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Objective: This study aimed to develop and validate a clinical prediction model 
for identifying intra-abdominal infection (IAI) in patients with severe acute 
pancreatitis (SAP).

Methods: We conducted a retrospective cohort study of patients diagnosed 
with SAP at our institution between January 2020 and December 2023. A total 
of 415 eligible patients were enrolled and randomly allocated into a training set 
(n = 291) and a validation set (n = 124) in a 7:3 ratio for model development and 
internal validation. In the training cohort, candidate predictors were selected using 
least absolute shrinkage and selection operator (LASSO) regression to mitigate 
overfitting and retain the most clinically relevant variables. A multivariable logistic 
regression model was subsequently constructed, and a nomogram was developed 
to facilitate individualized risk assessment. Model performance was evaluated 
based on discrimination, calibration, and clinical utility. Discrimination was assessed 
using the area under the receiver operating characteristic curve (AUC) in both 
cohorts. Calibration was examined via calibration plots with bootstrapping (1,000 
resamples) to correct for optimism. Decision curve analysis (DCA) was performed 
to determine the net clinical benefit across different risk thresholds.

Results: The final cohort comprised 415 patients, with 291  in the training set 
and 124  in the validation set. LASSO regression identified four independent 
predictors with non-zero coefficients: hematocrit (HCT), procalcitonin (PCT), 
Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and 
neutrophil-to-lymphocyte ratio (NLR). The prediction model demonstrated 
robust discrimination, with an AUC of 0.853 (95% CI: 0.804–0.901) in the training 
set and 0.858 (95% CI: 0.786–0.930) in the validation set. Calibration plots 
indicated excellent agreement between predicted and observed probabilities. 
DCA confirmed significant clinical utility across a wide range of risk thresholds.

Conclusion: The proposed prediction model, incorporating HCT, PCT, APACHE 
II, and NLR, accurately stratifies the risk of IAI in SAP patients. This tool may 
facilitate early risk identification, guide timely antibiotic therapy, and optimize 
clinical decision-making to improve patient outcomes.
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1 Introduction

Severe acute pancreatitis (SAP) represents a life-threatening 
manifestation of acute pancreatitis, defined by persistent organ failure 
and associated with substantial mortality, particularly when complicated 
by intra-abdominal infection (IAI). IAI is a key determinant of adverse 
outcomes in SAP, with reported mortality rates escalating to 47–69% in 
cases complicated by secondary sepsis, multi-organ dysfunction 
syndrome (MODS), or intra-abdominal hypertension (IAH) (1).

The early identification of SAP patients at high risk for IAI is 
critical for implementing timely antimicrobial therapy, intensified 
monitoring, and targeted interventions to mitigate disease progression. 
However, existing predictive strategies remain suboptimal. While 
systemic inflammatory markers—including C-reactive protein (CRP), 
interleukin-6 (IL-6), and procalcitonin (PCT)—demonstrate 
sensitivity to infection, their specificity for IAI in SAP is limited, as 
they also reflect sterile inflammation and pancreatic necrosis (2–4). 
Similarly, hematologic indices such as hematocrit (HCT), platelet 
count (PLT), and neutrophil-to-lymphocyte ratio (NLR) correlate 
with systemic inflammation and disease severity but lack 
discriminatory power for IAI prediction (5, 6).

Although established scoring systems like the Acute Physiology 
and Chronic Health Evaluation II (APACHE II) and radiographic 
classifications such as the Computed Tomography Severity Index 
(CTSI) aid in overall SAP risk stratification, their utility in specifically 
forecasting IAI remains inadequate (7, 8). Despite advances in 
biomarker research, no validated, clinically practical tool currently 
exists for individualized IAI risk assessment in SAP.

To address this unmet need, we  conducted a comprehensive 
evaluation of clinical, laboratory, and scoring-based predictors to 
develop and validate a multivariable prediction model for early IAI 
detection in SAP. This model aims to enhance risk stratification, 
optimize therapeutic decision-making, and ultimately improve patient 
outcomes through timely intervention.

2 Methods

2.1 Study population

This retrospective study included patients diagnosed with SAP at 
our institution between January 2020 and December 2023. Baseline 
demographic and clinical data, including age and sex, were collected. 
The study protocol was approved by the Panzhihua Hospital of 
Integrated Chinese and Western Medicine ethics committee (Approval 
No. 2022-10-027).

2.2 Inclusion and exclusion criteria

Inclusion criteria:

 1 Age between 18 and 80 years;
 2 Diagnosis of SAP according to established classification criteria 

for acute pancreatitis;
 3 Symptom onset to hospital admission occurring within 72 h;
 4 Availability of comprehensive clinical data, including PLT, 

HCT, CRP, IL-6, and NLR.

Exclusion criteria:

 1 Patients with malignant tumors, chronic organ dysfunction, or 
a history of other severe comorbidities;

 2 Patients presenting with gastrointestinal bleeding, intestinal 
obstruction, or other significant gastrointestinal disorders;

 3 Pregnant individuals, patients with autoimmune diseases, those 
with traumatic SAP, and patients with fulminant 
acute pancreatitis;

 4 Patients who underwent open abdominal surgery before or 
during hospitalization.

2.3 Diagnostic criteria

IAI was diagnosed based on positive microbiological cultures 
(bacterial or fungal) obtained from sterile percutaneous or intraoperative 
aspirates of peritoneal fluid, pancreatic necrosis, or peripancreatic 
collections. Systemic Inflammatory Response Syndrome (SIRS) was 
defined according to established clinical criteria, requiring the presence 
of at least two of the following: (1) core body temperature >38°C or 
<36°C; (2) respiratory dysfunction evidenced by arterial 
pCO₂ < 32 mmHg or respiratory rate >20 breaths/min or clinical signs of 
hyperventilation; (3) tachycardia with heart rate >90 beats/min; (4) 
leukocyte abnormalities including leukocytosis (>12 × 109/L), leukopenia 
(<4 × 109/L), or presence of >10% immature neutrophils (band forms).

2.4 Study variables and data collection

Demographic, clinical, and laboratory parameters were 
systematically collected, including: sex, age, comorbidities 
(hypertension, diabetes mellitus), lifestyle factors (tobacco use, alcohol 
consumption), SAP etiology, body mass index (BMI), and 
inflammatory biomarkers (neutrophil count [NEUT], PLT, HCT, 
D-dimer, CRP, IL-6, PCT). Disease severity was assessed using the 
Systemic Inflammatory Response Syndrome (SIRS) criteria and 
APACHE II score, while the NLR served as an additional 
inflammatory marker.

All laboratory parameters were obtained during the initial 24 h of 
hospitalization, preceding any surgical procedures or antimicrobial 
therapy initiation. These admission values were utilized for predictive 
modeling to ensure temporal consistency. For patients with repeated 
measurements within the first 48 h, only the initial values were 
incorporated to maintain data uniformity and prevent confounding 
by treatment effects.

IAI status was definitively determined through microbiological 
confirmation during the hospitalization period, serving as the primary 
outcome measure.

2.5 Statistical power considerations and 
overfitting mitigation

The study cohort (N = 415) was randomly partitioned into a 
derivation set (n = 291, 70%) and an internal validation set (n = 124, 
30%) to facilitate model development and performance evaluation. To 
enhance model stability and minimize overfitting, we implemented 
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bootstrap resampling with 1,000 iterations during the model-
building phase.

The initial model incorporated 18 candidate predictor variables, 
necessitating careful consideration of the event-per-variable (EPV) 
ratio. Current methodological standards recommend maintaining an 
EPV ≥ 10 to ensure model reliability and generalizability. In our 
derivation cohort, 90 IAI events were observed, yielding an EPV of 5.0 
(90 events/18 predictors). While this ratio falls below conventional 
recommendations, we  employed rigorous statistical techniques 
(including bootstrap validation and shrinkage methods) to mitigate 
potential overfitting and optimize model performance.

2.6 Statistical analysis

All statistical analyses were performed using R version 4.2.2 and 
MSTATA.1 A two-sided p value < 0.05 was considered 
statistically significant.

Continuous variables were expressed as median and interquartile 
range [M (P25, P75)], and compared using the Wilcoxon rank-sum 
test due to non-normal distribution. Categorical variables were 
described as counts and percentages (n, %) and compared using the 
Chi-square test or Fisher’s exact test, as appropriate.

To identify independent predictors of IAI in SAP, we applied Least 
Absolute Shrinkage and Selection Operator (LASSO) logistic 
regression on the training set. A total of 18 clinically relevant variables 
were initially entered. The optimal penalization coefficient (λ) was 
determined by 10-fold cross-validation, selecting the λ corresponding 
to the minimum mean squared error (MSE). Based on LASSO 
selection, four predictors with non-zero coefficients were retained, 
these variables were subsequently entered into a multivariable logistic 
regression model, and the final model equation was:

log[ ( )−P̂ 1 P̂ ] = 9.718–0.319 (HCT) + 0.705 (PCT) − 0.11 
(NLR) + 0.174 (APACHE-II). Model performance was assessed via: 
receiver Operating Characteristic (ROC) analysis in both training and 
validation cohorts, yielding AUCs of 0.853 and 0.858, respectively; 
calibration curves comparing predicted vs. observed risk; decision 
Curve Analysis (DCA) evaluating net clinical benefit across 
threshold probabilities.

To mitigate overfitting and quantify optimism, bootstrap 
resampling (1,000 iterations) was conducted, yielding an optimism-
adjusted AUC of 0.832. A nomogram was constructed to facilitate 
clinical use, and individual predictor diagnostic value was further 
visualized via ROC curves.

The flowcharts for data filtering are shown in Figure 1.

3 Results

3.1 Demographic and clinical 
characteristics

The prediction analysis included 415 participants with baseline 
clinical and demographic characteristics. The cohort was stratified 

1 http://www.mstata.com

into a training set (n = 291) and an internal validation set (n = 124). 
Comparative analysis demonstrated balanced distributions of clinical 
features and demographic variables between the two cohorts (Table 1).

3.2 Diagnostic factor selection and 
multicollinearity assessment

Eighteen candidate predictors were initially evaluated based on 
clinical relevance and admission availability: sex, age, smoking history, 
alcohol consumption, hypertension, diabetes, SAP etiology, BMI, 
NEUT, PLT, HCT, D-dimer, CRP, IL-6, PCT, SIRS, APACHE II score, 
and NLR. Dimensionality reduction was performed using LASSO 
regression with 10-fold cross-validation in the training cohort.

The optimal regularization parameter (λ = 0.035) was determined 
through minimum mean cross-validated error (min-MSE) criteria 
(Figures 2A,B). Feature selection identified four non-zero coefficient 
predictors: HCT, PCT, APACHE II score, and NLR (Figure 3). Notably, 
established inflammatory markers (CRP, IL-6) were excluded during 
LASSO penalization, likely due to multicollinearity with integrative 
predictors (NLR, APACHE II) and limited incremental predictive value.

Multicollinearity assessment via VIF confirmed acceptable levels 
(all <2, Supplementary Table S1). Individual predictor performance 
was quantified through ROC analysis (Figure 4; Table 2). Multivariate 
logistic regression revealed inverse associations between HCT/NLR 
and IAI risk (OR < 1), potentially reflecting microcirculatory 
optimization or immune regulation, while APACHE II demonstrated 
borderline significance (p = 0.088) (Table 3).

3.3 Predictive model development

Multivariable logistic regression confirmed PCT, APACHE II, NLR, 
and HCT as independent IAI predictors in SAP (Table 3). A clinical 
nomogram was constructed to quantify IAI risk stratification (Figure 5).

3.4 Predictive model validation

Model performance was robust in both training (AUC = 0.853, 
95%CI:0.804–0.901) and validation cohorts (AUC = 0.858, 
95%CI:0.786–0.930), though potential overfitting was considered 
given the comparable metrics (Figure 6). Bootstrap-corrected AUC 
(0.832) confirmed internal validity while underscoring the need for 
external validation.

Calibration analysis demonstrated excellent observed-predicted 
probability agreement across both cohorts (Figure 7). DCA revealed 
superior net benefit versus extreme strategies across clinically relevant 
threshold probabilities (Figure 8), supporting practical utility.

4 Discussion

IAI remains one of the most serious complications in patients 
with SAP, contributing significantly to morbidity and mortality. Early 
identification of high-risk patients is critical for timely intervention 
and improved outcomes. Among various prognostic scoring systems, 
the APACHE II score has been widely recognized for its utility in 
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predicting disease severity and clinical outcomes in critical care 
settings, including neurosurgical and abdominal emergencies (9). 
Inflammatory biomarkers such as neutrophil CD64, IL-6, and PCT 
have also shown diagnostic value in infectious conditions like sepsis 
and may reflect the systemic inflammatory response that 
accompanies SAP with IAI (10). Furthermore, clinical profiling from 
tertiary care centers emphasizes the importance of integrating 
demographic characteristics, etiological factors, and laboratory 
indices to better stratify risk and guide management in acute 
pancreatitis (11). Based on these insights, we developed a clinical 
prediction model using multivariable logistic regression and 
presented it as a nomogram to facilitate individualized risk 
assessment for IAI in patients with SAP.

The analysis successfully identified four independent predictors 
of IAI in SAP—PCT, APACHE II, NLR, and HCT—through LASSO 
regression followed by multivariable logistic regression. The selection 
of these variables reflects a clinically plausible interplay between 
systemic inflammation (PCT, NLR), disease severity (APACHE II), 
and HCT in IAI pathogenesis. ROC analysis confirmed the individual 
discriminative capacity of each predictor (AUC > 0.5 for all variables), 
though their moderate standalone performance necessitated an 
integrated modeling approach for enhanced diagnostic precision.

The composite predictive model demonstrated robust 
discriminatory performance, achieving AUCs of 0.853 (95% CI: 
0.804–0.901) and 0.858 (95% CI: 0.786–0.930) in the training and 

validation cohorts, respectively. These strong and consistent AUC 
values validate the model’s diagnostic utility while mitigating 
overfitting concerns through internal validation. Calibration analysis 
revealed excellent agreement between predicted probabilities and 
observed IAI incidence, with calibration curves closely approximating 
the ideal 45° reference line. This high-fidelity calibration, maintained 
across both cohorts, underscores the model’s reliability in risk 
stratification without significant bias.

DCA substantiates the model’s clinical utility by demonstrating 
superior net benefit across decision thresholds, suggesting its 
implementation could optimize diagnostic precision and resource 
utilization while improving patient outcomes. The model’s predictive 
accuracy supports its integration into clinical workflows for IAI risk 
stratification in SAP, facilitating timely interventions. By identifying 
high-risk patients requiring intensive monitoring or early empirical 
therapy, this approach may mitigate complications. The incorporation 
of routinely measured parameters aligns with precision medicine 
paradigms, enabling individualized risk assessment.

HCT represents an accessible and cost-effective hematological 
marker for pancreatitis severity assessment. However, its predictive 
performance exhibits interstudy variability. A large-scale 
investigation (n = 1,612) identified admission HCT and 24-h BUN 
dynamics as superior predictors of persistent organ failure and 
pancreatic necrosis compared to conventional parameters including 
APACHE II (12). Conversely, other studies have reported limited 

FIGURE 1

The flowcharts for data filtering. APACHE II score was recorded as an observational variable, not used for exclusion.
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prognostic value of admission HCT in acute pancreatitis severity 
prediction (13).

PCT demonstrates significant diagnostic utility as a biomarker 
for severe bacterial/fungal infections, sepsis, and multi-organ 
dysfunction (14). Its discriminative capacity stems from pronounced 
elevation in systemic bacterial/fungal infections while remaining 
stable in viral or non-infectious inflammatory conditions (15, 16). In 
pancreatic pathology, PCT exhibits strong predictive value for 
infectious complications, with levels ≥3.8 ng/mL during days 3–4 
post-onset demonstrating 79% sensitivity and 93% specificity for 
major complications (7). Notably, PCT reaches peak concentrations 
in cases of infected pancreatic necrosis with concomitant multi-organ 
failure. Meta-analytic evidence positions PCT as the most robust 
predictor of infected pancreatic necrosis (17), with its diagnostic 
accuracy further enhanced when combined with complementary 
markers like NLR and MCTSI (18, 19).

The APACHE II scoring system maintains established correlations 
with secondary pancreatic infections when integrated with 
inflammatory markers (20). The pathophysiological basis involves the 
inflammatory cascade in acute pancreatitis, characterized by 
proteolytic enzyme activation, cytokine release, and bacterial 

translocation. Neutrophil depletion correlates with favorable 
outcomes, whereas lymphocytosis associates with disease progression. 
NLR emerges as a clinically practical inflammatory index, providing 
real-time assessment of immune response dynamics through 
neutrophil-lymphocyte ratios, and has been validated as an 
independent predictor of pancreatitis severity (21).

The selected variables (PCT, APACHE II, NLR, and HCT) 
collectively capture critical pathophysiological dimensions of 
SAP-associated infection, including systemic inflammation, disease 
severity, and hematologic derangements. While individual ROC analysis 
confirmed each parameter’s discriminative capacity (AUC > 0.5), their 
modest standalone performance necessitated a multivariate approach to 
optimize diagnostic accuracy. The composite model achieved AUCs of 
0.853 (training cohort) and 0.858 (validation cohort), with the minimal 
inter-cohort difference prompting consideration of potential over-
optimism. Bootstrap validation (1,000 iterations) yielded an optimism-
adjusted AUC of 0.832, supporting internal validity while underscoring 
the need for external validation in independent populations.

Compared with previous models, such as that by Zhu et al. (8)—
who incorporated variables like intra-abdominal pressure, CTSI, and 
ICU admission to predict IAI—our model offers an alternative, 

TABLE 1 Demographic and clinical characteristics of the training and test cohorts.

Characteristic Overall (N = 415) Training (N = 291) Validation (N = 124) p-value

Sex - Female, n (%) 236 (56.9%) 160 (55.0%) 76 (61.3%) 0.235

Sex - Male, n (%) 179 (43.1%) 131 (45.0%) 48 (38.7%)

Age, years [M (P25, P75)] 48.0 [45.0–51.5] 48.0 [44.0–51.5] 48.0 [45.0–51.3]

History of smoking - No, n (%) 298 (71.8%) 204 (70.1%) 94 (75.8%) 0.237

History of smoking - Yes, n (%) 117 (28.2%) 87 (29.9%) 30 (24.2%)

Alcohol consumption - No, n (%) 297 (71.6%) 208 (71.5%) 89 (71.8%) 0.951

Alcohol consumption - Yes, n (%) 118 (28.4%) 83 (28.5%) 35 (28.2%)

History of hypertension - No, n (%) 323 (77.8%) 229 (78.7%) 94 (75.8%) 0.517

History of hypertension - Yes, n (%) 92 (22.2%) 62 (21.3%) 30 (24.2%)

History of diabetes - No, n (%) 371 (89.4%) 259 (89.0%) 112 (90.3%) 0.689

History of diabetes - Yes, n (%) 44 (10.6%) 32 (11.0%) 12 (9.7%)

Etiology - Alcoholic, n (%) 64 (15.4%) 43 (14.8%) 21 (16.9%) 0.18

Etiology - Biliary, n (%) 167 (40.2%) 118 (40.5%) 49 (39.5%)

Etiology - Hypertriglyceridemia, n (%) 137 (33.0%) 91 (31.3%) 46 (37.1%)

Etiology - Others, n (%) 47 (11.3%) 39 (13.4%) 8 (6.5%)

BMI [M (P25, P75)] 25.0 [22.0–28.0] 25.0 [22.0–28.0] 24.0 [21.0–27.0] 0.019

NEUT [M (P25, P75)] 86.5 [84.5–88.6] 86.5 [84.6–88.6] 86.2 [84.3–88.4] 0.401

PLT [M (P25, P75)] 164 [142–187] 161 [142–185] 168 [145–190] 0.165

NLR [M (P25, P75)] 5.3 [2.8–9.0] 6.0 [2.9–9.5] 5.0 [2.4–8.0] 0.106

HCT[M (P25, P75)] 38.2 [34.3–40.3] 38.3 [34.3–40.4] 37.9 [34.4–40.2] 0.447

D-dimer [M (P25, P75)] 2.34 [1.38–3.18] 2.35 [1.42–3.21] 2.34 [1.22–3.02] 0.34

CRP [M (P25, P75)] 133 [97–169] 130 [96–165] 135 [106–176] 0.151

IL-6 [M (P25, P75)] 55 [30–82] 53 [30–78] 59 [31–87] 0.35

PCT [M (P25, P75)] 1.19 [0.72–1.74] 1.23 [0.77–1.70] 1.09 [0.68–1.79] 0.671

SIRS - No, n (%) 124 (29.9%) 86 (29.6%) 38 (30.6%) 0.824

SIRS - Yes, n (%) 291 (70.1%) 205 (70.4%) 86 (69.4%)

APACHE II score [M (P25, P75)] 9.00 [8.00–11.00] 9.00 [8.00–11.00] 9.00 [8.00–10.25] 0.444
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laboratory-driven, non-imaging-based approach that may be more 
accessible in resource-limited settings. Unlike Zhu’s model, which 
emphasized radiological and procedural data, our model relies on 
routinely available biomarkers, facilitating earlier risk stratification 
upon admission. Nevertheless, their inclusion of imaging parameters 
may explain slightly higher discriminatory performance and should 
prompt future efforts to evaluate the incremental benefit of combining 
radiologic and laboratory predictors.

Additionally, Sun et al. (22) suggested that moderate platelet counts 
may serve as protective factors, and Qiu et al. (23) identified HCT as an 

independent risk factor for IAI—both findings aligned with our 
observations. However, we acknowledge that some biomarkers, such as 
CRP and IL-6, although commonly elevated in SAP, did not contribute 
incremental predictive value in our LASSO selection process—possibly 
due to collinearity with other variables or insufficient specificity. The 
model’s clinical implications lie in its simplicity, interpretability, and 
relevance to real-time clinical decisions. By integrating routinely 
available admission parameters into a nomogram, the model can support 
clinicians in identifying high-risk patients early (24, 25), prompting 
timely empirical antibiotic initiation, closer monitoring, or ICU triage.

FIGURE 2

LASSO regression for predictor selection. (A) Shrinkage trajectories of regression coefficients versus Log(λ). (B) 10-fold cross-validation plot for LASSO: 
mean squared error (MSE) plotted against Log(λ). The optimal λ (0.035) was selected at the point of minimum MSE.
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The nomogram presented in this study offers a simple and precise 
method for predicting the risk of IAI in acute pancreatitis patients 
(26–28), which may improve survival rates during hospitalization.

Nonetheless, several limitations of this study should 
be  acknowledged, as they may influence the interpretation and 

generalizability of the findings. First and foremost, the retrospective 
design inherently introduces potential selection and detection biases. 
Selection bias may arise from the inclusion criteria and clinical judgment 
used to enroll patients, while detection bias could result from 
non-uniform data collection or diagnostic practices. These biases may 

FIGURE 3

Histogram of non-zero coefficients from LASSO regression.

FIGURE 4

ROC curves for individual variables diagnosing IAI.
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FIGURE 5

Nomogram for predicting IAI risk in SAP patients based on clinical risk factors.

affect the observed associations and limit the internal validity of the 
study. Second, the study was conducted at a single center, which may 
limit the generalizability of the findings to other institutions or patient 
populations. Differences in clinical practices, patient demographics, and 
healthcare resources across centers could affect the model’s performance 
in diverse settings. Therefore, external validation using independent, 
multicenter datasets is essential to confirm the robustness and 
applicability of the predictive model. Future studies should aim to 

evaluate its performance across varied clinical environments to enhance 
its external validity and facilitate broader implementation. Third, key 
predictive parameters such as HCT, PCT, APACHE II score, and NLR 
are inherently dynamic and can vary substantially over time due to 
disease progression or clinical interventions. Relying on a single time-
point measurement may not fully capture the evolving clinical status of 
patients with SAP, potentially limiting the model’s accuracy. Future 
studies should consider incorporating a dynamic, serial measurement 
approach to account for temporal trends and improve risk stratification. 
Such longitudinal tracking of biomarker trajectories may enhance the 
model’s clinical utility by providing real-time updates to risk assessments, 
thereby supporting more responsive and individualized patient 
management. Future studies should explore dynamic risk stratification 
using serial biomarker assessments and consider incorporating novel 
inflammatory or metabolic markers to improve predictive performance.

Although we adjusted for multiple known confounders using 
multivariable logistic regression, residual confounding due to 
unmeasured or unaccounted variables remains a notable limitation. 
Factors such as heterogeneity in clinical management, underlying 

TABLE 2 AUC values and 95% CI for variables.

Variable AUC 95% CI

HCT 0.833 (0.781–0.886)

PCT 0.675 (0.609–0.741)

APACHE-II scores 0.744 (0.687–0.800)

NLR 0.813 (0.759–0.868)

AUC calculated using the model predictions.
CI are estimated using DeLong’s method.

TABLE 3 Results of multivariate logistic regression for training cohort.

Characteristic N Event N OR1 95% CI1 p-value

HCT 291 123 0.73 0.65, 0.81 <0.001

PCT 291 123 2.02 1.22, 3.35 0.006

APACHE-II 291 123 1.19 0.97, 1.45 0.088

NLR 291 123 0.90 0.82, 0.98 0.020

1OR, Odds Ratio; CI, Confidence Interval.
OR < 1 indicates a negative association between the predictor and IAI risk.
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comorbidities, and individual patient responses to treatment may 
have influenced outcomes but were not fully captured in our analysis. 
We recognize that these unadjusted variables could introduce bias 
into the model’s predictive performance. Future studies should aim 
to integrate a more comprehensive set of clinical, biochemical, and 
treatment-related parameters, potentially employing prospective 
designs or leveraging real-world data from EHRs, to improve 
confounding control and strengthen model validity.

Furthermore, in the training cohort, 90 patients developed IAI, 
resulting in an EPV ratio of 5.0 (based on 18 candidate predictors), 
which falls below the conventional threshold of 10. This limitation 

necessitates cautious interpretation of the model’s results. While 
internal validation was performed, external validation using an 
independent dataset from a tertiary care center is planned to evaluate 
the model’s generalizability and robustness across diverse clinical 
environments. The relatively low EPV also raises concerns regarding 
potential overfitting and diminished model stability. Although 
variable selection techniques were implemented to mitigate this risk, 
we  explicitly acknowledge this constraint. Subsequent research 
should prioritize larger sample sizes with sufficient outcome events 
or incorporate penalized regression approaches to enhance 
generalizability. Additionally, post hoc power calculations and 

FIGURE 6

ROC curves for the predictive model in training and validation cohorts.

FIGURE 7

Calibration plots for the nomogram in training and validation cohorts.
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external validation in independent cohorts are warranted to further 
assess the reliability of our findings.

5 Conclusion

The predictive model incorporating HCT, PCT, APACHE II score, 
and NLR demonstrates strong discriminatory accuracy in stratifying 
IAI risk among SAP patients, offering a valuable tool to optimize 
clinical decision-making and improve patient outcomes.
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Decision curve analysis (DCA) for the predictive model.
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