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Introduction: Brain tumor classification remains one of the most challenging 
tasks in medical image analysis, with diagnostic errors potentially leading to 
severe consequences. Existing methods often fail to fully exploit all relevant 
features, focusing on a limited set of deep features that may miss the complexity 
of the task.
Methods: In this paper, we propose a novel deep learning model combining a 
Swin Transformer and AE-cGAN augmentation to overcome challenges such as 
data imbalance and feature extraction. AE-cGAN generates synthetic images, 
enhancing dataset diversity and improving the model’s generalization. The Swin 
Transformer excels at capturing both local and global dependencies, while 
AE-cGAN generates synthetic data that enables classification of multiple brain 
tumor morphologies.
Results: The model achieved impressive accuracy rates of 99.54% and 98.9% 
on two publicly available datasets, Figshare and Kaggle, outperforming state-
of-the-art methods. Our results demonstrate significant improvements in 
classification, sensitivity, and specificity.
Discussion: These findings indicate that the proposed approach effectively 
addresses data imbalance and feature extraction limitations, leading to superior 
performance in brain tumor classification. Future work will focus on real-time 
clinical deployment and expanding the model’s application to various medical 
imaging tasks.
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1 Introduction

Recent progress in medical imaging and computational intelligence has demonstrated the 
power of deep learning, multimodal fusion, and quantum-inspired methods in solving 
complex clinical problems across diverse medical domains. For instance, image-guided tract-
based surgical approaches have improved hematoma evacuation outcomes for intracerebral 
hemorrhage (1). EEG-based frameworks have shown remarkable success in visual stimulus 
reconstruction (2), mental state estimation (3), and emotion recognition via autoencoder 
fusion with transformer models like MSC-TimesNet (4). Multimodal masked autoencoders 
and lightweight modules such as AFBNet have also emerged to address the challenges of 
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feature extraction and computational efficiency in disease staging and 
super-resolution imaging (5, 6). Biologically inspired strategies, like 
miRNA-guided neuroregeneration, are being computationally 
modeled to support post-hemorrhagic remyelination (7). 
Transformer-driven networks such as CenterFormer are transforming 
segmentation accuracy in dental imaging, while CI-based systems 
enhance neuropsychological assessment of substance-related disorders 
(8, 9). Additionally, deep learning has accelerated super-resolution 
microvessel imaging and denoising in ultrasound microscopy, 
addressing long-standing imaging limitations. Advanced modeling is 
also being applied to rare neurological diseases, like adult-onset ceroid 
lipofuscinosis, and to cross-modal causal learning frameworks in 
radiology report generation (10–13). Furthermore, recent efforts have 
explored spectral graph signal processing to better model brain 
connectivity in autism (14) learning techniques have shown strong 
potential in early multi-cancer detection (15), breast cancer 
classification using SqueezeNet-SVM (16), efficient dual-encoder 
segmentation in dermatology (17), and hybrid ELM models for breast 
cancer diagnosis (18). These innovations reflect a growing consensus 
that next-generation diagnostic systems must integrate robust data 
augmentation, multimodal fusion, and advanced architectures like 
transformers to deliver clinical-grade accuracy and generalizability.

One area where these advancements are critically needed is in the 
diagnosis and classification of brain tumours, a domain characterized 
by high complexity, diagnostic uncertainty, and significant clinical 
risk. Brain tumours are among the most intricate and life-threatening 
neurological conditions, and the patient’s health outcomes and 
quality of life are greatly impacted (19). A brain tumour is an 
umbrella term that describes the abnormal and often uncontrolled 
division of cells in the brain and central nervous system. Brain 
tumours can be benign, malignant or metastatic (having spread from 
other regions of the body). Primary brain tumours are those that 
originate from within the brain. Examples of primary brain tumours 
are gliomas, meningiomas, and pituitary adenomas (20, 21). The 
associated symptoms of a brain tumour will vary greatly depending 
on the size and location. Common associated symptoms include 
speech, vision, or sensation changes, coordination problems, 
cognitive changes, recurrent headaches, and seizures (22, 23). 
Diagnosing brain tumours is oftentimes difficult due to the 
heterogeneous way they present and the often-subtle nature of the 
early-stage symptoms (24, 25). These factors often result in delays in 
treatment, increased complexity of health outcomes, and 
increased mortality.

To address these issues, computer-assisted detection and diagnosis 
(CADe and CADx) systems have developed as essential tools within 
medical imaging by providing valuable support in detecting and 
classifying abnormalities to radiologists. Such systems rely on a 
combination of artificial intelligence (AI) and computer vision 
methods that can analyse medical images, for example, colorectal 
polyp segmentation, lung cancer detection, tumour classification 
(26–28). Machine learning (ML) methods, especially deep learning, 
have transformed this field by applying models that can automatically 
learn features, find complex patterns and improve diagnostic accuracy 
(29, 30). Furthermore, CADe and CADx systems offer not only a more 
accurate diagnosis, but also further reproducible and efficient levels of 
accuracy which ultimately is crucial in clinical practice where timely 
and accurate decisions can save lives (31). Notwithstanding advances 
made in ML and deep learning, a main bottleneck in brain tumour 

classification studies is the limited number of available high-quality 
annotated examples. Deep learning models, in particular, 
Convolutional Neural Networks (CNN), have performed very well by 
learning hierarchical spatial features automatically from medical 
images. However, it is the case that deep learning relies heavily on and 
requires considerable datasets that are very high in both volume and 
quality. On the other hand, data augmentation strategies, like image 
flipping, rotation, or cropping, will achieve limited degrees of diversity 
and have their limitations in capturing the full spectrum of 
pathological variations expected in real medical data.

The use of ML and DL approaches for the classification of brain 
tumours has received a lot of attention. Early work in this area used 
traditional, ML-based approaches that started with manually 
determining features and then using the features in traditional 
classifiers (32) created a feature set by combining the Gray Level 
Co-occurrence Matrix (GLCM) and Principal Component Analysis 
(PCA) for feature selection before applying classifiers including SVM, 
KNN along with Generalized Regression Neural Networks (GRNN). 
They achieved accuracy of 97, 96.24 and 94.7%, respectively. Although 
these studies reported good classification results, almost every step 
depended on handcrafted features that probably did not completely 
represent the full complexity of the underlying tumour structures 
shown in MRI images. Such features are likely to cause problems with 
generalization on unseen data and raise concerns related to robustness 
in clinical practice.

With the rise of DL, models such as CNN have created a means 
for automating both deciding on the features to use, and then 
classifying features (33) completed an evaluation of multiple transfer 
learning models, including ResNet, Xception, and MobileNetV2, and 
applied these models to brain tumour detection. Out of the previously 
listed models, MobileNetV2 had accuracy of 98.24% accuracy and was 
determined to offer a powerful balance between performance and 
computational efficient. MobileNetV2 was efficient, but may not 
be able to extract as much features to measure complex tumours as 
other architectures would offer, such as ResNet or Xception, and have 
offered superior accuracy at the cost of speed. This tradeoff between 
model size and computational efficient have been a large factor in 
realizing the model for real-time systems and especially in clinical 
systems (34), compared AlexNet, VGG16, GoogLeNet, and ResNet-
50, on a dataset of 3,000 MRI scans. ResNet-50, had the highest 
accuracy of the previous category, utilizing 95.8% accuracy, where 
AlexNet, the fastest model and completed training in 1.2 s, no less. 
While AlexNet is quick, how close it came to the final weighted 
estimate associated with tasks that it is asked to complete, and 
therefore, will be inhibitive in spaces where super high classification 
accuracy is required, such as when medical diagnoses where critically 
every detail matters.

New advancements were found when attention mechanisms were 
embedded within CNNs to concentrate on key features of the input 
data (35) made modifications to GoogLeNet by adding attention 
layers and residual connections to the network, increasing accuracy 
by 1.72% while retaining fewer parameters than the originally 
designed GoogLeNet. This model without attention mechanisms 
works well for a variety of tasks, and this newly modified solution has 
the potential of further improving performance measures, but the 
additional computational burden in terms of the residual connections 
and attention layers could still fail to guarantee any efficiency with 
real-time performance in resource-constrained environments (36) 
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adapted attention mechanisms into a VGG-based architecture 
(AVNC) for the classification of chest CT images, and there was 
demonstrated better performance, but due to the need for additional 
memory (and complexity), real-time deployment may not 
be  practicable. Combining various deep learning techniques into 
hybrid models has had much success improving classification 
accuracy in recent years. For instance, (37) proposed a hybrid CNN 
combined with an LSTM. R. Vankdothu et  al. built a hybrid 
CNN-LSTM by performing feature extraction with their CNN before 
passing the result to the LSTM to capture contextual information. The 
drawback to creating a hybrid CNN-LSTM is the computational 
overhead, decreasing performance, in addition to adding time to train 
the model. Further, the longer to train normally means better 
accuracy, albeit it can be problematic if you have a smaller dataset or 
require faster deployment or inference times (38) developed a hybrid 
approach for deep CNN based on Dolphin-SCA that combines fuzzy 
deformable fusion along with Dolphin Echolocation-based Sine 
Cosine Algorithm (Dolphin SCA) as well as Linear Discriminant 
Analysis (LDA). The model achieved a promising accuracy of 96.3% 
with their hybrid approach. However, careful consideration is required 
in any application of this technique as optimization algorithms like 
SCA increase the computational burden (overhead) that may 
be  unwanted in real-time applications or when dealing with 
large datasets.

The use of pretrained networks for tumour classification has been 
investigated a fair amount. For instances, (39) compared a number of 
deep learning architectures, such as Xception, InceptionV3, ResNet50, 
VGG16, as well as MobileNet, reporting F1-scores of 97.25–98.75%, 
with Xception outperforming the other architectures. While the 
models in this study performed well, there were a number of issues 
with the study, such as not considering class imbalance which would 
potentially affect the other classes negatively if they were 
underrepresented. It should also be noted that there are inefficiencies 
in training the number of models as there would be classes. Finally, 
deep learning models learn a very large number of abstract features 
from the training data, which adds to the computational burden, 
which is problematic in many clinical scenarios, as practitioners often 
need to make decisions in real-time (40), they reported on their self-
defined ANN and a CNN based model for brain tumour detection. 
They reported brain tumour detection accuracies were 26% better in 
training and 14% better in testing when using the CNN compared to 
the ANN. This comparison shows that CNNs are better suited for 
complex image-based tasks. Nevertheless, the use of a self-defined 
ANN would have limited the model because it would not easily 
incorporate the advanced methodologies such as transfer learning or 
data augmentation that dominate the field today. In the same vein, 
(2022) (41) applied Convolutional Dictionary Learning with local 
constraints and achieved training accuracies between 97.74 and 
97.85%; however, given dictionary learning’s reliance in constructing 
simpler patterns, this may negatively influence the model’s ability to 
capture the complex spatial features that are necessary for accurate 
classification of brain tumours.

Díaz-Pernas et  al. (42) reported a multi-scale CNN-type 
methodology which categorized three classes of brain tumours glioma, 
pituitary, and meningioma creating three CNNs with the same 
structure, but different layers. This strategy had an average accuracy 
of 97.3% but had limitations in relation to computational demands, 
taking around 5 days to analyze 3,064 T1-weighted images. It is 

unfortunate that the high computational load is crippling, especially 
when you have a high volume of images/subjects.

The (43) used auto-encoders for noise reduction and feature 
extraction to introduce deep learning to their comparison with other 
ML algorithms (e.g., SVM, KNN, Random Forest (RF), Logistic 
Regression and Stochastic Gradient Descent). CNNs consistently 
showed a higher level of performance than traditional approaches. 
However, the added complexity of auto-encoders may limit their 
applicability in real-time medical scenarios, where quick, reliable 
results are necessary. Recent advancements in deep learning for brain 
tumor classification have shown substantial improvements in 
diagnosis accuracy and efficiency. One notable approach is the Dual-
Stream Contrastive Latent Learning GAN (DSCLPGAN), which 
leverages a dual-stream generator to augment MRI datasets. The 
model captures both local and global features of MRI images, 
producing diverse synthetic data that enhances classifier performance, 
especially in the presence of class imbalances (44). This methodology 
addresses the limitation of traditional GANs, which struggle with 
mode collapse and lack diversity in synthetic image generation.

Another significant advancement is the Rotation Invariant Vision 
Transformer (RViT), which incorporates rotated patch embeddings to 
enhance the classification accuracy of brain tumors. The introduction 
of rotation invariance allows the model to handle varying orientations 
of tumor images, a common challenge in medical imaging. The 
approach has demonstrated superior performance, achieving a 
sensitivity of 1.0 and an overall accuracy of 98.6%, outperforming 
conventional convolutional neural networks (CNNs) in handling 
global features and spatial dependencies (45).

The Swin Transformer has also emerged as a powerful tool in the 
domain of medical image analysis. By introducing the Hybrid Shifted 
Windows Multi-Head Self-Attention (HSW-MSA) module and 
Residual Multi-Layer Perceptron (ResMLP), the Swin Transformer 
model significantly enhances brain tumor diagnosis. This model 
improves classification accuracy while reducing computational 
complexity and memory usage. The model achieved an impressive 
accuracy of 99.92%, surpassing previous deep learning-based methods 
(46). Its success in medical image analysis underscores the potential 
of transformer architectures in overcoming the limitations of 
traditional CNN-based approaches.

1.1 Objectives of the study

The primary objectives of this study are:

	•	 To propose a hybrid DLmodel that integrates Autoencoders (AE) 
for feature extraction, Conditional Generative Adversarial 
Networks (cGAN) for synthetic data generation, and Swin 
Transformers for the classification of brain tumors.

	•	 To address the challenges of data imbalance and limited 
annotated datasets by leveraging the synthetic data generated 
through cGAN, thereby improving the robustness and 
generalization capability of the model.

	•	 To evaluate the performance of the proposed model on publicly 
available brain tumor datasets (e.g., Kaggle and Figshare), and 
demonstrate its ability to achieve superior accuracy and 
performance compared to state-of-the-art methods in the field of 
medical image classification.
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	•	 To explore the potential for clinical deployment by showing that 
the hybrid model can handle diverse tumor types and MRI image 
variations, making it a promising tool for real-world applications 
in medical diagnosis.

This study puts forth a solid design framework for Big Brain 
tumour classification using enhanced feature set conditional (cGANs) 
with a specialized classifier labeled the GAS model using a Swin 
Transformer structure. The design takes advantage of an autoencoder 
being trained on real MRI images to learn a compact latent space to 
classify the images. The GAN discriminator uses the encoder 
discriminating capabilities to improve on distinguishing real vs. 
synthetic images compared to generated images alone. The GAN, 
conditioned on tumour type labels, produces realistic images with 
complicated construction-wide variations. The re-aligned dataset 
augmented the real MRI images with the synthetic images to form a 
vast dataset resolving data scarcity while improving robustness.

The classification part of our work fine-tunes the Swin 
Transformer, the state of the art architecture that applies shifted 
window attention to learn local as well as global dependencies in high-
resolution images. This architecture is efficient in terms of computation 
and represents powerful features, which makes it well suited for 
medical imaging. Training on the augmented dataset greatly improves 
the model’s generalization properties and shows how generative 
modeling can be harnessed with attention-based architectures to yield 
very fast and accurate systems for detecting brain tumours.

The contributions of this work include:

	•	 This work introduces a novel hybrid model combining an AE for 
feature extraction, a cGAN for synthetic data generation, and a 
Swin Transformer for classification. This unique combination 
leverages the strengths of each individual component to enhance 
the overall performance of the system.

	•	 The research proposes an innovative approach to feature 
extraction, utilizing an Autoencoder to efficiently capture and 
represent the essential features of the input data. The AE’s ability 
to learn compressed latent representations facilitates improved 
data interpretation and sets the foundation for subsequent 
processing stages.

	•	 The study contributes by integrating a Conditional GAN within 
the architecture to generate high-quality synthetic data. By 
conditioning the generator on the extracted features, the model 
is able to produce realistic and diverse synthetic data, which 
enhances the robustness of the overall system, particularly in 
scenarios with limited real data.

	•	 A key contribution of this work is the adoption of the Swin 
Transformer for classification. The Swin Transformer, with its 
hierarchical attention mechanism and efficient processing of high-
dimensional data, enables more accurate and scalable classification. 
This contributes significantly to the model’s ability to handle complex 
data in a computationally efficient manner.

	•	 The proposed model not only improves the quality of feature 
extraction and classification but also offers a mechanism for 
augmenting datasets through synthetic data, which improves the 
generalization ability and performance of the model in diverse 
scenarios. In the proposed model, a different  
number of epochs has been used to reduce the model’s complexity.

2 Proposed GAN model

This section describes the complete pipeline proposed for brain 
tumour classification, integrating data preprocessing, feature learning 
through an autoencoder, synthetic data generation using a class-
conditional GAN, and final classification using a fine-tuned Swin 
Transformer. Each component is explained with layer-wise 
architectural details, rationale, and training specifications.

Figure  1 illustrates a hybrid approach using AE for feature 
extraction and cGAN for data generation and discrimination. The 
synthetic sample data and real data will be  used for classification 
analysis with a Swin Transformer and performance evaluation.

Figure 2 illustration reflects an integrated approach combining an AE 
for feature extraction, a Conditional Generative Adversarial Network 
(cGAN) for synthetic data generation, and classification with a Swin 
Transformer model. The initial step is the autoencoder where input data 
is first sent through convolutional layers to downsample and extract a 
latent space representation. The latent features are then upsampled to 
reconstruct the image, enabling feature extraction at the next steps.

FIGURE 1

Schematic representation of the proposed architecture flow.
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2.1 Preprocessing

The preprocessing pipeline for the MRI images involves organizing 
the dataset into four tumour classes (Notumour, Glioma, Meningioma, 
Pituitary) and storing the file paths and labels in a Pandas DataFrame. The 
dataset is split into training, validation, and test sets using an (80–20)% 
split while maintaining class balance with the train_test_split method. 

Images are processed with multiple transformations based on the model. 
The Autoencoder (AE) processes images resized to 64×64, converted to 
tensors, and normalized to values ranging from [−1, 1]. The Swin 
transformer processes images are resized to 224×224, and normalized with 
[0.485, 0.456, 0.406] (mean) and [0.229, 0.224, 0.225] (std) from the 
pretrained Swin model. Because each model that will be trained requires 
different input transformations, a custom ImageDataset class is declared to 

FIGURE 2

Proposed model architecture integrated an AE for feature extraction, a cGAN for synthetic data generation, and classification using a Swin Transformer.
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load images and apply the proper transformations. In each case, the 
DataLoader objects are treated as batch processes specifically for training 
data (using the shuffle method) and validation/testing data (no 
shuffle method).

2.2 Autoencoder-assisted feature 
extraction for discriminator

The Autoencoder’s encoder takes the input images. It converts them 
into a latent feature space, which the Discriminator utilizes to refine its 
ability to distinguish real versus fake images. The integration of the 
Autoencoder’s encoder with the cGAN’s Discriminator contributes to 
enhanced feature extraction and improved classification performance. 
The Autoencoder consists of two parts, the encoder and the decoder. The 
encoder learns to map input images x into a lower-dimensional latent 
representation z. This can be mathematically expressed as  Equation 1:

	 ( )=z E x 	 (1)

where E(x) is the encoder function that processes the input image 
x and outputs a feature representation z.

after the Autoencoder is trained, the encoder is extracted and frozen 
to prevent further updates during cGAN training. The Discriminator 
uses this encoder to extract features from both real images real and fake 
images G(z, y) generated by the Generator. Let fencoder represent the 
encoder function, which is used in both Equations 2, 3:

	 ( ) ( )=encoderf x E x 	 (2)

where encoderf  signifies the feature-vector obtained from the 
encoder of the Autoencoder. These features are then succeeded to the 
Discriminator to classify whether the image is real (1) or fake (0). The 
Discriminator’s output is given by:

	 ( ) ( )σ=, ( ,encoderD x y f x y 	 (3)

where σ  is the sigmoid activation function, outputting the 
probability that the image is real.

After the AE process, the cGAN then generates synthetic images to 
augment the dataset. The encoder component of the Autoencoder enables 
the Discriminator to extract features from both sets of images, real and 
fake. The Generator will create a synthetic MRI image from random noise 
input and the associated class labels. Then, the synthetic image is used to 
augment the dataset by adding diversity in the dataset. The synthetic 
images are integrated into the real images to create a dataset of augmented 
images. This integrated dataset consisting of real images and synthetic 
images will then be used to train the final Swin Transformer classifier.

2.3 Conditional generative adversarial 
network (cGAN)

A cGAN is used to generate synthetic MRI images for data 
augmentation. The cGAN consists of two components, the Generator 

and the Discriminator as present n  Equations 4 to 7. The Generator 
takes random noise z and a class label y as inputs, producing synthetic 
images x̂  as:

	 ( )=ˆ ,x G z y 	 (4)

where G is the Generator function. The Generator learns to 
produce images that look like real MRI images. The Discriminator 
takes an image x and the associated label y, returning the probability 
( ),D x y  that the image is real:

	 ( ) ( )σ=, ( ,encoderD x y f x y 	 (5)

where σ  function, and is the feature extraction function ( ),f x y
of the Discriminator. The Discriminator returns ( ),D x y a probability 
based on our pretty obvious notation of real (1) vs. fake (0) for 
the  image. Finally, we use binary cross-entropy (BCE) to classify real 
images as real and images generated by  G as fake for the Discriminator 
loss LD:

	

1 ( ~ log ( ,

)

) ~
2

log(1 ( ( , ) ))

[ ]

[ ]
G real data real z zL x p D x y p

D G z y y

= +

−

 

	
(6)

where realx  signifies real images from the dataset, and ( ),G z y  
are the fake images generated by the Generator. The Discriminator 
is trained to maximize this loss. The Generator loss GL  encourages 
the Generator to produce images that the Discriminator classifies 
as real:

	 ( )( )( ) = − ~ log 1 , )G z zL p D G z y y
	

(7)

This loss function ensures the Generator “fools” the 
Discriminator by producing more realistic images. The 
Discriminator and Generator are trained alternately, with the 
Discriminator optimizing DL and the Generator optimizing GL . 
During training, the Generator learns to create more convincing 
images,  and the Discriminator learns to better differentiate real 
images from fakes. Figure 3 shows the description of Generator 
block and Discriminator block.

2.4 Swin Transformer for classification

The Swin Transformer model serves as the final classifier for the 
task of brain tumour classification. The Swin transformer is a vision 
transformer model that utilizes self-attention mechanisms that learn 
local and global features in the representation of the images. The 
model architecture is initialized with a pretrained Swin Transformer 
from the timm library, a small Swin Transformer known as the Swin-
Tiny, and it is fine-tuned for the classification of MRI images into four 
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classes, Notumour, Glioma, Meningioma, and Pituitary. The input 
image is processed by a Swin transformer backbone to take feature 
representations from the image. Mathematically this is represented as  
Equation 8:

	 ( ) ( )= _swinf x Swin Transformer x 	 (8)

where ( )swinf x is the output feature vector extracted by the Swin 
Transformer for the input image x. The output feature vector is then 
passed through a fully connected classifier head to predict the class 
label in Equation 9:

	 ( )=pred fc swiny W f x 	 (9)

where predy  is the predicted tumour class, and fcW  represents the 
weights of the fully connected (FC) layers used for classification. The 
Swin Transformer is trained using the combined dataset, which 
includes both real and synthetic MRI images. During training, Cross-
Entropy Loss is used as the objective function to compare the 
predicted class predy with the ground truth labels. The model is 
optimized to minimize this loss using Equation 10:

	
( )

=
= −∑

1
log

C

CE C C
c

L y p
	

(10)

where C is the number of classes, Cy  is the true label (one-hot 
encoded), and Cp  is the predicted probability for class c.

3 Result analysis

3.1 Experimental setup

Two publicly available datasets of MRI samples were utilised to 
validate the proposed GAN  model. The following sections describe 

the datasets, preprocessing, and training configurations used for 
the experiments.

Dataset I: The Kaggle Brain MRI Dataset includes over 3,000 
labeled MRI images, organized into four classes: glioma, meningioma, 
pituitary tumour, and no tumour. The images were recorded in 
separate training and testing folders, and in various views and 
resolutions. Images were collected from a variety of slices: axial, 
sagittal, as well as coronal. In this study, the dataset was merged and 
organized into classes using stratified sampling to maintain the 
proportions of the various classes. The dataset was separated into 
training, validation, and testing sets; with 80% allocated to training, 
and 10% to validation, and testing sets, which took place in an 
80:10:10 division.

Dataset II: The second data set, called the Figshare Brain tumour 
Data Set, contains 3,064 (grayscale) MRI scans across three tumour 
types: glioma (1,426 images), pituitary tumour (930 images), and 
meningioma (708 images). The images also include different views 
(axial, coronal, sagittal) and quality and variety. However, the data had 
no inclusion of a ‘no tumour’ class, as did the Kaggle dataset. The types 
II data set was randomly split using stratified sampling where 80% was 
for training, 10% for validation, and 10% for testing.

Hardware and Training Setup Details: All experiments in this 
study were implemented in Google Colab Pro to utilize the 
computational resources necessary for training the models. The 
training setup had an NVIDIA Tesla T4 GPU (16 GB of VRAM, 
13 GB of RAM), with a 2-core Intel Xeon virtual machine, all of which 
was run as a virtualized environment. The hardware was utilized to 
run the entire training pipeline, including the autoencoder, cGAN, 
and the classifier. Google Colab Pro enabled the models to be run in 
the cloud and allowed for the efficient execution of the computationally 
intensive models. The hyperparameters for the proposed model were 
selected through empirical tuning, guided by prior work and practical 
heuristics. The initial values were chosen from standard default 
settings and adjusted based on training stability, validation 
performance, and convergence speed. For the autoencoder, the Adam 
optimizer was used with a learning rate of 1 × 10−31, and the Mean 
Squared Error (MSE) loss function was employed to minimize the 
difference between the original and reconstructed images. For the 
cGAN, we used the Adam optimizer with β1 = 0.5 and β2 = 0.999, 
with a learning rate of 1 × 10−4 and the standard cGAN loss to 

FIGURE 3

Detailed architecture of generator block and discriminator block.
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differentiate real and generated images. The Swin Transformer 
classifier utilized the AdamW optimizer with a learning rate of 
3 × 10−5, Cross-Entropy Loss for multi-class classification, and the 
CosineAnnealingLR scheduler to decay the learning rate throughout 
training. As for data augmentation, synthetic images were generated 
using the cGAN to alleviate data imbalance. For Dataset I, 
we generated 500 synthetic images per class, totaling 2,000 synthetic 
images across the four classes (Notumor, Glioma, Meningioma, 
Pituitary). Similarly, for Dataset II, 500 synthetic images were 
generated per class, resulting in 1,500 synthetic images for the three 
classes (Glioma, Meningioma, Pituitary). These synthetic images 
augmented the original datasets, improving the model’s generalization 
ability and mitigating the challenges posed by class imbalance.

Training Time: The training time for each component of the 
model was as follows: The autoencoder took approximately 215 s to 
train for 15 epochs, with an average epoch time of about 14.3 s. It was 
trained once on the full training data. The GAN, comprising both the 
Generator and Discriminator, required around 8,200 s to complete 
100 epochs, with an average epoch time of 82 s. It was trained once on 
the entire dataset. The classifier, which was trained independently for 
each of the three folds, took approximately 1,831 s per fold for 30 
epochs, with an average epoch time of 61.1 s, with a variation of ± 
0.25 s. In total, the classifier’s training time across all three folds 
amounted to about 5,493 s (91.5 min), aggregating the time across the 
3-fold cross-validation process.

3.2 Performance evaluation using Dataset I

The proposed GAS model is a robust classifier on the Dataset I, 
which is classified into four classes: glioma, meningioma, pituitary 
tumour, and no tumour. In the first step without cGAN, AE and Swin 
Transformer is applied on data. At each step, the model is trained on 
different epochs based on performance and to reduce the time 
complexity. Figure 4 shows the results of first five epochs.

Figure 5 showcases the performance of an autoencoder model 
after 15 epochs of training, illustrating the results of reconstructing 
MRI brain scans. The figure is organized into four areas that each 
compare the ‘Original’ image to the ‘Reconstructed’ image.

After training of AE, Swin Transformer was used for classification. 
In this step, a hybrid model of AE and Swin Transformer has been 
applied to measure the performance of the model without cGAN.

Figure 6 shows the MRI images classified with the AE + Swin 
Transformer model. The true label (T) and predicted label (P) are 
shown below each image. The model classifies a variety of tumours, 
including pituitary, glioma and nontumour, showcasing the 
different conditions it was able to classify correctly. The true and 
predicted labels match up with our accurate model. Additionally, 
Table  1 shows the performance of the hybrid model of 
AE + Swin Transformer.

The Table 1 shows that the classification model performs across 
four tumour types and ``nontumour” instances using Precision(Pre), 
Recall(Rec), and F1-Score (F1-S) as metrics of interest. The model 
performs beautifully, having perfect detection of ``nontumour” 
instances, as well as very good detection of all tumours. The overall 
accuracy is 98.93%, and the macro and weighted averages also indicate 
no classes are underperforming. The model is especially good at 
detecting pituitary tumours with the highest recall, while slightly 
higher recall or precision varies among tumour types.

In Figure 7, both the accuracy graphs indicate rapid increases in 
training and validation and the model seems to be close to achieving 
perfect accuracy. The loss graph indicates a major decrease in loss 
during initial epochs; the graph plateaus after. The classification 
performance of the model is shown in Figure 8.

The confusion matrices indicate specific misclassifications, 
in particular between tumor types, like glioma and meningioma. 
There are reasons for these misclassifications. First, the visual 
similarities in the MR images between gliomas and meningiomas, 
particularly early on, is problematic. Specifically, both tumor 
types can appear as well-defined, and are often in the same 

FIGURE 4

AE reconstruction results for MRI brain scans at epoch 5 on Dataset I.
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regions of the brain (e.g., cerebral hemispheres), making it 
difficult for the model to determine the exact type. Furthermore, 
the morphological characteristics of these two tumors are like 
shapes, size, textures, etc. Moreover, the small differences 
between these tumors are occasionally hard for the model to 
decompose (especially when there are small deviations in 
training data), and any variances in imaging protocols and 
scanner protocols for images would also introduce deviations in 
MRI characteristics. Second, there is a data imbalance, which is 

exhibited in the confusion matrix. Using the most clinically-
representative diagnosis has limits, typically related to less 
representative cancer instances or situations where a slight bias 
does not lead to overt misdiagnosis. Third, it is important to 
understand that tumor classification must only be representative 
to the images input to the model, particularly based on image 
qualities and pixels associated with each of the diagnosis 
categories, or tumor class/diagnosis. It is worth noting that the 
model is still noticeably high overall accuracy.

The ROC curve in Figure 9 provides strong performance across 
all classes with high AUC values signifying that the model is very good 
at teasing apart the different tumour labels and ``nontumour” cases. 
The micro-average ROC curve exemplifies almost perfect 
classification performance.

After applying the hybrid model of AE + Swin Transformer, 
cGAN was used to generate synthetic data. Figures 10, 11 illustrate the 
generated data produced by the cGAN model.

The model was trained using both real images and synthetic 
images generated from the GAN, with a very successful established 
accuracy of overall 99.54%. The use of the hierarchical attention layer 
of the Swin Transformer enabled the GAS model to establish that even 
seemingly similar tumour types could be  distinguished from one 
another. Figure  12 shows the classification results of cGAN and 
AE + Swin Transformer.

FIGURE 5

AE reconstruction results for MRI brain scans at epoch 15 on Dataset I.

FIGURE 6

Tumor classification results using the AE + Swin Transformer model.

TABLE 1  Performance of hybrid model of AE + Swin Transformer on 
Dataset I.

Class Pre (%) Rec (%) F1-S (%)

Notumour 100.00 100.00 100.00

Glioma 99.32 97.33 98.32

Meningioma 97.41 98.37 97.89

Pituitary 98.68 99.67 99.17

Accuracy 98.93

Macro avg 98.85 98.84 98.84

Weighted avg 98.94 98.93 98.93
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Table  2 provides class-based evaluation measures: precision, 
recall, F1-score, and AUC. All classes had model evaluation measures 
that were extremely high, especially glioma and pituitary tumour, 
which rated over 99.53% for most measures. The meningioma class 
had a slightly lower recall rate, which indicated some false negatives, 
but overall, 99.53% performance.

To better understand the model’s classification capabilities, a 
confusion matrix was created from the predictions made on the 
Dataset I test set, shown in Figure 13. The vast majority of the samples 
were correctly classified and had very few misclassification points. 

Most of the errors were between meningioma and glioma, tumours 
that can have overlapping imaging features. However, overall, the 
confusion matrix highlights the model’s ability to differentiate between 
all three tumour types with little confusion.

The ROC curves for each tumour class are shown in Figure 14. 
The ROC curves demonstrate the trade-off between true positive and 
false positive rates. The AUC was greater than 0.998 for all three 
classes, indicating the model had strong discriminatory ability. The 
steep slope of the ROC curves and their proximity to the top-left 
corner of the plot also provided reassurance that this model would 

FIGURE 7

Accuracy and loss curves for trainingand validation over 30 epochs of AE + Swin Transformer.

FIGURE 8

Confusion matrix of AE + Swin Transformer.
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FIGURE 9

ROC curves of AE + Swin Transformer for tumor detection with AUC values for each class.

FIGURE 10

Synthetic images generated by the cGAN at 10 epochs.
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provide the best possible outcomes in clinical practice, where both 
sensitivity and specificity must be maximized.

Figure 15 shows the training dynamics of the model by showing 
a graph of the training and validation accuracy curve and the training 
and validation loss curve for 30 epochs. The training and validation 
curves converge smoothly, and the validation accuracy curves closely 
follow the training accuracy curves throughout training. No 
significant overfitting observed, and the validation loss becomes stable 
when the validation accuracy starts becoming stable. As a 
consequence, the model has shown to generalize well across the 
dataset, which is attributed to the inclusion of synthetic data that 
promoted robust learning. As depicted in Figure 15, the accuracy and 

FIGURE 11

Synthetic images generated by the cGAN at 100 epochs.

FIGURE 12

Tumor classification results using the cGAN and AE + Swin Transformer model.

TABLE 2  Performance of proposed GAS model on Dataset I.

Class Pre (%) Rec (%) F1-S (%)

Nontumour 99.75 99.75 99.75

Glioma 100.00 99.33 99.67

Meningioma 98.70 99.35 99.02

Pituitary 99.67 99.67 99.67

Accuracy 99.54

Macro avg 99.53 99.52 99.53

Weighted avg 99.54 99.54 99.54
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FIGURE 13

Confusion matrix for the hybrid cGAN and AE + Swin Transformer model.

FIGURE 14

ROC curves for glioma, meningioma, and pituitary classes.
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loss curves for both training and validation sets are illustrated over 30 
epochs for Dataset I. The accuracy curve demonstrated rapid 
improvement with both the training and validation accuracy 
stabilizing near 1.0, indicating effective learning. The loss curve 
showed a rapid loss decrease in the beginning stages of training before 
stabilizing, showing that the model converged appropriately 
during training.

3.3 Performance evaluation using Dataset II

The GAS model was also tested on a Dataset II consisting of Brain 
tumour MRIs. The data consisted of three classes of tumours: glioma, 
meningioma, and pituitary tumour. Experiments were repeated with 
Dataset II. The first step is to perform the experiment without 
cGAN. Figures 16, 17 show the results of AE on different epochs.

Table 3 summarizes the overall performance achieved by the 
hybrid AE + Swin Transformer model on Dataset II, including 
precision, recall, and F1-score for each class. It is apparent that 
the model performed quite well with a precision score of 88.7% 
for glioma, which is very good, and a perfect precision value of 
100% for pituitary. Additionally, the overall accuracy for the 
model was 93.8%. The macro and weighted average values also 
reflect consistent performance through all classes.

To demonstrate how the model learns, the training and validation 
accuracy and loss curves through 30 epochs are displayed in Figure 18, 
demonstrating that the model converges and improves over the course 
of training.

After the training process, the model’s ability to distinguish 
between classes is assessed using the ROC curve. Figure 19 presents 
the ROC curves, which characterize the model’s performance across 
all tumour types, including AUCs for each class.

FIGURE 15

Training vs.validation accuracy and loss curves of Hybrid cGAN andAE+Swin Transformer model for Dataset I.

FIGURE 16

AE reconstruction results for mri brain scans at epoch 5 on Dataset II.
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While the ROC curve provides an overview of the model’s 
classification performance, the confusion matrix illustrated in 
Figure  20 provides a more detailed summary of the model’s 
predictions, uncovering the true positives, false positives, true 
negatives, and false negatives for each class.

After the hybrid model of AE + Swin Transformer, synthetic data 
has been generated using cGAN with Dataset II. Figures 21, 22 show 
the results of cGAN.

The results were exceptional as the model achieved an 
impressive overall accuracy of 98.9%. This shows the model can 
classify between tumours, along with being able to identify healthy 
brain MRIs with high confidence. In Table  4, all three classes 
achieved high values for precision, recall, F1-score, and near-perfect 
AUC values. The fact that the ``no tumour” class achieved a 100% 
recall is also important, as it is critical to avoid false negatives in 
healthy patients.

Results of GAS model performance by tumour type 
(precision,  recall, and F1-score) on Dataset II, global accuracy of 
98.9% are shown in Table 4. The model also demonstrates impressive 

precision and recall for all tumour types, particularly glioma, 
meningioma, and  pituitary.

To show this performance, Figure  23 presents MRI images 
classified by the GAS model, along with true (T) and predicted (P) 
labels for each tumour type. The images demonstrate the ability of the 
model to classify discrete tumour types, which are reflected in the 
impressive metrics in Table 4.

The confusion matrix in Figure 24 provides a complete summary 
of the classification results on the test set and shows that the overall 
accuracy is high across all classes. The model performed best in the 
``no tumour” class, where all samples were correctly classified. In the 
instances where the model appeared to misclassify cases, it was mostly 
between glioma and meningioma, which is expected given how 
similar they are when viewed using MRI scan or photographs. Overall, 
while there is likely some overlap between categories in terms of 
patient health, the model is successful at categorizing a case into the 
major tumour categories versus healthy diagnosis with considerable  
precision.

In Figure 25, the Receiver Operating Characteristic (ROC) curves 
for the classification model for three tumour types are shown: glioma, 
meningioma, and pituitary. The ROC curves plot the True Positive 
Rate (TPR) versus the False Positive Rate (FPR), and each curve 
correlates to one tumour class. The area under the curve (AUC) is 
reported for each tumour class, which indicates how well the model 
can differentiate between the tumour classes. In this case, the model 
has high AUC for all three tumour types (all close to 1.0), where 
glioma (AUC = 0.999) is the best model, then meningioma and 
pituitary (AUC = 0.998). Overall, these results demonstrate that the 
model is excellent at distinguishing the tumour differences.

To investigate training stability, Figure 26 shows the training and 
validation accuracy and loss curves for 20 epochs. The plots indicate 
solid and stable convergence with minimal generalization gap between 

FIGURE 17

AE reconstruction results for MRI brain scans at epoch 15 on Dataset II.

TABLE 3  Performance of hybrid model of AE + Swin Transformer on 
Dataset II.

Class Pre (%) Rec (%) F1-S (%)

Glioma 88.7 99.3 93.7

Meningioma 98.5 91.5 94.9

Pituitary 100.0 87.1 93.1

Accuracy 93.8

Macro avg 95.7 92.6 93.9

Weighted avg 94.4 93.8 93.8
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training and validation. Both of the loss curves steadily decrease, while 
the accuracy curves steadily increase before reaching a plateau which 
emphasizes rapid learning and overall model stability. This observation 
demonstrates the effectiveness of the synthetic data augmentation 
approach and the Swin Transformer’s ability to generalize very well, 
even with a multiclass imbalanced medical dataset.

3.4 Cross validation

This section presents the results of the cross-validation process 
using Dataset I and Dataset II. The model was evaluated on validation 
and test sets for all three folds. The results for each fold, along with the 

mean and standard deviation of the accuracies are given in the 
Table 5 below.

The model consistently obtained high performance through all 
three folds, with validation accuracies between 98.53 and 99.21%, 
while the test accuracies ranged from 99.08 to 99.31%, illustrating the 
model’s ability to generalize unseen data. The Table 6 presents the 
performance of the model evaluated through cross-validation using 
Dataset II.

The above table presents the performance of the model 
through 3-fold cross-validation, showing both validation and test 
accuracies for each fold. The model achieves high and consistent 
performance, with validation accuracies ranging from 98.68 to 
99.05%, and test accuracies from 98.23 to 99.22%. The mean 

FIGURE 18

Training and validation accuracy and loss curvesover 30 epochs on Dataset II.

FIGURE 19

ROC curves of AE + Swin Transformer for tumor detection with AUC values for each class on Dataset II.
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FIGURE 20

Confusion matrix of AE + Swin Transformer on Dataset II.

FIGURE 21

Synthetic images generated by the cGAN at 5 epochs.
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validation accuracy is 98.88%, while the mean test accuracy is 
98.67%, with low standard deviations (0.0015 for validation and 
0.004 for test), indicating stable and reliable performance across 
all folds.

3.5 Comparison with existing work

To evaluate the effectiveness of the proposed approach, 
we compare its performance with prior deep learning-based brain 
tumour classification models reported in recent literature. The 
comparisons are made separately for Dataset I and Dataset II, and are 
based on key metrics such as accuracy, precision, recall, F1-score, and 
model complexity when available. Table 7 summarizes the accuracy 
achieved by various models on Dataset I. The proposed method 
surpasses most existing works in terms of overall accuracy, while also 
demonstrating excellent class-wise performance and generalization.

The table compares the proposed model, which is a combination of 
Swin Transformer and AE-GAN Augmentation, with a number of state-
of-the-art methods. The proposed model achieves 99.54\% accuracy, 
which is better than any of the other methods mentioned above. Asiri 
et  al. (47) with the Multi-Level GAN + CNN combination achieved 
96.00% accuracy scores, while Reyes and Sánchez (48) with EfficientNetB3 
reached 97.50%. The fourth-place accuracy came from Rahman et al. (49) 
with a Dilated PDCNN + Ensemble method, where they had an accuracy 
of 98.35%. Other methods, such as the one by Hekmat et al. (50), had 
accuracies between 94.38–98.00%, including Ekong et al. (51). In the 
research conducted by Osman Özkaraca et al. (52), the DenseNet model 
achieved a test accuracy of 99.14%, while the Modified CNN model had 
a test accuracy of 94.55% in the brain tumor classification task. In the 
study by Rahman and Islam (49) the PDCNN (Parallel Deep 
Convolutional Neural Network) model achieved a test accuracy of 97.33% 
for brain tumor classification. In the study by Nurtay et al. (53) Transfer 
Learning utilizing pre-trained neural networks, specifically ResNet-50, 
achieved a test accuracy of 99% in brain tumor classification.

The significantly better performance of the proposed model 
highlights the power of incorporating a Swin Transformer and generating 
synthetic datasets as augmentation to enhance model performance, 
especially when working with complex and imbalanced datasets.

Table 8 shows the accuracy of a number of models on a likely 
medical image classification task. The proposed GAS Model, 
combining the Swin Transformer and AE-GAN augmentation, 
achieved 98.90\% accuracy the highest out of all the models reviewed.

In comparison, Sekhar et  al. (54) with GoogLeNet + KNN 
achieved 98.30% accuracy, and Bodapati et  al. (55) with a 
Two-Channel Deep CNN achieved 95.23%. Singh et al. (56) with a 

FIGURE 22

Synthetic images generated by the cGAN at 100 epochs.

TABLE 4  Performance of proposed GAS model on Dataset II.

Class Pre (%) Rec (%) F1-S (%) Support

Glioma 99.3 99.0 99.2 300

Meningioma 98.4 98.4 98.4 306

Pituitary 99.0 99.3 99.2 300

Accuracy 98.9 906

Macro avg 98.9 98.9 98.9 906

Weighted avg 98.9 98.9 98.9 906
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Hybrid CNN Ensemble reached 96.08%, and Sadr et al. (57) using 
a Deep CNN achieved 97.27%. The model proposed by Alrikabi 
et al. (58) using ResNet-18 as a feature extractor followed by an 
SVM classifier achieved 98.62% accuracy. Sadr et al. (57) found that 
the ResNet50 (Transfer Learning) model had an accuracy of 98.4%, 
and the EfficientNetB0 model had an accuracy of 94.1%. However, 
Sadr et  al. (57) used a Deep CNN model that had an accuracy 
of 97.27%.

The comparison results show that the proposed model with the 
Swin Transformer and AE-GAN augmentation yielded superior 
accuracy compared to the other methods and seems to be a very 
effective approach to achieve high accuracy and generalize results, 
especially with the inclusion of synthetic data augmentation.

4 Ablation study

4.1 Swin Transformer by sing Dataset I

This experiment assesses the performance of the Swin Transformer 
model on Dataset I, which contains MRI images labelled with four classes 

of tumor: Notumor, Meningioma, Glioma, and Pituitary. The primary 
objective of this experiment is to evaluate how well the Swin Transformer, 
a state-of-the-art vision transformer model for performing classification 
from images, recognizes different types of brain tumors through MRI 
images. This experiment was conceived in a way that it only tests the 
ability of the Swin Transformer model to recognize and distinguish 
between these tumor classes limited only to raw MRI images, and exclude 
possible confounds of any data augmentation or pre-processing methods, 
such as AE-cGAN (see Table 9).

The Swin Transformer Model’s performance was exceptional in 
classifying brain tumors, achieving a 99% overall accuracy rate. The 
model was able to correctly identify all Notumor cases (100% precision 
and recall) and had precision and recall for Meningioma and Pituitary 
tumors close to 100% indicating practically flawless classifications. For 
Glioma, the Swin had a lower precision (98%), however still performed 
well with high recall (99%) and an F1-score of 98%. The precision, 
recall, and F1-score for both the macro average and weighted average 
metric were all 99% percent confirming that the Swin consistently 
performed excellent and in a reliable manner across all tumor types 
demonstrating its clearly considerable power in group and twin-class 
medical photo classification tasks.

FIGURE 23

Tumor classification results using the proposed GAS model on Dataset II.

FIGURE 24

Confusion matrix for the hybrid cGAN and AE + Swin Transformer model.
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FIGURE 25

ROC curves for glioma, meningioma, and pituitary classes.

FIGURE 26

Training vs. validation accuracy and loss curves for Dataset II.

TABLE 5  Validattion Performance of Dataset I.

Fold Validation 
accuracy

Test accuracy

1 98.53 99.08

2 99.05 99.24

3 99.21 99.31

Mean 98.93 99.21

Std dev 0.29 0.10

TABLE 6  Validattion performance Dataset II.

Fold Validation 
accuracy

Test accuracy

1 99.05 99.22

2 98.68 98.56

3 98.83 98.23

Mean 98.88 98.67

Std Dev 0.0015 0.004
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4.2 Swin Transformer and cGAN by sing 
Dataset I

In this ablation study, we evaluate the performance of the Swin 
Transformer combined with cGAN using Dataset I. This setup 
aims to explore the contribution of both the Swin Transformer for 
classification and the cGAN for generating synthetic data to 
enhance the model’s ability to handle data imbalance. By 
integrating cGAN-generated synthetic images, we aim to observe 
whether this augmentation improves the model’s generalization 
and classification performance compared to using the Swin 
Transformer alone. The results of this study will help determine 
the individual and combined effectiveness of the Swin Transformer 
and cGAN in improving classification accuracy for brain 
tumor detection.

The Table 10 shows the performance of the model in classifying 
tumors on Dataset I. Overall, the model had an accuracy of 99.1% on the 
various brain tumor types and performed very well on the diversity of 
tumors. The notumor classification was perfect with precision, recall, and 
F1 all equal to 1.0. Meningioma had a minor reduction in recall to 0.99 
resulting in a F1 score of 99%. Glioma had precision, recall, and F1 scores 
around 0.99. Pituitary tumors had 98% precision and perfect recall 
resulting in an F1 score of 99%. The macro average and weighted average 
were the same at 99.1%. Overall, these scores indicate consistent 
performance of the model across all classes.

4.3 Swin Transformer by sing Dataset II

In this ablation study, we evaluate the performance of the Swin 
Transformer using Dataset II.

The Table 11 shows the classification performance of the model 
for three types of brain tumors (Glioma, Meningioma and Pituitary). 
The overall accuracy was 95.8%, which indicates that the model is 
strong in classification ability. The model achieved a precision of 
97.8% and recall of 93.0% for Glioma, resulting in an F1-score of 
95.3%. For Meningioma the precision was 97.2% and recall was 97.2%, 
therefore an F1-score of 97.2%. The model also performed well on 
Pituitary, achieving a precision of 92.0% and a recall of 98.9%, yielding 
an F1-score of 95.3%. The macro average and weighted average for 
precision, recall and F1-score were 95.7 and 95.9%, respectively, which 
shows that the classification performance for each class is reliable and 
consistent. Thus, it can be concluded that the model can classify brain 
tumors with very few misclassifications.

4.4 Swin Transformer and cGAN by sing 
Dataset II

In this ablation study, we evaluate the performance of the Swin 
Transformer combined with cGAN using Dataset II.

The table details the classification performance of the Swin + 
GAN Model on Dataset I with a model overall accuracy of 99%. For 
Class 0 (Notumor), the model exhibited a precision of 99% and a recall 
of 98%, resulting in an F1-score of 98%. This indicates the model had 
strong performance identifying non-tumor images, but was likely to 
miss a small number of true non-tumor images. For Class 1 
(Meningioma), the model achieved a precision of 97%, and a recall of 
99% resulting in a F1-score of 98%. The model started off with a 
slightly higher number of false positives, but still provided excellent 
identification of true meningioma cases. For Class 2 (Pituitary), the 
model had a precision of 100% and a recall of 99%, which resulted in 
an F1-score of 99% that excelled classification of pituitary tumor 
images. Overall accuracy and the macro and weighted averages for 
precision, recall, and F1-score was 99%, providing elegant consistent 
performance across all tumor types, without significant 
misclassification of each tumor type (see Table 12).

5 Discussion

The proposed model with AE in conjunction with Swin 
Transformer and cGAN addresses many complexities of brain 

TABLE 7  Comparison of performance on Dataset I.

References Method Accuracy (%)

(47) Multi-Level GAN + CNN 96.00

(48) EfficientNetB3 + SE + Inverted 

Bottlenecks
97.50

(49) PDCNN with Preprocessing 

(Binary)
98.12

(59) Dilated PDCNN + Ensemble + 

ML Classifiers
98.35

(50) Optimized Ensemble Network 98.00

(51) Bayesian Depth-Wise CNN 94.38

(52) DenseNet, Modified CNN 90.30, 99.14

(49) PDCNN 97.33

(53) Transfer Learning utilizing pre-

trained neural networks: 

ResNet-50

99

Proposed (This 

Work)

Swin Transformer + AE-GAN 

Augmentation
99.54

TABLE 8  Comparison of classification accuracy on Dataset II.

References Method Accuracy (%)

(54) GoogLeNet + KNN 98.30

(55)
Two-Channel Deep 

CNN
95.23

(56) Hybrid CNN Ensemble 96.08

(57) Deep CNN 97.27

(58)
ResNet-18 Feature 

Extraction + SVM
98.62

(49)

ResNet50 (Transfer 

Learning), 

EfficientNetB0

98.4, 94.1

(57) Deep CNN 97.27

Proposed Model
Swin Transformer + 

AE-GAN Augmentation
98.90
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tumour classification, specifically the issues surrounding data 
scarcity. The inclusion of cGAN substantially improves the 
proposed model in generating synthetic data, which expands the 
dataset the divider can train on in situations where there is 
insufficient labelled data. Generating data using cGAN can 
drastically enhance the model’s generalization ability, especially 
in cases of an imbalanced dataset. The model will be  able to 
generate synthetic MRI images of high-quality, with complexities 
and variations that can represent real medical images, allowing 
the competition to train on a more complex and balanced dataset, 
improving classification accuracy and robustness.

The incorporation of cGAN leads to improved performance in 
contrast to standard GANs, because it is a conditional network that 
generates images closely related to the target tumour types. 
Consequently, cGAN creates more realistic and representative 
synthetic samples that improve model classification performance on 
complex tumour types (e.g., glioma, meningioma, and pituitary 

tumours) by creating high precision and recall. Additionally, the Swin 
Transformer can improve performance for classification of high-
resolution medical images, because the hierarchical attention 
mechanism allows for effective modeling of both local and 
global features.

On Dataset I, our model achieves an impressive accuracy of 
99.54% compared to Dataset II with an accuracy of 98.9%. This 
performance also beats several state-of-the-art approaches to 
classification and has potential clinical impact. The hybrid architecture 
included AE for feature extraction, cGAN for data augmentation, and 
Swin Transformer for classification, and ensures that component’s 
strengths and weaknesses are acknowledged to focus on critical issues 
for medical imaging analysis. The results show that cGAN has an 
important role to play in improving classification performance by 
providing large amounts of high-quality synthetic data. This is 
especially important in real-world clinical applications where 
obtaining large annotated datasets can be the bottleneck.

TABLE 9  Classification performance of the Swin Transformer Model on Dataset I.

Class Precision (%) Recall (%) F1-Score 
(%)

Support Accuracy Macro avg Weighted avg

Notumor 100 100 100 405

Meningioma 100 99 99 300

Glioma 98 99 98 306

Pituitary 99 100 99 300

Overall 1,311 99% 99% 99%

TABLE 10  Classification report for Swin Transformer and cGAN Model on Dataset I.

Class Precision (%) Recall (%) F1-Score 
(%)

Support Accuracy Macro avg weighted avg

Notumor 100 100 100 405

Meningioma 100 99 99 300

Glioma 99.1 99.1 99 306

Pituitary 98 100 99 300

Overall 1,311 99.1% 99.1% 99.1%

TABLE 11  Classification performance of the Swin Transformer model on Dataset II.

Class Precision (%) Recall (%) F1-score 
(%)

Support Accuracy (%) Macro avg 
(%)

Weighted avg 
(%)

Glioma 97.8 93.0 95.3 143

Meningioma 97.2 97.2 97.2 71

Pituitary 92.0 98.9 95.3 93

Overall 307 95.8 95.7 95.9

TABLE 12  Classification report for Swin Transformer and cGAN model on Dataset II.

Class Precision (%) Recall (%) F1-Score 
(%)

Support Accuracy (%) Macro avg 
(%)

Weighted avg 
(%)

0 99 98 98 300

1 97 99 98 306

2 100 99 99 300

Overall 906 99 99 99
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The proposed model, while demonstrating accuracy for classifying 
brain tumors, will face challenges in its transition into health care. The 
model must be  fit into existing clinical work flows, such as, MRI 
processing systems, and electronic health records, and be  reliable, 
accurate, and explainable within resource-constrained environments. It 
would also require regulatory approval, for example, FDA clearance, as 
well as conformance with data privacy regulations such as HIPAA and 
GDPR. Furthermore, explainable AI is essential for use in clinical practice. 
Clinicians will need to be  provided with explanations justifying the 
model’s predictions in order to make suitable clinical judgments. This 
could take the form of opacity tools such as saliency maps or attention 
visualization to aid interpretation. These barriers will likely need to 
be addressed in collaboration with clinicians and the model will need to 
be proved reliable and explainable. Ultimately, when this is achieved in 
practice it is hoped that it will augment, rather than replace, clinical 
judgment in the context of real-world epidemics.

In the future, we plan on augmenting the dataset, especially 
with additional representatives and diversities in subject details 
and more representative or balancing of examples, and have the 
capability to create a custom portal tools or web-based system 
(i.e., application that allows real time and automatic learning 
processes). This will further enhance post-hoc adjustments for 
analyzing and improving the model performance before the 
model can attain learning autonomy.

6 Conclusion

The study proposed a new hybrid model with AE, cGAN, and Swin 
Transformers to handle the challenges in brain tumour classification; such 
as data imbalance and lack of annotated datasets. By implementing 
cGAN’s ability to generate synthetic data, we were able to augment some 
cases that the model did poorly in with synthetic data to improve 
generalization and accuracy in the classification. Results achieved in this 
study were extraordinary with classification accuracy 99.54% and 98.9% 
on two publicly available datasets.

These results demonstrate the efficacy of combining a feature 
extraction model, data augmentation methodology using synthetic 
data generation, and an advanced architecture using Swin 
Transformers for image classification, while supporting the claim that 
this model can outperform traditional manual approaches. Our future 
research aims to adapt the proposed model for clinical usage with 
capabilities for real-time assessments. Further development will 
involve integrating multimodal imaging sources within the dataset.

Future endeavors will be directed towards clinical deployment 
in real-time and optimizing the model for faster inference times, 
while also ensuring seamless integration within existing 
healthcare infrastructure. Furthermore, the model can 
be extended to incorporate multi-modal imaging data, including 
T1, T2, FLAIR MRI scans, or even CT scans to further enhance 
its robustness. Development will also center around enhancing 
the quality of synthetic data produced by the cGAN in a way that 
fails and will rely on handling rare and complex tumors. 
Exploring transfer learning and fine-tuning on other datasets can 
allow for improved generalizations to new, unseen data.

Also, to further improve accuracy, we will focus on obtaining and 
developing better quality synthetic data, and testing the models in a 
clinical setting to study model’s interpretability, providing the model 

with boundaries of use to enhance robustness, transparency, and 
applicability. Ultimately, the goal was to improve speed and accuracy 
in diagnosing brain tumours, with restrictions to address for clinical 
diagnosis to enhance the precision of the detection process and 
ultimately more accurate and timely diagnoses.
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Glossary

G - Generator in Conditional GAN

D - Discriminator in Conditional GAN

AE - Autoencoder

E (x) - Encoder function of the Autoencoder, mapping input image xx 
to latent space

fencoder - Encoder function used in both Autoencoder and 
cGAN Discriminator

x - Input image

y - Class label

z - Latent feature space representation

G(z, y) - Synthetic image generated by the Generator conditioned on 
zz and yy

LD - Discriminator loss (binary cross-entropy for real vs. 
fake classification)

LG - Generator loss (encouraging the generator to produce 
realistic images)

Pre - Precision (the proportion of true positives over all 
predicted positives)

Rec - Recall (the proportion of true positives over all actual positives)

F1-S - F1-Score (harmonic mean of Precision and Recall)

LCE - Cross-Entropy Loss for multi-class classification

AUC - Area Under the Curve (used in ROC curve analysis)

Swin-Tiny - Pretrained Swin Transformer model used for classification

ŷ - Predicted label (output of the classifier)
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