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Background: Clinical trials of intensive glycemic control in patients with 
type 2 diabetes mellitus (T2DM) and high cardiovascular risk have reported 
inconsistent findings regarding chronic kidney disease (CKD) outcomes, partly 
due to heterogeneity in event definitions and reliance on conventional time-to-
first-event analysis. This study aimed to evaluate the renal effects of intensive 
glycemic control using a hierarchical composite endpoint (HCE) ranked by 
clinical severity and analyzed via the Win Odds (WO) method.

Method: This post-hoc analysis included patients from the Action to Control 
Cardiovascular Risk in Diabetes (ACCORD) glycemia trial. We employed the win 
ratio statistical method to estimate the treatment effects on HCE, defined as 
a ranked composite of all-cause mortality, kidney failure, sustained estimated 
glomerular filtration rate (eGFR) declines of 57, 50, and 40% from baseline, 
persistent eGFR < 15 mL/min/1.73 m2, and eGFR slope. The effects of intensive 
glycemic control on individual HCE components and various composite kidney 
endpoints was assessed by Cox regression models.

Results: Among the 9,848 participants, sustained 40% eGFR decline was the 
most frequent renal event in the hierarchical composite. Intensive glucose 
control was not associated with a significant difference in the HCE compared 
to standard therapy (WO = 1.03, 95% CI: 0.99–1.07). This finding was consistent 
with results from Cox regression (HR = 1.05, 95% CI: 0.97–1.13) and across 
individual components of the composite endpoint.

Conclusion: In individuals with T2DM at high risk for cardiovascular disease, 
intensive glycemic control does not demonstrate a significantly detrimental 
effect on hierarchical composite kidney outcomes.
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1 Introduction

T2DM is a chronic condition associated with a range of serious 
complications, including kidney damage, and peripheral neuropathy 
(1–4). Effective management of blood glucose levels is crucial for 
mitigating these complications (5, 6). Although intensive glycemic 
control appears to confer a near-lifelong benefit of cardiovascular 
health (7), the growing use of novel pharmacological agents and 
combination therapies has raised concerns regarding potential adverse 
effects on renal function (8, 9).

The ACCORD trial focusing on the assessment of conventional 
kidney-related outcomes have found that intensive glucose-lowering 
therapy are effective in reducing the risk of early-stage renal 
dysfunction (microalbuminuria) (10). However, these interventions 
have not been shown to significantly impact the progression to 
advanced stage of kidney diseases (kidney failure and all-cause 
mortality) (11, 12). In addition, previous studies analyzing the impact 
of intensive glucose-lowering interventions on composite renal 
endpoints have predominantly focused on the first occurrence of any 
endpoint, neglecting the varying severity levels of different outcomes. 
Consequently, there remains a lack of robust evidence regarding the 
effects on renal system function.

To address the limitations of using conventional endpoints or 
composite endpoints without considering severity gradations, this 
study employs the WOs measure within the win ratio method, 
incorporating multiple indicators that reflect the progression of renal 
dysfunction from early stages to mortality, providing a more 
comprehensive assessment of the impact of intensive glycemic control 
throughout the progression of kidney disease.

2 Methods

2.1 Trial design and oversight

This study is a post hoc analysis of ACCORD BioLINCC dataset 
obtain from the NIH upon approval. The design and conduct of the 
randomized controlled ACCORD trial have been reported previously 
(13). Briefly, the ACCORD trial was a rigorously designed double 
two-by-two factorial study. Middle-aged individuals (mean age 
62.2 years) diagnosed with diabetes at high cardiovascular risk were 
assigned to either intensive therapy that targeted HbA1c lower than 
6% (42 mmol/mol) or standard group that targeted HbA1c 7–7.9% 
(53–63 mmol/mol). The ACCORD glycemia trial was halted 
prematurely after a mean duration of 3.7 years, due to the Data Safety 
Monitoring Board’s observation of higher mortality rates in the 
intensive glucose-lowering group (14). This analysis was approved by 
the institutional review board (IRB) of the participating institution, 
and the Ethical Review Board of the First Affiliated Hospital of Xi’an 
Jiaotong University waived the need for additional ethical approval 
(MC-KYLLSL-2023-005).

2.2 eGFR measurement and endpoint 
definitions

eGFR was calculated in a standardized manner using the 
Chronic Kidney Disease Epidemiology Collaboration creatinine 

equation (15). Participants from the ACCORD glycemia trial with 
baseline eGFR measurements and two or more follow-up eGFR data 
were included in analyses. We  defined the HCE to capture the 
clinical severity of kidney outcomes, which encompass all-cause 
mortality, end-stage renal disease (ESRD) requiring renal 
replacement therapy or transplantation, a sustained eGFR of less 
than 15 mL/min/1.73 m2 for at least 30 days, sustained declines in 
eGFR of 57, 50%, or 40% (each confirmed by a subsequent 
measurement ≥30 days later), and the eGFR slope (16, 17). In 
accordance with KDIGO recommendations (18), sustained eGFR 
<15 mL/min/1.73 m2 was incorporated into the ESRD category in 
the hierarchical composite for Win Odds analysis. The analysis will 
be restricted to events and eGFR measurements up to a specified 
cut-off of 3 years following randomization. The acute event will 
be considered to have occurred at the initial visit, which is Day 14 
(this will be divided by 360 to convert to years). The coefficient for 
the chronic phase will also be derived, which is the proportion of the 
length of the chronic phase (total follow-up minus the acute phase) 
divided by the total follow-up for an individual (19). This will 
be used to derive the total GFR slope from the two-slope power-of-
the-mean model.

2.3 Statistical analysis

Baseline characteristics of participants were presented as 
frequencies with percentages, means with standard deviation, or 
medians with interquartile ranges. The HCE was analyzed using 
WOs, an adaptation of win ratio (20) to include ties (a tie is 
considered a half loss and a half win for each group). For each 
patient pair, the winner was identified sequentially based on the 
severity of clinical events, from the most severe to the least severe. 
If one patient experienced an event, that patient was deemed the 
winner, with earlier occurrence further conferring an advantage; if 
neither patient experienced an event, the pair was considered a tie 
(21). The hierarchical comparison of HCE components is provided 
in Supplementary Table 1.

WOs were computed by summing the wins and half of the ties, 
then dividing by the total losses plus half of the ties (22). Maraca plot 
was used to visualize the contribution of components of HCE over 
time, combining time-to-event outcomes with a continuous outcome 
(23). In the Maraca plot, the x-axis represents a consistent follow-up 
duration for each dichotomous outcome, arranged by severity. The 
continuous outcome covers the entire range of possible values. The 
width of each component corresponds to its proportional contribution 
to the composite outcome. The Win Odds framework accounts for 
clinical severity by applying a predefined hierarchical structure to 
composite outcomes. As part of the sensitivity analyses, the hierarchy 
was extended to include albuminuria components defined by the 
urinary albumin-to-creatinine ratio (uACR), including incident 
macroalbuminuria (uACR ≥300 mg/g) and microalbuminuria (uACR 
30–299 mg/g), which were placed after sustained eGFR decline events. 
Cox proportional hazards models were also used to evaluate the effect 
of intensive versus standard intervention on the time to first event 
across binary components of HCE, with results presented as HRs and 
95% CIs. A two-slope mixed-effects model was applied to evaluate 
treatment effects on overall eGFR slope, with results presented as 
means and 95% CIs. The Cumulative incidence functions and 
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Kaplan–Meier (KM) curves were used to estimate the probability of 
achieving each HCE component. All analyses were performed using 
Stata version 18.0 and R version 4.4.2.

3 Results

After excluding participants without baseline eGFR data (n = 48) 
or those with fewer than two eGFR measurements (n = 355), the 
analysis included a total of 9,848 participants, comprising 4,931 in the 

standard treatment group and 4,917 in the intensive treatment group 
(Supplementary Figure 1).

The median age was 62.7 years, and 38.3% participants were 
female. In terms of disease history, 54.6% used aspirin, and 34.9% had 
a history of cardiovascular disease. The prevalence of dyslipidemia and 
hypertension was 94.2 and 96.4%, respectively. Baseline laboratory 
measurements showed a mean eGFR of 91.1 mL/min/1.73 m2, with 
92.0% having an eGFR more than 60 mL/min/1.73 m2. Blood pressure, 
LDL, HDL, BMI, and glucose values were comparable across groups 
(Table 1).

TABLE 1  Baseline characteristics by randomized group.

Variable Standard Group Intensive Group Total

(N = 4,931) (N = 4,917) (N = 9,848)

Demography

Age 62.75 (6.62) 62.73 (6.61) 62.74 (6.61)

Gender

 � Male 3,044 (61.71) 3,031 (61.64) 6,075 (61.68)

 � Female 1,889 (38.29) 1,886 (38.36) 3,775 (38.32)

Race

 � White 3,098 (62.8) 3,080 (62.64) 6,178 (62.72)

 � Black 911 (18.47) 941 (19.14) 1,852 (18.8)

 � Hispanic 358 (7.26) 341 (6.94) 699 (7.1)

 � Other 566 (11.47) 555 (11.29) 1,121 (11.38)

Education

 � High School 1,318 (26.73) 1,292 (26.29) 2,610 (26.51)

 � College 1,628 (33.02) 1,609 (32.74) 3,237 (32.88)

 � Bachelor 1,315 (26.67) 1,255 (25.54) 2,570 (26.11)

Disease history

 � Aspirin 2,682 (54.40) 2,696 (54.83) 5,378 (54.61)

 � Smoking 575 (11.66) 610 (12.41) 1,185 (12.03)

 � Drinking 1,202 (24.38) 1,167 (23.74) 2,369 (24.06)

 � Cardiovascular 1,694 (34.35) 1,739 (35.37) 3,433 (34.86)

 � Dyslipidemia 4,645 (94.16) 4,639 (94.35) 9,284 (94.25)

 � Hypertension 4,740 (96.09) 4,752 (96.64) 9,492 (96.37)

Laboratory

 � eGFR, mL/min per 1.73 m2 91.36 (28.51) 90.8 (25.75) 91.08 (27.17)

 � eGFR (median, IQR) 89.7 (76–105.1) 89.5 (74.8–104.5) 89.6 (75.4–104.8)

eGFR, mL/min per 1.73 m2

 � ≥ 60 4,554 (92.32) 4,510 (91.72) 9,064 (92.02)

 � <60 377 (7.64) 407 (8.28) 784 (7.96)

SBP (mmHg.) 136.43 (17.19) 136.17 (16.87) 136.3 (17.03)

DBP (mmHg) 74.95 (10.68) 74.77 (10.57) 74.86 (10.62)

LDL C (mg/dL) 104.91 (33.78) 104.74 (33.82) 104.82 (33.8)

HDL C (mg/dL) 41.88 (11.39) 41.79 (11.63) 41.83 (11.51)

BMI (kg/m2) 32.24 (5.38) 32.24 (5.41) 32.24 (5.39)

Glucose (mg/dL.) 175.8 (56.34) 174.65 (55.59) 175.22 (55.97)

Potassium (mmol/L) 4.47 (0.5) 4.48 (0.44) 4.47 (0.47)

Values are N (%) or mean (SD).
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A decrease in eGFR slope is the main components in the 
HCE. Among participants in the intensive treatment group, the most 
frequently observed outcome was a decline in eGFR slope (56.1%), 
followed by a 40 and 50% reduction in eGFR. A similar trend was 
observed in the standard treatment group, where 55.3% of participants 
experienced a decline in eGFR slope. Severe eGFR declines to below 
15 mL/min/1.73 m2 were rare, occurring in only 0.3% of participants 
in both groups (Figure 1).

In this study, all patients who experienced persistent eGFR 
<15 mL/min/1.73 m2 ultimately progressed to ESRD. Therefore, this 
event was incorporated into the higher-priority ESRD tier and did not 
serve as an independent level of comparison in the Win Odds analysis. 
As shown in Figure 2, tie rates exceeded 54.28% for all components 
except eGFR slope, which had a lower tie percentage of 39.49%, 
indicating greater discriminatory power. Using a tie-adjusted formula, 
the overall Win Odds was 1.03 (95% CI, 0.99 to 1.07), suggesting a 
slightly favorable trend for the placebo group compared to the 
intensive treatment group in terms of the HCE.

The Maraca plot demonstrates more dichotomous outcomes in the 
active group compared to placebo group, indicating that while the 
median rate of eGFR decline (shift to the right in the maraca plot) in 
active compared with the placebo group, the overall difference between 
groups was not statistically significant (Supplementary Figure 2).

Among 9,848 patients with type 2 diabetes at high cardiovascular 
risk receiving glucose-lowering therapy in the ACCORD trial, there 
were 1,987 cases of a 40% decline in eGFR, 840 cases of a 50% decline, 
557 cases of a 57% decline, 33 cases of persistent eGFR < 15 mL/
min/1.73 m2, 286 cases requiring dialysis, and 622 died. For the 
composite kidney outcome, which included all-cause mortality, ESRD, 
and a 40% eGFR decline, the HR was 1.05 (95%CI, 0.97 to 1.13). 
Similarly, for the composite endpoint including all-cause mortality, 

ESRD, and a 57% eGFR decline, the HR was 1.07 (95%CI, 0.97 to 1.18). 
When analyzing the composite outcome of all-cause mortality, ESRD, 
and a 50% decline in eGFR, the HR was 1.09 (95%CI, 0.98 to 1.22). The 
WO for the composite kidney outcome was 1.03 (95%CI, 0.99 to 1.07), 
again revealing no significant difference between the treatment groups 
(Table  2). Across multiple HCE definitions, almost no significant 
differences were observed between treatment groups. For the relatively 
comprehensive HCE (Tiers 1–8), the Win Odds was 1.00 (95% CI, 0.95 
to 1.04), and the HR was 1.02 (95% CI, 0.95 to 1.08). When 
albuminuria-related components (Tiers 6 and 7) were included, 
treatment effects remained neutral. A slight benefit was observed for 
the combination of Tiers 7 and 8, with a Win Odds of 1.07 (95% CI, 
1.02 to 1.12) (Supplementary Figure 4). Kaplan–Meier survival curves 
(Supplementary Figure 3) showed minimal divergence between the 
treatment groups for kidney-related events, supporting the conclusion 
that intensive glycemic control did not significantly affect 
kidney outcomes.

4 Discussion

This study used the win ratio statistical method to compare the 
effects of intensive and standard glucose-lowering treatments on HCE, 
finding no significant difference. Further analyses using Cox modeling 
across various kidney outcome combinations of differing severity also 
showed no significant effects.

Some studies investigating intensive glycemic control in patients 
with T2DM have showed its effectiveness in reducing the risk of early 
kidney damage. Specifically, the ACCORD trial, ADVANCE trial and 
the EDIC study reported a lower incidence of microalbuminuria in 
the intensive treatment group compared to the conventional group 

FIGURE 1

Number (%) of individual components of the renal composite endpoint in the ACCORD study in all persons and in the intensive glycemic intervention 
and standard glycemic intervention groups. ACM, all-cause mortality; ESRD, end stage renal disease.
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(24–26). Likewise, R. Bilous’ analysis of the UKPDS found that tighter 
glycemic control reduced the relative risk of proteinuria and 
significantly lowered the proportion of patients with a twofold 
increase in plasma creatinine levels (27). Furthermore, in the VADT-F 
trial, a significantly higher proportion of participants in the intensive 
treatment group retained normal kidney function at study completion 
(28). Considering the above, the use of isolated and non-continuous 

renal endpoint endpoints without a clear severity ranking may cause 
heterogeneities (29). By employing HCE analysis in our study, 
we  conducted a systematic assessment by integrating and 
hierarchically ranking multiple renal outcomes, including all-cause 
mortality, ESRD, eGFR decline, and eGFR slope, based on their 
clinical severity, revealing that intensive glycemic control does not 
exert significant adverse effects on renal function.

Moreover, while several studies have utilized composite renal 
outcomes, they predominantly relied on first-event analyses, which 
may overlook clinically more severe but later-occurring events, such 
as ESRD or mortality. For instance, a retrospective cohort study found 
that intensive glucose lowering did not reduce the risk of persistent 
eGFR below 15 mL/min/1.73 m2, doubling of serum creatinine levels, 
or ESRD (30). Similarly, a post hoc analysis of the ACCORD trial 
showed no significant reduction in the need for dialysis, or death from 
any cause in patients who received aggressive treatment (10). To 
address this limitation, our study utilized the WOs metric within the 
win ratio methodology, which prioritizes events based on clinical 
significance rather than chronological occurrence. This approach 
mitigates biases associated with traditional first-event analyses and is 
consistent with KDIGO and ERBP guidelines for standardized renal 
endpoint monitoring (18, 31, 32).

Our findings demonstrate the complementary strengths of Cox 
regression and the Win Odds approach in evaluating renal composite 
outcomes. While Cox models consider the time to first event 
irrespective of clinical severity, Win Odds emphasizes early and 
clinically significant events within a fixed 3-year window. This 
difference explains the limited contribution of rare but severe events, 
such as sustained eGFR <15 mL/min/1.73 m2, in the Win Odds 
analysis. Notably, when albuminuria components were incorporated 
into the hierarchy, Win Odds revealed modestly favorable trends, 
highlighting the sensitivity of uACR as an early indicator of kidney 

TABLE 2  Comparison of time to first event analysis and Win Odds.

Treatment comparisons Intensive vs. standard

n HR (95% CI)

Event

Tier 1: All-cause mortality 622 1.18 (1.01 to 1.38)

Tier 2: ESRD 288 0.94 (0.74 to 1.18)

Tier 3: eGFR <15 mL/min per 1.73 m2 33 0.95 (0.48 to 1.88)

Tier 4: 57% eGFR decline 557 1.11 (0.94 to 1.31)

Tier 5: 50% eGFR decline 840 1.02 (0.89 to 1.17)

Tier 6: 40% eGFR decline 1,987 1.02 (0.93 to 1.11)

Tier 7: eGFR slopea −0.90 (−2.16 to 0.36)

Treatment effect composite end point

HR (Tier 1 or 2 or 3 or 6) 1.05 (0.97 to 1.13)

HR (Tier 1 or 2 or 3 or 5) 1.07 (0.97 to 1.18)

HR (Tier 1 or 2 or 3 or 4) 1.09 (0.98 to 1.22)

HR (Tier 1 to 6) 1.04 (0.97 to 1.12)

WOsb 1.03 (0.99 to 1.07)

aEstimated means (95% CIs) derived from the mixed-effects model. bWin Odds were 
computed in a hierarchy: all-cause mortality; ESRD; sustained eGFR <15 mL/min/1.73 m2; 
≥57%, ≥50%, and ≥40% decline in eGFR; and eGFR slope.

FIGURE 2

The Win Odds in the ACCORD trial. Win Odds were computed in a hierarchy: all-cause mortality; ESRD (including sustained eGFR <15 mL/
min/1.73 m2); ≥57%, ≥50%, and ≥40% decline in eGFR; and eGFR slope. eGFR slope decline.
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injury. This is consistent with previous findings, such as those by An 
et  al. (33), which reported that intensive HbA1c reduction may 
coincide with short-term eGFR decline in patients with elevated 
uACR. Given the limited number of events for certain uACR-related 
tiers, this trend should be interpreted cautiously due to the potential 
for false-positive findings. Collectively, these results underscore the 
value of hierarchical composite frameworks for capturing nuanced 
treatment effects across heterogeneous renal outcomes and the 
importance of including sensitive markers like uACR in future 
endpoint definitions.

Although the use of a composite outcome strengthens the validity 
of our findings, the relatively homogeneous patient population may 
limit the generalizability of the results. Additionally, the relatively 
short follow-up period restricts the ability to comprehensively evaluate 
the long-term effects of intensive glycemic control on renal function. 
Finally, the inclusion of renal status may be incomplete in our study, 
underscoring the need for more comprehensive assessments in 
future research.

5 Conclusion

Using hierarchical definitions for kidney endpoints, this study 
found no significant difference between the intensive and standard 
glucose-lowering groups. Sensitivity analyses consistently supported 
this conclusion, suggesting that intensive glycemic control may not 
provide a clear advantage over standard treatment in improving 
renal outcomes.
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