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Lung cancer remains a leading cause of cancer-related mortality worldwide,

and accurate early identification of malignant pulmonary nodules is critical for

improving patient outcomes. Although artificial intelligence (AI) technology has

shown promise in pulmonary nodule benign-malignant classification, existing

methods struggle with modality heterogeneity and limited exploitation of

complementary information across modalities. To address the above issues, we

propose a novel multimodal framework, the Dual Cross-Attention Integration

framework (DCAI), for benign-malignant classification of pulmonary nodules.

Specifically, we first convert 3D nodules into multiple 2D images and obtain

nodule features annotated by clinical experts. These features are encoded using

Transformer models, and then a dual cross-attention module is proposed to

dynamically align and interact with the complementary information between

the di�erent modalities. The fused representations from both modalities are

then concatenated for benign-malignant prediction. We evaluate our proposed

method on the LIDC-IDRI dataset, and experimental results demonstrate

that DCAI outperforms several existing multimodal methods, highlighting the

e�ectiveness of our approach in improving the accuracy of pulmonary nodule

benign-malignant classification.
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pulmonary nodule, benign-malignant classification, artificial intelligence, multimodal,
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1 Introduction

Lung cancer remains the leading cause of cancer-related mortality worldwide, with

its five-year survival rate strongly dependent on early diagnosis. According to the World

Health Organization (WHO), lung cancer accounted for ∼2.2 million new cases and

1.8 million deaths worldwide in 2020, accounting for 18% of all cancer deaths (1).

Pulmonary nodules are critical radiographic indicators of early-stage lung cancer, and

accurate differentiation between benign and malignant nodules is essential for clinical

decision-making and patient prognosis. Low-dose computed tomography (LDCT), the

primary screeningmodality, has significantly improved detection rates, but it also results in

a high false-positive rate of up to 95% (2), leading to unnecessary invasive procedures (e.g.,

biopsy) and increased strain on healthcare resources. Conventional diagnosis relies heavily

on radiologists’ subjective assessment of nodule morphological features (e.g., spiculation,

lobulation), which is limited by inter-observer variability (Cohen’s k = 0.45–0.67) (3) and

reduced sensitivity for small nodules (<6 mm) (4). Although adjunctive techniques such
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as PET-CT and liquid biopsy can provide additional diagnostic

information, their clinical utility is constrained by high

costs, radiation exposure, and risks associated with invasive

procedures (5).

Hence, the development of efficient and noninvasive methods

for predicting the malignancy of pulmonary nodules has become

a major research focus. Radiomics, which quantitatively analyzes

features such as texture, shape, and heterogeneity of nodules,

has significantly enhanced diagnostic objectivity. For instance, the

American College of Radiology (ACR) Lung-RADS classification

system standardizes the evaluation process, increasing early

lung cancer diagnostic specificity to 85%. However, its positive

predictive value for category 3–4 nodules remains below 35%

(5). Recent advances in artificial intelligence (AI) offer new

opportunities for automated benign-malignant classification of

pulmonary nodules with multimodal data, such as CT images

and structured features annotated by the clinician. Deep learning

models (6–8) can extract high-level features from multimodal data

beyond human visual perception, with studies showing that AI-

assisted systems can achieve classification accuracies exceeding 90%

for small nodules, thereby reducing overdiagnosis and improving

resource allocation (9).

Despite progress in existing methods, multimodal fusion still

faces three major challenges: (1) The modality heterogeneity

between CT images (high-dimensional spatial data) and clinical

features (low-dimensional structured data) complicates feature

alignment. (2) Traditional fusion strategies, such as concatenation

or weighted averaging, struggle to dynamically adjust for redundant

or conflicting information. To address the above issues, we

propose a dual cross-attention integration framework, named

DCAI, to classify the benign-malignant of pulmonary nodules.

Specifically, 3D nodule CT scans are first converted into multiple

2D slices, and expert-annotated clinical features are interpolated.

Both modalities are encoded using Transformer models, and a

dual cross-attentionmodule is proposed to capture complementary

information between them. The resulting fused representations

are concatenated for benign-malignant prediction. Experimental

results demonstrate the superior performance of DCAI over

existing multimodal methods, highlighting its effectiveness in

improving pulmonary nodule benign-malignant classification

accuracy.

In summary, our contributions are as follows:

• We incorporate transformer models to deeply encode clinical

structured data and CT images separately, enabling the

learning of high-level features from both modalities.

• We propose a dual cross-attention module that dynamically

regulate the flow of complementary information between

imaging and clinical structured features, effectively addressing

modality heterogeneity and alignment challenges.

2 Related work

In recent years, research on pulmonary nodule malignancy

classification has evolved along two major technical pathways:

unimodal andmultimodal approaches. In unimodal methods, most

studies focus on developing deep learning models based solely on

CT imaging. For instance, Li et al. (10) a deep convolutional neural

network for nodule classification that leverages automatic feature

learning and exhibits strong generalization performance. Donga

et al. (11) propose a machine learning-based framework using

a modified gradient boosting method for classifying pulmonary

nodules, which integrates CT image preprocessing, random walker

segmentation, and feature extraction. Wang et al. (12) proposed a

decision tree model based on nodule size and density thresholds for

preliminary risk stratification in the Chinese population, achieving

an AUC of 0.899 in the first phase of their C-Lung-RADS system.

However, unimodal approaches face challenges in handling the

complexity and variability of pulmonary nodules, including high

intra- and inter-patient variability in shape, size, and texture.

Small or early-stage nodules may lack distinct features in CT

scans, leading to reduced sensitivity and accuracy in malignancy

prediction.

Multimodal approaches further enhance performance by

integrating imaging data with clinical information. A notable

example is the work by Yao et al. (13), who introduced a machine

learning framework combining dynamic PET/CT metabolic and

hemodynamic features, such as time-activity curve decomposition

(TAC), to improve diagnostic specificity. Recent innovations also

explore cross-modal fusion, such as the RFSC network developed

by Wang et al., which aligns low-dose CT and MRI images through

unsupervised registration, achieving 89.9% classification accuracy

while reducing radiation exposure (14). Yuan et al. (15) propose

a multi-modal fusion multi-branch classification network, which

integrates structured radiological features and 3D CT patch data

using an effective attention mechanism to classify pulmonary

nodules as benign or malignant. These multimodal frameworks

address the limitations of unimodal methods by leveraging

complementary data sources, thereby reducing false positives and

optimizing resource allocation in clinical practice. Sun et al. (16)

propose the Nodule-CLIP model, which leverages comparative

learning to explore the relationship between CT images and lung

nodule attributes, enhancing the model’s ability to distinguish

between benign and malignant nodules. Tang et al. (17) construct

two models (SUDFNN and SUDFX) that integrate 3D CNN-

extracted image features with radiologist-annotated structured

features using softmax and XGBoost classifiers, respectively. Liu et

al. (18) propose a multimodal deep learning network integrating

ResNet imaging features, Word2Vec semantic data, and self-

attention mechanisms, achieving high accuracy in differentiating

benign/malignant pulmonary nodules.

3 Method

3.1 Data preprocessing

The experimental data were derived from two publicly available

datasets: the Lung Image Database Consortium and Image

Database Resource Initiative (LIDC-IDRI) (3) and the LungNodule

Analysis 2016 (LUNA16) (19). The LIDC-IDRI dataset comprises

1,018 thoracic CT scans with XML annotations generated

through a two-phase review protocol involving four board-

certified radiologists. Annotated nodule characteristics include

malignancy, subtlety, internal structure, calcification, sphericity,
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FIGURE 1

The overall framework of dual cross-attention integration (DCAI) .

margin, lobulation, speculation, texture, and diameter (the latter

provided by LUNA16).

Following previous work (17), we consider the criteria required

nodules ≥ 3 mm in diameter with consensus annotations

from at least three radiologists. The malignancy score (ranging

1–5, higher values indicating increased malignancy likelihood)

served as the classification target. For each nodule, multi-reader

malignancy ratings are averaged and rounded to the nearest integer.

Nodules with final scores of 1–2 are categorized as benign (n =

354), while those scoring 4–5 are classified as malignant (n =

330). Intermediate scores (3) are excluded to ensure diagnostic

certainty. Missing annotations in other structured characteristics

are addressed through radiologist-wise imputation. When only

three radiologists provided annotations, the fourth radiologist’s

entry is populated using the rounded mean of existing annotations.

CT image preprocessing involved isotropic resampling to 1 ×
1 × 1mm3/voxel resolution, followed by extraction of 32 × 32 ×
32 voxel cubes centered on nodule coordinates. This yielded

standardized 3D nodule volumes as unstructured imaging inputs.

As a result, we obtain 684 samples, each comprising nine structured

radiographic attributes, one 3D nodule volume, and a binary

benign/malignant label.

3.2 Dual cross-attention integration
framework

The overall framework of DCAI is illustrated in Figure 1. Given

a nodule case xi from the dataset x = {x1, x2, . . . , xN}, containing a
3D nodule volume (CT image) ci ∈ R

32×32×32 and nine structured

features si ∈ R
9×4, we encode them separately into representations

using two types of encoders, which are then aligned with two dual

cross-attention modules and fused with concatenation.

Specifically, we employ a linear network built on two fully

connected layers to map the original structured features to a

new semantic space, and then learn the relationships within

the structured features using a Transformer module. They are

written as:

Semb = ReLU
(

W2(W1S+ b1)+ b2
)

(1)

where W1 ∈ R
4×32, W2 ∈ R

32×256, b1 ∈ R
1×32, and b2 ∈ R

1×256

are learnable weights. ReLU is the activation function.

Senc = Transformer-S (Semb) (2)

where Transformer-S () is the Transformer encoder module, which

consists of 6 Transformer blocks.

Meanwhile, 3D nodule volume (CT image) is first divided into

32 32 × 32 images, and then patch embedded with a lightweight

CNN, followed by encoding with a Transformer (20, 21), which are

written as:

Cemb = LightweightCNN (C) (3)

Cenc = Transformer-C (Cemb) (4)

where LightweightCNN denotes the lightweight CNNwith a kernel

size of 32× 32 and 256 channels.

After that, the encoded representations of structured features

and CT image are aligned and dynamically interact with two dual
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TABLE 1 Performance comparison of DCAI and existing models on the LIDC-IDRI dataset.

Methods Accuracy Precision Sensitivity Specificity F1-Score

Nodule-CLIP (16) 0.934 0.925 0.939 0.930 0.932

Self-attention-based (18) 0.920 0.910 0.924 0.915 0.917

SUDFX32 (17) 0.942 0.926 0.955 0.930 0.940

DCAI (Ours) 0.964 0.955 0.970 0.958 0.962

TABLE 2 Ablation study of modality.

Modality Accuracy Precision Sensitivity Specificity F1-Score

Structured features 0.927 0.967 0.879 0.972 0.921

CT images 0.942 0.903 0.985 0.901 0.942

Multimodal 0.964 0.955 0.970 0.958 0.962

cross-attention modules (22, 23), which are written as:

SCA = CrossAttn
(

Wq,sCenc,Wk,sSenc,Wv,sSenc
)

= Softmax

(

Wq,sCencS
T
encW

T
k,s√

d

)

Wv,sSenc
(5)

CCA = CrossAttn
(

Wq,cSenc,Wk,cCenc,Wv,cCenc

)

= Softmax

(

Wq,cSencC
T
encW

T
k,c√

d

)

Wv,cCenc

(6)

where Wq,s,Wk,s,Wv,s,Wq,c,Wk,c, and Wv,c are trainable weight

matrices multiplied by the corresponding queries, keys, and values.

Then, the SCA and CCA are layer normalizated and average

pooled, respectively. Next, the two unimodal representations are

concatenated as the multimodal representations:

Sfinal = AvgPool
(

LayerNorm (SCA)
)

(7)

Cfinal = AvgPool
(

LayerNorm (CCA)
)

(8)

V = [Sfinal ⊕ Cfinal] (9)

Finally, the multimodal representations V are used to predict

the probabilities of nodule samples. Specifically, the multimodal

representations V are first fed into a linear network, followed by

the application of a cross-entropy loss function to compute the final

loss. The overall process is formulated as follows:

L = CE
(

Linear (V) , ytrue
)

(10)

where ytrue is the ground-truth labeling and CE (·) denotes the

cross-entropy loss function.

4 Experiments and results analysis

4.1 Experiment setup

The experiments are executed on a Linux-based system

equipped with three NVIDIA A100 GPUs and the PyTorch

framework. The DCAI model is trained for 30 epochs with a batch

size of 100, using a learning rate of 0.0005 and a weight decay

of 0.001 to regularize optimization. The Transformer architecture

comprised six stacked encoder blocks, ensuring sufficient depth for

feature abstraction.

We conduct all experiments using a rigorous five-fold cross-

validation to ensure robust performance evaluation. The dataset

is randomly partitioned into five distinct subsets, with each fold

serving as the test set once, while the remaining four folds are

utilized for model training. The final performance metrics are

averaged across all five iterations to mitigate bias and enhance

statistical reliability.

4.2 Evaluation metrics

We evaluate the performance of pulmonary nodule malignancy

classification (malignant as positive, benign as negative) by various

metrics, such as accuracy, precision, sensitivity, specificity, and

F1-Score. They are calculated based on a confusion matrix:

Confusion-Matrix =

[

TN FP

FN TP

]

(11)

where TN (true negative) and TP (true positive) denote correct

predictions for benign and malignant cases, respectively; FP (False

Positive) and FN (False Negative) represent misclassified benign

and malignant cases.

The metrics of accuracy, precision, sensitivity, specificity, and

F1-Score are written as:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(12)

Precision =
TP

TP+ FP
(13)

Sensitivity =
TP

TP+ FN
(14)

Specificity =
TN

TN+ FP
(15)

F1-Score = 2×
Precision× Recall

Precision+ Recall
(16)
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TABLE 3 Ablation study of key components.

Methods Accuracy Precision Sensitivity Specificity F1-Score

Without transformer 0.927 0.900 0.955 0.901 0.926

Without cross-attention 0.898 0.882 0.909 0.887 0.896

DCAI (complete) 0.964 0.955 0.970 0.958 0.962

4.3 Comparison with existing multimodal
methods

To validate the effectiveness of our method, we compare

DCAI with three multimodal fusion approaches: Nodule-

CLIP (16), Self-attention-based (18), and SUDFX32 (17).

As shown in Table 1, DCAI achieves superior performance

across all metrics, attaining an accuracy of 0.964, precision of

0.955, sensitivity of 0.970, specificity of 0.958, and F1-score of

0.962. Notably, DCAI outperforms SUDFX32, the previous

best method, by 2.2% in accuracy and 2.2% in F1-score,

demonstrating its robust capability in integrating multimodal

features. The significant improvements in sensitivity (1.5%

higher than SUDFX32) and specificity (2.8% higher) further

highlight its balanced diagnostic reliability. These results validate

the efficacy of our cross-modal alignment strategy, which

effectively reduce inter-modal discrepancies while preserving

discriminative features.

4.4 Ablation study

To investigate the performance of different modal input data

and individual submodules, we conduct ablation experiments on

Unimodal vs. Multimodal configurations and Key Components,

respectively.

4.4.1 Unimodal and multimodal
Table 2 reveals distinct strengths of unimodal inputs:

structured features excel in precision (0.967), indicating

robust identification of benign cases, while CT images achieve

superior sensitivity (0.985), effectively detecting malignant

nodules. However, unimodal models exhibit limitations–

structured features show lower sensitivity (0.879), and CT

images underperform in specificity (0.901). Multimodal fusion

balances these metrics, achieving optimal accuracy (0.964) and

F1-score (0.962). This synergy highlights how combining clinical

metadata with imaging data mitigates modality-specific biases,

enhancing holistic diagnostic reliability for both benign and

malignant cases.

4.4.2 Key components
Ablating key components (Table 3) demonstrates

their critical roles. Removing the Transformer reduces

specificity (0.901 vs. 0.958), suggesting its necessity for

modeling global context to minimize false positives (benign

misclassified as malignant). Disabling cross-attention

causes significant drops in sensitivity (0.909 vs. 0.970) and

precision (0.882 vs. 0.955), emphasizing its role in aligning

multimodal features for accurate malignant detection.

The complete DCAI model architecture achieves balanced

performance, proving that both components are crucial

for dynamic cross-modal interaction and discriminative

feature preservation.

5 Conclusion

In this paper, we propose DCAI, a dual cross-attention

integration framework for benign-malignant classification of

pulmonary nodules. We design DCAI to address modality

heterogeneity and feature alignment challenges in multimodal

fusion. Leveraging Transformer-based encoders for clinical

structured features and CT images, DCAI captures high-

level semantic representations while dynamically aligning

complementary information through the dual cross-

attention module. Evaluated on the LIDC-IDRI dataset,

DCAI achieves superior performance, outperforming

existing methods significantly. Ablation studies confirm

the necessity of both cross-attention and Transformer

components. The experimental results indicate that our

framework provides a robust, noninvasive solution to

enhance early lung cancer diagnosis and reduce unnecessary

interventions, demonstrating clinical potential for reliable

malignancy characterization.
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