, 
AMPK inhibits mTOR, relieving its suppression of mitophagy in skeletal muscle (4). 
However, a study found that resistance training increased skeletal muscle PGC-1α and 
mTOR activities in healthy young men, suggesting that the interfering effects might not 
exist in vivo (5). Moreover, a research has demonstrated that mTOR not only exerts its 
traditional function of driving muscle hypertrophy, but also indirectly promotes muscle 
PGC-1α signaling in mice (6). Thus, integrative adaptations of skeletal muscle mediated 
by mTOR are not just confined to controlling muscular growth. mTOR also influences 
mitochondrial biogenesis signaling. Drugs or exercises targeting the mTOR may yield 
treatment strategies for the chronic diseases such as diabetes and sarcopenia. Present article 
mainly discussed the regulation of mitochondrial biogenesis by mTOR in skeletal muscle. 

2 The classical role of mTOR in regulating skeletal 
muscle hypertrophy with mechanical loads 

mTOR positively regulates protein synthesis and ribosomes biogenesis, contributing to 
the skeletal muscle hypertrophic response (7). The skeletal muscle hypertrophic adaptation 
is meditated by both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). 
mTORC1 is the primary kinase responsible for controlling muscle hypertrophy with 
mechanical loads (7). For example, genetic deleting tuberous sclerosis complex (TSC, 
a mTORC1 inhibitor) promoted the mTORC1 signaling, and hypertrophic adaptation 
and atrophy-resistance of skeletal muscle also occurred after denervation operation 
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in mice (8). The muscle hypertrophic response is mediated by 
the regulatory-associated protein of mTOR (Raptor) which is an 
essential part of mTORC1. After mechanical overload, muscle 
Raptor-deletion mice exhibited blunted mTORC1 signaling and 
attenuated muscle mass accrual (8). Muscle hypertrophy and 
protein synthesis were accelerated when mTORC1 was activated 
by the upstreaming regulator protein kinase B (Akt), whereas 
rapamycin-inhibited mTORC1 blunted mechanical overload-
induced hypertrophy in mice (9, 10). 

After activation by resistance exercise or/and amino acid 
ingestion, mTORC1 can localize with lysosomes and move toward 
the cell membrane, enhancing protein translation and accretion 
in skeletal muscle (11). Resistance exercise acutely increased 
mTORC1 activity and mTOR-lysosome translocation of II fibers 
3 h post-exercise in young men (12). Exercise combined with 
feeding may result in synergistic effect because resistance training 
plus protein-carbohydrate feeding increased muscle mTORC1 
signaling greater than exercise alone in young men (13). Eight 
weeks of resistance training further enhanced the Akt/mTORC1 
phosphorylation in skeletal muscle, driving muscle hypertrophy 
in men (14). Therefore, mTORC1 is an essential regulator of the 
muscle hypertrophic adaptation by resistance training. A study 
found mTORC2 also positively regulates the muscle hypertrophic 
change with muscle contraction because the reduced extent of 
protein synthesis and hypertrophic response under the inhibition of 
both mTORC1 and mTORC2 was higher than that under the single 
inhibition of mTORC1 (15). However, the precise mechanism of 
mTORC2-mediated muscle hypertrophy with muscle contraction 
is unclear. 

A key downstream protein of mTORC1 is ribosomal S6 protein 
kinase 1 (S6K1), which promotes the functions of eukaryotic 
translation initiation factor 4B, eukaryotic elongation factor 2, 
and ribosomal protein S6, accelerating protein synthesis and the 
hypertrophic alteration in skeletal muscle (7). Either high load 
resistance training or low load resistance training with more 
fatigue, increased S6K1 phosphorylation and mTORC1-associated 
signals of skeletal muscle in humans during recovery period, which 
meant S6K1 is implicated in the skeletal muscle hypertrophic 
response to mechanical overload (16). Eukaryotic initiation factor 
4E binding proteins (4E-BPs) are another downstream target of 
mTORC1. Once phosphorylated by mTORC1, 4E-BPs dissociate 
from eukaryotic translation initiation factor 4E (eIF4E), enabling 
eIF4F formation, which then increases the ribosomal biogenesis 
contributing to the skeletal muscle hypertrophy (7). 

Upstream regulators of mTORC1 involved in muscle 
hypertrophic remodeling include insulin-like growth factor-1 
(IGF-1), extracellular signal regulated kinase (ERK), peroxisome 
proliferator-activated receptor γ coactivator 1α4 (PGC-1α4), and 
diacylglycerol kinase ζ (DGKζ) (7). These regulators modulate 
mTORC1 in an independent manner. Most growth factors that 
stimulate mTORC1 are blocked by TSC. IGF-1 is a classic regulator 
for protein synthesis in skeletal muscle. Following feeding or 
mechanical load stresses, IGF-1 binds to IGF-1 receptor and 
phosphorylates an intracellular adaptor protein insulin receptor 
substrate-1, which phosphorylates phosphoinositide 3-kinase 
(PI3K) followed by Akt activation. Akt inhibits tuberous TSC, 
resulting in activation of small G protein Ras homolog enriched 

in brain (Rheb), which then activates mTORC1 in skeletal 
muscle (17). ERK also inhibits TSC to initiate the skeletal muscle 
mTORC1 activation in the beginning of mechanical overload 
stresses independently of IGF-1 signaling (18). DGKζ converts 
diacylglycerol into phosphatidic acid, which binds to the FKBP12-
rapamycin binding domain of mTORC1 and enhances mTORC1 
activity, which is critical for the skeletal muscle hypertrophic 
response to mechanical overloads (19). PGC-1α4 differs from other 
family members of PGC-1α in that resistance training preferentially 
initiates PGC-1α4 transcriptional expression, which then leads to 
mTORC1-mediated muscle hypertrophic signaling (20). 

3 The potential role of mTOR in 
regulating mitochondrial biogenesis of 
skeletal muscle 

3.1 mTOR does not affect muscle 
PGC-1α-mitochondrial biogenesis signals 
in vivo 

PGC-1α regulates skeletal muscle mitochondrial biogenesis 
with exercise. Conventional view holds that PGC-1α-driven 
mitochondrial biogenesis competes with mTORC1-mediated 
protein synthesis, but this opinion has been challenged for 
that resistance training simultaneously elevates both pathways, 
suggesting their synergistic potential in muscle adaptation 
in humans (2). Animal study also reported that AMPK and 
Raptor activities of skeletal muscle were enhanced following 
resistance training in rats, suggesting that mTOR and PGC-1α 
signals can be elevated simultaneously in vivo (21). Additionally, 
emerging evidence has demonstrated that mTOR may be 
involved in maintaining or enhancing PGC-1α signaling. 
In humans, two studies have found that resistance training 
combined with endurance training could amplify the muscle 
mitochondrial biogenesis signaling, particularly enhancing the 
muscle mitochondrial state 3 respiration more efficiently in the 
elderly (22, 23). 

3.2 Evidence of the regulation of 
mitochondrial biogenesis by mTORC1 

The interaction between mTORC1 and PGC-1α may 
be related to their shared target protein: Yin-yang1 (YY1), 
because experiment demonstrated mTORC1 phosphorylates and 
activates the YY1, which then promotes the PGC-1α-mediated 
mitochondrial biogenesis (24). Mice with muscle-specific deletion 
of YY1 showed the reduced levels of muscle mitochondrial content 
and oxidative phosphorylation (25). Another investigation also 
demonstrated that Raptor of mTORC1 is required in promoting 
skeletal muscle mitochondrial biogenesis upon Akt activation, 
because muscle-specific deletion of Raptor in mice impairs mTOR 
signaling, reducing both hypertrophy and mitochondrial protein 
content (6). 
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FIGURE 1 

Resistance training and nutritional supplementation elicit muscle mTOR-involved hypertrophic signaling and potentially contribute to PGC-1α 
signaling of mitochondrial biogenesis. 

A recent study demonstrated that 4-week of L-arginine 
supplementation improved exercise performance, mitochondrial 
transcription factor A (Tfam), and PGC-1α genes in the 
gastrocnemius of mice, but these adaptations and mTOR 
phosphorylation activity were abolished by the mTORC1 inhibitor 
rapamycin (26). Additionally, supplementation of polygonatum 
sibiricum polysaccharide in the aged mice enhanced muscle mass; 
this nutrient also reduced the level of reactive oxygen species 
(ROS), benefiting mitochondrial biogenesis in senescent C2C12 
cells; similarly, inhibition of mTORC1 by LY294002 also decreased 
mitochondrial membrane potential and led to excessive production 
of ROS in vitro (27). Ashwagandha extract supplementation in 
aged mice increased skeletal muscle mass, coinciding with elevated 
mTOR activity and PGC-1α expression; however, the direct causal 
relationship requires further validation due to the multi-compound 
nature of plant extracts (28). Above studies totally suggested 
that mTORC1 may be required for the nutrients-induced PGC-
1α signaling of mitochondrial biogenesis in skeletal muscle. It 
is noted that long-term and hyperactivated mTORC1 (e.g., in 
TSC1 knockout model) exacerbates mitochondrial dysfunction 
in muscle (29). In the skeletal muscles of older adults with 
sarcopenia, mTORC1 may exhibit hyperactivated and reduce 
protein synthesis, impair mitophagy, and disrupt mitochondrial 
biogenesis (30), suggesting that intermittent activation of mTOR 
(e.g., exercise stimulation) rather than overactivation positively 
regulates mitochondrial biogenesis in skeletal muscle. Thus, 
resistance training combined with endurance training may be 

suitable for older adults because endurance training-induced 
AMPK activation inhibits the hyperactivation of mTOR, benefiting 
the mitochondrial biogenesis besides treatment of sarcopenia. In 
MEFs cells, mTORC1 activation increased mitochondrial state 3 
respiration and ATP turnover; in MCF 7 cells, the loss of 4E-BPs 
attenuates the transcription of mTORC1-induced mitochondrial 
biogenesis genes, including Tfam and ATP5O (ATP synthase O 
subunit) (31). While in vitro findings from MEFs and MCF7 
cells provide mechanistic insights, the extrapolation to skeletal 
muscle physiology requires caution due to tissue-specific regulatory 
networks governing mitochondrial biogenesis. 

Therefore, current studies initially demonstrated that mTOR 
regulates the skeletal muscle PGC-1α pathway, especially being 
implicated in the nutrients-induced mitochondrial biogenesis 
(Figure 1). By contrast, chronic hyperactivation of mTOR induced 
by aging inhibits mitochondrial biogenesis. 

3.3 Evidence of the regulation of 
mitochondrial biogenesis-related function 
by mTORC1 

mTOR also regulates muscle mitochondrial dynamics 
(mitochondrial fusion and fission) (Figure 1). 14-day functional 
overload (soleus/gastrocnemius removal) in mice induced 
plantaris hypertrophy, coinciding with elevated mitofusin 2 
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and optic atrophy 1 proteins contents (enhanced mitochondrial 
fusion). These mitochondrial adaptations and protein synthesis 
improvement were inhibited by rapamycin administration, 
suggesting that mTORC1 might be responsible for enhancing the 
mitochondrial fusion response in the skeletal muscle (10). The 
same group also found calorie restriction induced mitochondrial 
fragmentation of skeletal muscle in mice, which was mediated 
by dynamin-related protein 1, but this process was partially 
suppressed by mTORC1 inhibition (32). Mitochondrial fusion 
and fission participate in the mitochondrial biogenesis process 
by importing the new components for mitochondrial network 
in muscle cells (33). Thus, it can be inferred that mTORC1 
may regulate mitochondrial biogenesis through controlling 
the mitochondrial dynamics. During myoblasts differentiation 
model, Akt/mTOR pathway activation increased the number of 
mitochondrial DNA (mtDNA) copies and enhanced mitochondrial 
biogenesis, whereas inhibition of IGF-1 reducing mTOR signals 
increased the mitochondrial ROS and resulted in a high level of 
mitochondrial apoptosis signaling (34). Moreover, it was found 
that fat mass- and obesity-associated (FTO) gene is essential 
for maintaining the mitochondria biogenesis, ATP content, and 
mitochondrial DNA copy during skeletal muscle differentiation 
in mice. Rapamycin blocking muscle mTORC1 suppressed the 
FTO-induced PGC-1α transcription and affected the muscle 
differentiation (35), which indicated that mTOR is involved in the 
muscle differentiation through mitochondrial biogenesis pathway 
but the link between PGC-1α and mTOR is unclear. 

Above studies suggested that mTOR or mTOR upstream signals 
positively affect the mitochondrial dynamics, mtDNA synthesis, 
and mitochondrial ROS in skeletal muscle, which may benefit the 
PGC-1α signaling for mitochondrial biogenesis. It is necessary to 
verify whether mitochondrial dynamics proteins and FTO act any 
roles between mTOR and PGC-1α in skeletal muscle. 

4 Discussion 

In skeletal muscle, emerging evidence demonstrated the 
competition between mTOR and PGC-1α signals may not exist 
in vivo. In nutritional supplement or exercises, mTOR may 
control the PGC-1α pathway via YY1, 4E-BPs, Raptor, and other 
unknown ways. mTOR coordinates mitochondrial dynamics 
(fusion/fission balance) and ROS homeostasis, potentially 
modulating mitochondrial biogenesis. 

In future, it is urgent to study the interaction between muscle 
mTOR and PGC-1α, as well as how mTOR influences PGC-1α 
in exercise and nutrients interventions. mTOR should not be 
considered as a kinase that is only for cell growth. In resistance 
training condition, activation of mTOR pathway needs the 
coordination with PGC-1α-meditated mitochondrial biogenesis 
because protein synthesis requires more ATP supply. Thus, 
investigation on the role of mTOR in muscle mitochondrial 
biogenesis is essential for adjusting exercise and nutritional 
methods to maximize aerobic capacity for sarcopenia patients. For 
instance, we can construct combined resistance and endurance 

trainings. The resistance training session may benefit the 
non-mTOR protein synthesis pathways and the endurance 
training session restores the normal function of mTOR by 
AMPK’s inhibitory effect. A meta-analysis demonstrated 
that resistance combined with endurance exercise elicited 
significant improvements in sarcopenia-related parameters 
(36). However, current researches on exercise interventions for 
sarcopenia still lacks investigation into skeletal muscle mTOR 
signaling. Future studies are anticipated to validate whether 
multicomponent exercise can more effectively modulate mTOR 
signaling dysfunction in animal models. mTOR exerts function in 
mediating glucose metabolism and insulin signaling. Investigation 
the effect of mTOR on the mitochondrial function in muscle can 
support the strategies for understanding of the mechanism of 
exercise treatment on the diabetes and other chronic diseases. 
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