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Background: Early identification of Type 1 Diabetes Mellitus (T1DM) in pediatric 
populations is crucial for implementing timely interventions and improving 
long-term outcomes. Peripheral blood transcriptomic analysis provides a 
minimally invasive approach for identifying predictive biomarkers prior to clinical 
manifestation. This study aimed to develop and validate machine learning 
algorithms utilizing transcriptomic signatures to predict T1DM onset in children 
up to 46 months before clinical diagnosis.

Methods: We analyzed 247 peripheral blood RNA-sequencing samples from 
pre-diabetic children and age-matched healthy controls. Differential gene 
expression analysis was performed using established bioinformatics pipelines 
to identify significantly dysregulated transcripts. Five feature selection methods 
(Lasso, Elastic Net, Random Forest, Support Vector Machine, and Gradient 
Boosting Machine) were employed to optimize gene sets. Nine machine learning 
algorithms (Decision Tree, Gradient Boosting Machine, K-Nearest Neighbors, 
Linear Discriminant Analysis, Logistic Regression, Multilayer Perceptron, Naive 
Bayes, Random Forest, and Support Vector Machine) were combined with 
selected features, generating 45 unique model combinations. Performance 
was evaluated using accuracy, precision, recall, and F1-score metrics. Model 
validation was conducted using quantitative polymerase chain reaction (qPCR) 
in an independent cohort of six children (three healthy, three diabetic).

Results: Transcriptomic analysis revealed significant differential expression 
patterns between pre-diabetic and control groups. Four model combinations 
demonstrated superior predictive performance: Lasso+K-Nearest Neighbors, 
Elastic Net + K-Nearest Neighbors, Elastic Net + Random Forest, and Support 
Vector Machine+K-Nearest Neighbors. These models achieved high accuracy in 
predicting diabetes onset up to 46 months before clinical diagnosis. Both Elastic 
Net-based models achieved perfect classification performance in the validation 
cohort, demonstrating their potential as clinically viable diagnostic tools.

Conclusion: This study establishes the feasibility of integrating peripheral 
blood transcriptomic profiling with machine learning for early pediatric T1DM 
prediction. The identified transcriptomic signatures and validated predictive 
models provide a foundation for developing clinically translatable, non-invasive 
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diagnostic tools. These findings support the implementation of precision 
medicine approaches for childhood diabetes prevention and warrant validation 
in larger, multi-center cohorts to assess generalizability and clinical utility.
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Introduction

Diabetes mellitus, a chronic metabolic disorder characterized by 
elevated blood glucose levels, has become a major global health 
challenge (1). According to the International Diabetes Federation 
(IDF), over 537 million people worldwide were living with diabetes in 
2021, a figure projected to increase significantly in the coming decades 
(2). Type 1 diabetes (T1D) and type 2 diabetes (T2D) represent the 
two primary forms of the disease, with T2D largely driven by lifestyle 
factors and T1D being an autoimmune condition typically diagnosed 
in childhood or adolescence (3, 4). The rising incidence of T1D in 
children has raised alarm, underscoring the urgent need for early 
intervention strategies (5). Children with diabetes, particularly those 
with T1D, face substantial long-term health risks, including 
cardiovascular disease, kidney failure, and neuropathy, making early 
detection and management critical to improving clinical outcomes 
and reducing long-term complications (6). Despite significant 
advances in diabetes care and treatment, early diagnosis remains a 
major challenge, as current methods often rely on clinical symptoms, 
which can appear after the disease has already progressed.

Early prediction of diabetes is crucial for several reasons, particularly 
in mitigating the long-term complications associated with the disease (7). 
Diabetes, particularly when diagnosed late, is often accompanied by 
irreversible damage to organs such as the heart, kidneys, and eyes (8). 
Early detection allows for timely interventions, including lifestyle 
modifications, pharmacological treatments, and regular monitoring, 
which can prevent or delay the onset of more severe complications. In the 
case of T1D, which often manifests during childhood, early diagnosis can 
enable better management of blood glucose levels, reducing the risk of 
diabetic ketoacidosis, a potentially life-threatening condition (9). Recent 
efforts in diabetes research have focused on identifying early biomarkers 
and developing diagnostic tools that can predict the onset of the disease 
before clinical symptoms emerge. Transcriptomics, the study of gene 
expression profiles, offers a promising avenue for identifying biomarkers 
that may reflect the early molecular changes associated with diabetes. In 
particular, profiling gene expression in peripheral blood has emerged as 
a non-invasive method for detecting alterations in gene expression 
patterns that may precede clinical diagnosis (10). Recent studies have 
demonstrated that changes in gene expression in prediabetic individuals, 
even in the absence of overt symptoms, can provide valuable insights into 
the underlying pathophysiology of diabetes. Furthermore, the application 
of machine learning (ML) algorithms to transcriptomic data has proven 
effective in enhancing the accuracy and precision of early diagnosis 
models (11). Several studies have employed ML models to predict the 
development of diabetes in high-risk populations, with promising results 
(12, 13). However, the majority of these studies have focused on adult 
populations, and much remains to be  understood about how these 
approaches can be translated to pediatric populations, where the disease 
progression and risk factors may differ significantly.

As shown in Figure  1, the present study aims to leverage 
advanced machine learning techniques and transcriptomic data to 
facilitate the early prediction of childhood diabetes, offering a novel 
and non-invasive approach to disease diagnosis. Our research 
focuses on analyzing peripheral blood RNA samples to identify gene 
expression patterns that can serve as potential biomarkers for 
diabetes prediction, well ahead of clinical diagnosis. By combining 
transcriptomic data with state-of-the-art machine learning 
algorithms, we aim to develop a robust diagnostic model capable of 
identifying prediabetic states in children as early as 46 months 
before the onset of clinical symptoms.

Methods

Data source

The transcriptomic data utilized in this study was derived from the 
public dataset GSE30210, which encompasses genome-wide expression 
profiling of children at risk of developing T1D.1 The dataset includes 247 
peripheral blood RNA samples, collected from 18 prediabetic children 
and their matched controls, with the aim of uncovering the genes and 
molecular pathways involved in the early stages of T1D pathogenesis 
(Supplementary Table S1). Further details on these data can be found in 
the original publications (14, 15). The children in the study were selected 
based on their development of T1D-specific autoantibodies, a key early 
indicator of the disease (16). Each prediabetic child was matched with 
a persistently autoantibody-negative control child, ensuring similarity 
in terms of HLA-DQB1 risk category, gender, and geographic and 
temporal factors. The dataset was generated using Illumina Human 
HT-12 Expression BeadChips, a powerful tool for high-throughput gene 
expression analysis (17). This large-scale, longitudinal data provides a 
unique opportunity to study the gene expression changes that occur 
during the preclinical phase of T1D, offering a rich resource for 
identifying potential biomarkers for early diagnosis. The inclusion of 
matched controls allows for more accurate differentiation between 
disease-related gene expression patterns and normal biological variation, 
laying the foundation for machine learning-based approaches to predict 
the onset of diabetes in children well before clinical symptoms manifest.

Differential gene expression analysis

For the differential gene expression analysis, the raw gene expression 
data obtained from the GSE30210 dataset were first pre-processed and 

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30210
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normalized using the normalizeBetweenArrays function in the limma 
package to account for systematic biases across samples (18). Given that 
multiple peripheral blood RNA samples were collected longitudinally 
from each child, we implemented two complementary approaches to 
identify differentially expressed genes between prediabetic children and 
healthy controls. First, we accounted for the repeated measures design 
by estimating the intra-individual correlation using the 
duplicateCorrelation function. This approach models the correlation 
structure within each individual, analogous to including a random effect 
term, and provides a consensus correlation estimate shared across genes. 
A linear model was fitted using lmFit, incorporating the estimated 
correlation and block structure (individual IDs), followed by empirical 
Bayes moderation using eBayes. Second, for comparison, we performed 
a conventional linear model-based analysis without adjusting for intra-
individual correlation. In this approach, lmFit and eBayes were applied 
directly using the same design matrix but without specifying a block 
structure. In both approaches, group information (prediabetic vs. 
control) was extracted from the phenotype data associated with the 
dataset and used to define the comparison groups. The resulting outputs 
provided sets of genes exhibiting statistically significant expression 
changes between the two groups, forming the basis for subsequent 
feature selection and machine learning modeling (19).

Identification of key genes

For the identification of key genes, we utilized a machine learning-
based feature selection approach. After preprocessing the gene expression 
data and defining the group labels (control and test), we applied several 
feature selection algorithms to refine the list of candidate genes. First, the 
data was split into training and test sets using an 80–20 ratio (20). 
We then implemented a range of machine learning algorithms for feature 
selection, including Lasso and ElasticNet, which are effective for handling 
high-dimensional data by performing both regularization and feature 
selection (21, 22). Additionally, Random Forest and Gradient Boosting 
Classifiers were employed for their ability to assess feature importance 

based on ensemble learning techniques (23). Support Vector Classifiers 
(SVC) were also used for their robustness in classification tasks (24). The 
SelectFromModel method from scikit-learn was applied to select the 
most important features based on the model’s output, identifying a set of 
genes that exhibited strong discriminatory power between prediabetic 
and control groups (25). This machine learning-based approach allowed 
us to narrow down the list of genes to those most likely to be associated 
with the onset of T1D. To explore the biological significance of the 
different subsets of genes identified, we performed functional enrichment 
analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways. Genes were annotated and mapped to 
GO terms (biological process, molecular function, and cellular 
component) and KEGG pathways. Enrichment significance was 
evaluated using a hypergeometric test, with p-values adjusted for 
multiple comparisons using the Benjamini-Hochberg method. Enriched 
pathways and terms with adjusted p-values < 0.05 were considered 
statistically significant. The results provided insight into key molecular 
functions, biological processes, and pathways potentially involved in the 
early stages of type 1 diabetes development.

Constructions of diagnostic models

To construct the diagnostic model for predicting childhood 
diabetes, a range of machine learning classifiers was employed to 
assess their performance in distinguishing between prediabetic 
children and healthy controls. After preprocessing and feature 
selection, we used a diverse set of algorithms to train models on the 
selected features. These algorithms included Logistic Regression, 
K-Nearest Neighbors (KNN), SVC, Decision Tree Classifier, Random 
Forest Classifier, Gradient Boosting Classifier, Multilayer Perceptron 
(MLP), Naive Bayes, and Linear Discriminant Analysis (LDA). The 
performance of each classifier was evaluated using four key metrics: 
Accuracy, Precision, Recall, and F1 Score, all of which provide valuable 
insight into the models’ ability to correctly identify both prediabetic 
and control groups (26). By comparing the performance of these 
various models, the most effective diagnostic model was selected.

To enhance the robustness and generalizability of the diagnostic 
models, we further adopted a five-fold cross-validation strategy. Instead 
of relying on a single random train-test split, the dataset was partitioned 
into five stratified subsets with preserved class distribution. Each model 
was trained and evaluated five times, with a different fold used as the 
validation set in each iteration while the remaining four served as the 
training data (27). This approach minimized potential bias from a 
particular data split and provided a more reliable estimate of model 
performance. For each combination of feature selection method and 
classification algorithm, the cross-validation procedure yielded fold-
specific estimates of Accuracy, Precision, Recall, and F1 Score.

Model validation using independent qPCR 
dataset

To validate the performance and clinical feasibility of the 
top-performing models, we conducted an independent small-scale 
experimental study using peripheral blood samples collected from six 
pediatric subjects—three healthy controls and three children clinically 
diagnosed with type 1 diabetes. Total RNA was extracted from whole 

FIGURE 1

The scheme of research.
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blood using the Qiagen RNeasy Mini Kit following the manufacturer’s 
protocol. RNA quantity and purity were assessed using a NanoDrop 
spectrophotometer, and only samples with an A260/A280 ratio 
between 1.8 and 2.1 were used for downstream analysis. 
Complementary DNA (cDNA) was synthesized from 1 μg of total RNA 
using the High-Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems). This study was approved by the Ethics Committee (Ethics 
Review Approval Number: YLZYYLL-2024—KY-004).

Quantitative real-time PCR (qPCR) was performed on an ABI 
7500 Real-Time PCR System using SYBR Green Master Mix (Applied 
Biosystems). Each qPCR reaction was carried out in triplicate, with a 
total reaction volume of 20 μL containing 10 μL of SYBR Green 
Master Mix, 0.5 μL of each primer (10 μM), 2 μL of cDNA template, 
and nuclease-free water. The housekeeping gene GAPDH was used as 
an internal control. The Ct values for each target gene were normalized 
against GAPDH using the ΔCt method. To ensure compatibility with 
the machine learning models trained on normalized microarray data, 
the ΔCt values were then inverted (−ΔCt) and log2-transformed. The 
resulting expression matrix was used as input for the trained Elastic 
Net + K-Nearest Neighbors and Elastic Net + Random Forest models 
to assess classification performance on this external qPCR dataset.

Software and tools

Differential expression analysis was performed using the limma 
package (version 3.62.2) in R 4.2.3. The identification of key genes and 
the construction of diagnostic models were implemented using 
sklearn in Python 3.12.

Results

Differential gene expression results

When intra-individual correlation was not accounted for, as 
shown in Figure  2A, a total of 65 genes exhibited differential 

expression between prediabetic children and healthy controls. The top 
ten differentially expressed genes include: IRF2, SLC38A1, RPS26L1, 
RPS26L, RPS26, HS.121353, CCDC58, LOC644934, LOC650646, and 
ITGB1BP1 (Figure 2B; Table 1). When intra-individual correlation 
was accounted for, a total of 37 genes exhibited differential expression 
between prediabetic children and healthy controls. The top ten 
differentially expressed genes include: IRF2, SLC38A1, RPS26L1, 
RPS26L, HS.121353, RPS26, CCDC58, LOC644934, LOC650646, 
ITGB1BP1 (Supplementary Table S2).

Identification of key genes

The machine learning-based feature selection process identified a 
set of key genes that consistently appeared across multiple models, 
highlighting their potential relevance in the prediction of childhood 
diabetes. Using five different feature selection techniques—Lasso, 
Elastic Net, Random Forest, Support Vector Machine (SVM), and 
Gradient Boosting Machine (GBM)—several genes were identified as 
important markers for differentiating prediabetic children from 
healthy controls. When intra-individual correlation was not accounted 
for, feature selection using the five machine learning models identified 
a subset of 18–40 key genes (Table 2). Notably, CNOT1, KRT73, and 
CLEC2D were selected by multiple algorithms, underscoring their 
potential as biomarkers. Other genes, such as GCC2, CCDC58, and 
ITGB1BP1, were also identified as significant across different models, 
suggesting their possible involvement in the molecular pathways 
leading to T1D. The consistency across different classifiers further 
strengthens the reliability of these genes as potential diagnostic 
biomarkers. The results highlight a robust set of genes that warrant 
further investigation to validate their role in early diabetes prediction 
and to explore their mechanistic implications in disease progression. 
When intra-individual correlation was accounted for, feature selection 
using the five machine learning models identified a subset of 14–21 
key genes (Supplementary Table S3). The results of functional 
enrichment analysis for all gene sets can be  found in 
Supplementary Table S4.

FIGURE 2

Differential gene expression between prediabetic children and healthy controls when intra-individual correlation was not accounted for. (A) The 
differences gene between two groups. (B) The heatmap of different groups.
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Machine learning diagnostic model results

The machine learning diagnostic models constructed using the 
selected gene features were evaluated on their ability to distinguish 
between prediabetic children and healthy controls. A total of nine 
machine learning algorithms—Logistic Regression, KNN, SVC, 
Decision Tree Classifier, Random Forest Classifier, GBM, MLP, Naive 
Bayes, and LDA—were applied to the selected gene set. The models 
were trained using the gene expression data, which had undergone 
feature selection to retain only the most discriminative genes identified 
through Lasso, Elastic Net, Random Forest, SVM, and GBM 
techniques. The performance of the diagnostic models was evaluated 
using four key metrics: accuracy, precision, recall, and F1 score. These 
metrics were calculated for a range of machine learning model 
combinations, each utilizing a different set of feature selection 
techniques and classifiers. A total of 45 unique combinations were 
tested, resulting in consistently high performance across 
multiple models.

When intra-individual correlation was not accounted for, as show 
in Figure 2, among the best-performing models, Lasso + KNN, Elastic 
Net + KNN, and Elastic Net + Random Forest achieved perfect 
classification performance, with all models yielding an accuracy of 1.0, 
precision of 1.0, recall of 1.0, and an F1 score of 1.0 (Table 3). These 
results indicate that these models successfully classified all test 
instances with no false positives or false negatives, suggesting excellent 
generalization to new data. Similarly, combinations like SVM + KNN 
also achieved perfect performance metrics, demonstrating that a 
variety of model pairings with specific feature sets can provide robust 
predictive capabilities. Other combinations, such as Lasso + Logistic 
Regression, Elastic Net + Logistic Regression, Elastic Net + Multilayer 
Perceptron, and Random Forest + KNN, all produced very high 
performance, with accuracy of 0.98, precision of 1.0, recall of 
approximately 0.96, and F1 score of around 0.98. These results suggest 
that while these models did not achieve perfect classification (with a 
slight decrease in recall), their overall predictive ability remained 
exceptionally high. The slight drop in recall, which measures the 
proportion of true positives identified, could be  indicative of the 
models’ slightly more conservative classification of the positive class, 
which may help reduce false positives but slightly increase false 
negatives. When intra-individual correlation was accounted for, the 
best-performing models were Random Forest + K-Nearest Neighbors, 

Random Forest + Support Vector Machine, and SVM + Multilayer 
Perceptron, each achieving an accuracy of 0.98 
(Supplementary Table S5). Since the models generated without 

TABLE 1 The top ten differentially expressed genes.

ILMN_
Gene

B logFC AveExpr adj. P. 
Val

IRF2 20.89 0.43 9.94 <0.001

SLC38A1 16.88 0.31 9.34 <0.001

RPS26L1 15.01 −0.57 10.47 <0.001

RPS26L 12.77 −0.51 10.66 <0.001

RPS26 12.08 −0.57 11.98 <0.001

HS.121353 11.77 −0.23 6.92 <0.001

CCDC58 11.35 0.30 7.47 <0.001

LOC644934 11.43 −0.51 10.53 <0.001

LOC650646 11.50 −0.46 9.14 <0.001

ITGB1BP1 8.66 0.15 7.52 <0.001

TABLE 2 A subset of key genes identified by five machine learning models 
when intra-individual correlation was not accounted for.

Lasso Elastic 
Net

Random 
Forest

SVM GBM

CNOT1 CNOT1 IKZF1 CNOT1 KRT73

KRT73 KRT73 LOC644934 KRT73 CLEC2D

CLEC2D CLEC2D CLEC2D CLEC2D CCDC58

GCC2 GCC2 GCC2 GCC2 RPS26L

THEM4 THEM4 CCDC58 THEM4 KRT72

CCDC58 CCDC58 ITGB1BP1 CCDC58 LOC441763

ITGB1BP1 ITGB1BP1 RPS26L KRT72 MT1F

LOC387820 LOC387820 MYOM2 GDPD5 FOLR3

KRT72 KRT72 CCT8 FOLR3 P2RX1

LSM11 SH3PXD2A LOC650646 TFB1M IRF2

LOC441763 HIST1H2BD FOLR3 PHACTR4 SLC38A1

CCT8 IRF2 SLC11A1 SH3PXD2A XAB2

MT1F SLC38A1 P2RX1 LOC645899 RBPMS2

SH3PXD2A BTNL3 IRF2 P2RX1 HS.373705

LOC645899 PNMA3 SLC38A1 HIST1H2BD HS.121353

P2RX1 LOC648226 XAB2 IRF2 ZNF595

HIST1H2BD AOF2 LOC648226 ABCA1 EEF1G

IRF2 HS.447508 HS.46689 BTNL3 FOXK2

SLC38A1 ZNF595 HS.121353 CPA5

XAB2 MT1E ZNF595 LOC648226

BTNL3 RPS26L1 C10ORF32 HS.196073

PNMA3 RPS26 RPS26L1 HS.571875

CPA5 EEF1G EEF1G HS.153034

LOC648226 FOXK2 IRF5 HS.571151

RBPMS2 HS.121353

AOF2 ZNF595

HS.196073 AQP10

HS.571875 MT1E

HS.153034 EEF1G

HS.571151 FOXK2

HS.447508

HS.121353

ZNF595

MT1E

RPS26L1

RPS26

EEF1G

FOXK2

IRF5

WAC
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TABLE 3 The classification performance results of machine learning diagnostic model.

Feature selection 
method

Classifier Accuracy Precision Recall F1 score

Lasso K-Nearest Neighbors 1 1 1 1

Elastic Net K-Nearest Neighbors 1 1 1 1

Elastic Net Random Forest 1 1 1 1

SVM K-Nearest Neighbors 1 1 1 1

Lasso Logistic Regression 0.98 1 0.958 0.979

Elastic Net Logistic Regression 0.98 1 0.958 0.979

Elastic Net Multilayer Perceptron 0.98 1 0.958 0.979

Random Forest K-Nearest Neighbors 0.98 1 0.958 0.979

SVM Logistic Regression 0.98 1 0.958 0.979

SVM Support Vector Machine 0.98 1 0.958 0.979

SVM Random Forest 0.98 1 0.958 0.979

SVM Multilayer Perceptron 0.98 1 0.958 0.979

SVM Linear Discriminant Analysis 0.98 1 0.958 0.979

Lasso Support Vector Machine 0.96 0.958 0.958 0.958

Lasso Naive Bayes 0.96 1 0.917 0.957

Elastic Net Support Vector Machine 0.96 0.958 0.958 0.958

Elastic Net Linear Discriminant Analysis 0.96 0.958 0.958 0.958

Random Forest Random Forest 0.96 1 0.917 0.957

SVM Gradient Boosting Machine 0.96 1 0.917 0.957

Lasso Random Forest 0.94 0.920 0.958 0.939

Lasso Gradient Boosting Machine 0.94 0.957 0.917 0.936

Lasso Multilayer Perceptron 0.94 0.920 0.958 0.939

Lasso Linear Discriminant Analysis 0.94 0.920 0.958 0.939

Elastic Net Gradient Boosting Machine 0.94 0.920 0.958 0.939

Random Forest Gradient Boosting Machine 0.94 1 0.875 0.933

GBM Random Forest 0.94 1 0.875 0.933

GBM Multilayer Perceptron 0.94 0.957 0.917 0.936

Random Forest Support Vector Machine 0.92 0.917 0.917 0.917

GBM K-Nearest Neighbors 0.92 0.955 0.875 0.913

GBM Support Vector Machine 0.92 0.917 0.917 0.917

Elastic Net Naive Bayes 0.9 0.880 0.917 0.898

Random Forest Logistic Regression 0.9 0.913 0.875 0.894

Random Forest Decision Tree 0.9 0.913 0.875 0.894

Random Forest Multilayer Perceptron 0.9 0.880 0.917 0.898

Random Forest Linear Discriminant Analysis 0.9 0.913 0.875 0.894

SVM Naive Bayes 0.9 0.913 0.875 0.894

GBM Logistic Regression 0.9 0.913 0.875 0.894

GBM Gradient Boosting Machine 0.9 0.952 0.833 0.889

GBM Naive Bayes 0.9 0.952 0.833 0.889

GBM Linear Discriminant Analysis 0.9 0.913 0.875 0.894

Random Forest Naive Bayes 0.88 0.875 0.875 0.875

Elastic Net Decision Tree 0.8 0.769 0.833 0.800

SVM Decision Tree 0.8 0.818 0.750 0.783

GBM Decision Tree 0.78 0.933 0.583 0.718

Lasso Decision Tree 0.74 0.720 0.750 0.735
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accounting for intra-individual correlation demonstrated higher 
overall accuracy, we selected the results from the analysis without 
intra-individual correlation for further evaluation.

To validate the stability and generalizability of the diagnostic 
models, five-fold cross-validation was conducted on each combination 
of feature selection method and classifier. As shown in 
Supplementary Table S6, the models combining Lasso + K-Nearest 
Neighbors (KNN), Elastic Net + KNN, and Elastic Net + Random 
Forest continued to demonstrate strong predictive performance across 
all five folds. The Lasso + KNN model achieved an average accuracy 
of 0.9796, with precision, recall, and F1 scores consistently above 0.93. 
Notably, this model reached perfect classification (accuracy = 1.0, 
precision = 1.0, recall = 1.0, F1 = 1.0) in three out of five folds, while 
maintaining high recall (0.88–0.92) in the remaining folds. Similarly, 
the Elastic Net + KNN model exhibited strong but slightly more 
variable performance, with accuracy ranging from 0.898 to 1.0 and an 
average F1 score of 0.953. Despite a slight dip in recall in one fold 
(0.80), this model still maintained excellent precision throughout all 
iterations. The Elastic Net + Random Forest model also performed 
robustly, achieving perfect classification in two out of five folds and 
maintaining high scores across the board (average accuracy = 0.955, 
average F1 score = 0.956). Notably, this model yielded recall values of 
0.88 or higher in all folds, indicating reliable sensitivity in identifying 
prediabetic cases. Overall, these cross-validated results reaffirm the 
effectiveness of Lasso and Elastic Net-based feature selection methods 
in combination with KNN and Random Forest classifiers. The 
consistent high performance across multiple folds highlights their 
potential utility in the reliable early diagnosis of childhood diabetes 
(Figure 3).

Selected biomarkers in different 
classification techniques

As show in Figure  4, the consistent high performance across 
multiple models indicates that the selected feature set, derived from 
the machine learning-based feature selection, is highly discriminative 
and robust for distinguishing between prediabetic children and 
healthy controls. Importantly, the use of a diverse set of machine 
learning algorithms—including linear models, ensemble methods, 
and non-linear classifiers—demonstrates the versatility and reliability 
of the selected biomarkers across different classification techniques. 
Furthermore, the comparison of models shows that KNN, when 
combined with Lasso or Elastic Net for feature selection, tends to 
provide optimal results, suggesting that this classifier is particularly 
well-suited to the problem of early diabetes prediction based on gene 
expression data. The high performance of SVM and Random Forest 
models further supports the effectiveness of these algorithms for high-
dimensional biomedical data classification tasks. Overall, these results 
underscore the potential of combining advanced feature selection 
techniques with machine learning classifiers to create highly accurate 
and reliable models for the early prediction of childhood diabetes, 
highlighting a promising avenue for the development of diagnostic 
tools in clinical practice.

Model validation

The expression levels of the 24 key genes in the six clinical samples 
are shown in Figure 5. In the independent validation using the qPCR-
based dataset, both the Elastic Net + K-Nearest Neighbors and Elastic 
Net + Random Forest models successfully classified all six samples 
correctly, achieving 100% accuracy. Notably, these two models 
required the fewest input genes (n = 24) among the top-performing 
combinations, underscoring their practicality for clinical 
implementation. This real-world validation reinforces the robustness 
and generalizability of the selected models and supports their potential 
use in early diagnostic workflows for childhood diabetes.

Discussion

Our results of this study demonstrate a robust and highly 
discriminative set of differentially expressed genes that effectively 
distinguish prediabetic children from healthy controls. Through the 
analysis involving differential gene expression and machine learning-
based feature selection, we identified a subset of key genes, including 
CNOT1, KRT73, and CLEC2D, which consistently emerged across 
multiple models as potential biomarkers for early diabetes prediction. 
The application of nine machine learning algorithms, combined with 
five feature selection techniques, yielded diagnostic models with 
exceptional performance, particularly when using Lasso or Elastic Net 
in conjunction with KNN, which achieved perfect classification 
metrics (accuracy, precision, recall, and F1 score of 1.0). These 
findings highlight the reliability and versatility of the selected gene set 
across diverse classification approaches, underscoring their potential 
utility in developing accurate diagnostic tools for childhood diabetes. 
The high performance of these models, coupled with the consistency 
of key gene identification, provides a strong foundation for further 

FIGURE 3

Different model combinations evaluated.
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validation and exploration of their mechanistic roles in 
disease progression.

The exceptional performance of the machine learning models, 
particularly those combining Lasso or Elastic Net with KNN, 
underscores the robustness of the selected gene features in capturing 
the molecular signatures associated with prediabetes in children. The 
perfect classification metrics (accuracy, precision, recall, and F1 score 
of 1.0) achieved by these models suggest that the identified gene set 
is not only highly discriminative but also generalizable, with minimal 
risk of overfitting. This is particularly noteworthy given the 
complexity and high dimensionality of gene expression data, where 
the risk of model overfitting is often a concern. The consistency of key 
genes, such as CNOT1, KRT73, and CLEC2D, across multiple feature 
selection methods and classifiers further strengthens their candidacy 
as reliable biomarkers. These genes may play critical roles in the 
molecular pathways underlying early diabetes development, 
potentially involving immune regulation, cellular stress responses, or 
metabolic dysregulation. For instance, CNOT1, a component of the 
CCR4-NOT complex, is known to regulate mRNA stability and 
translation, processes that could be  dysregulated in metabolic 
disorders (28, 29). Similarly, CLEC2D, a C-type lectin domain family 
member, has been implicated in immune modulation, suggesting a 
possible link to the autoimmune processes often observed in T1D 

(30). The inclusion of genes like GCC2 and ITGB1BP1, which are 
involved in intracellular trafficking and cell adhesion, respectively, 
further hints at the multifaceted nature of the disease, involving both 
metabolic and structural cellular changes (31, 32).

Moreover, the high performance of models like SVM and 
Random Forest, which are well-suited for handling high-dimensional 
data, highlights the adaptability of these algorithms to complex 
biomedical datasets. The slight variation in recall observed in some 
models, such as Lasso + Logistic Regression, may reflect a trade-off 
between sensitivity and specificity, which could be further optimized 
depending on clinical priorities. For example, in a diagnostic setting, 
minimizing false negatives (high recall) might be  prioritized to 
ensure early intervention, even at the cost of slightly increased false 
positives. The success of KNN in this context is particularly 
intriguing, as its non-parametric nature allows it to capture subtle 
patterns in the data without imposing strong assumptions, making it 
an ideal choice for gene expression analysis where the underlying 
data distribution may not be well-defined (33).

The final 24-gene signature provides important insights into the 
molecular mechanisms underlying type 1 diabetes pathogenesis and 
highlights potential avenues for biomarker discovery and therapeutic 
intervention. Several genes in the signature are directly implicated in 
immune regulation and inflammation, which are central to the 

FIGURE 4

Selected feature set derived from machine learning-based feature selection. (A) Lasso with multiple models. (B) Elastic Net with multiple models. 
(C) Random Forest with multiple models. (D) SVM with multiple models.
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autoimmune destruction of pancreatic β-cells characteristic of T1D 
(34, 35). For instance, IRF2 (Interferon Regulatory Factor 2) plays a 
critical role in modulating interferon signaling and immune 
responses, and its dysregulation has been associated with 
autoimmune diseases (36). CLEC2D, encoding a C-type lectin 
domain family member, participates in natural killer (NK) cell-
mediated cytotoxicity, potentially contributing to β-cell destruction 
(37). SH3PXD2A and ITGB1BP1 are involved in cytoskeletal 
remodeling and cell adhesion, processes that may influence immune 
cell infiltration and islet architecture integrity during T1D 
development (38, 39). Metabolic and stress response pathways are 
also represented within the signature. SLC38A1, a sodium-coupled 
neutral amino acid transporter, may reflect altered nutrient sensing 
or metabolic stress in immune or pancreatic cells (40). THEM4, 
implicated in mitochondrial function and apoptosis regulation, could 
contribute to β-cell vulnerability under autoimmune attack (41). 
Furthermore, MT1E, a metallothionein, and ZNF595, a zinc finger 
protein, are linked to cellular stress responses and transcriptional 
regulation, potentially modulating β-cell survival during disease 
progression (42, 43). Epigenetic and transcriptional regulators within 
the gene set, including CNOT1 (a key component of the CCR4-NOT 
transcription complex), FOXK2, and HIST1H2BD, suggest that 
transcriptional and chromatin remodeling processes are integral to 
early T1D molecular alterations (28, 44). Dysregulation of these 
genes may affect gene networks controlling immune tolerance, β-cell 
identity, or apoptosis. Ribosomal and translational machinery 
components, such as RPS26, RPS26L1, and EEF1G, highlight 
potential shifts in protein synthesis capacity or cellular homeostasis 
that accompany preclinical diabetes (45, 46). Importantly, several of 
these genes (e.g., IRF2, SLC38A1, CLEC2D) have been previously 
implicated as potential biomarkers or functional mediators in 
autoimmune or metabolic disorders, supporting their relevance for 
early detection strategies. The integration of genes involved in 
immune modulation, metabolism, transcriptional regulation, and 

cellular stress underscores the multi-faceted nature of T1D 
pathogenesis and identifies promising candidates for further 
mechanistic studies and therapeutic targeting. These findings provide 
a biologically coherent basis for the diagnostic model and reinforce 
the translational potential of the identified gene set for precision 
medicine approaches in pediatric diabetes.

Moreover, it is important to consider how age-dependent 
transcriptomic variation and immune ontogeny may influence the 
observed gene expression patterns and their diagnostic relevance in 
pediatric populations. The human immune system undergoes 
significant maturation during childhood, involving dynamic shifts in 
innate and adaptive immunity, lymphocyte repertoires, and cytokine 
responses (47). These developmental processes can impact baseline 
and stimulus-induced gene expression, potentially altering the 
biomarker landscape across age groups. For example, genes involved 
in immune regulation, such as IRF2 and CLEC2D, may exhibit 
distinct expression kinetics during early life, reflecting evolving 
immunological competence (48, 49). Additionally, epigenetic 
regulation and chromatin remodeling, mediated by factors like 
CNOT1 and FOXK2, are known to be modulated by developmental 
stage and environmental exposures, further influencing 
transcriptomic signatures in children (50, 51). Thus, the diagnostic 
utility of the identified gene set may be uniquely optimized for the 
pediatric window, underscoring the importance of age-specific 
biomarker validation and the integration of developmental 
immunology into future study designs.

In biomedical machine learning studies, especially those 
involving small sample sizes, the use of robust validation strategies is 
critical to ensure model reliability and generalizability (10). Simple 
train-test splits may lead to overfitting or overly optimistic 
performance estimates. Therefore, we  employed five-fold cross-
validation to mitigate sampling bias and assess the consistency of 
model performance across different data partitions. This approach 
provides a more realistic evaluation of the model’ s predictive ability 
and reduces the likelihood of false-positive findings. Future studies 
should also consider alternative methods such as bootstrapping or 
external validation to further confirm the robustness of 
diagnostic models.

Several limitations should be acknowledged. First, the sample 
size, though sufficient for initial discovery, may limit the 
generalizability of the findings to broader populations. Larger, multi-
center cohorts are needed to validate the robustness of the identified 
biomarkers and ensure their applicability across diverse demographic 
and genetic backgrounds. The exceptionally high classification 
metrics observed in our study may reflect potential overfitting, 
particularly given the limited sample size and the use of a single train-
test split for model evaluation. While the external validation provided 
some support for the robustness of our models, future work should 
include larger, multi-center cohorts and independent replication 
datasets to further assess generalizability. Second, the study focused 
solely on gene expression data, which, while informative, does not 
capture the full complexity of diabetes pathogenesis. Integrating 
additional omics data, such as proteomics, metabolomics, and 
epigenetics, could provide a more comprehensive understanding of 
the molecular mechanisms underlying prediabetes and improve the 
predictive power of the models, as demonstrated by recent studies 
employing multiomics and explainable artificial intelligence 
approaches for early diagnosis of insulin resistance and related 

FIGURE 5

Expression profiles of 24 key genes and classification performance 
validation using qPCR-based independent dataset.
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metabolic conditions (52). Third, the machine learning models, 
though highly accurate, were trained and tested on the same dataset, 
which may introduce bias. External validation using independent 
datasets is essential to confirm the models’ performance and 
generalizability. Additionally, while the selected genes show strong 
potential as biomarkers, their functional roles in diabetes development 
remain to be elucidated. Further experimental studies are needed to 
explore the biological pathways involving these genes and their 
contribution to disease progression. Lastly, the clinical translation of 
these findings requires careful consideration of practical challenges, 
such as the cost and feasibility of implementing gene expression 
profiling in routine clinical practice. Addressing these limitations in 
future research will be  critical for advancing the development of 
reliable diagnostic tools and improving early intervention strategies 
for childhood diabetes.

In addition to addressing practical challenges such as cost and 
feasibility, future clinical translation of our findings will also depend 
on the use of predictive models that are interpretable and 
understandable by clinical professionals. While our selected 
models—K-Nearest Neighbors and Random Forest—demonstrated 
high predictive accuracy, they are not inherently interpretable, 
which may hinder their acceptance and utility in real-world clinical 
settings. Therefore, integrating eXplainable Artificial Intelligence 
(XAI) techniques in future work is essential to enhance model 
transparency and foster trust among healthcare providers. XAI 
approaches can provide human-interpretable insights into model 
decision-making processes, facilitating responsible AI deployment 
in medicine (53, 54). Such strategies would support collaboration 
between human experts and AI systems, enabling more informed 
and ethical clinical decision-making in the context of early 
childhood diabetes diagnosis.

Overall, these findings not only validate the potential of machine 
learning-driven approaches for early diabetes prediction but also 
provide a framework for identifying and prioritizing key biomarkers 
for further mechanistic and clinical validation. The integration of 
advanced computational techniques with biological insights offers a 
powerful strategy for unraveling the complex etiology of childhood 
diabetes and paves the way for the development of precision 
diagnostic tools in clinical practice. Future studies should focus on 
validating these biomarkers in larger, independent cohorts and 
exploring their functional roles in disease progression, which could 
ultimately lead to targeted interventions and improved outcomes for 
at-risk children.
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