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Background: Acute Pancreatitis-Associated Lung Injury (APALI) is one of the 
most severe and life-threatening systemic complications in acute pancreatitis 
patients, with high rates of morbidity and mortality. This study aims to develop 
a prediction model for the diagnosis of APALI based on machine learning 
algorithms.

Methods: This study included data from the First Affiliated Hospital of Bengbu 
Medical College (July 2012 to June 2022), which were randomly categorized 
into the training and testing set. And data from the Second Affiliated Hospital 
of Zhejiang University (January 2018 to April 2023) served as the external 
validation set. LASSO regression was applied to eliminate irrelevant or highly 
collinear independent variables. Six machine learning models were constructed, 
with evaluation metrics including Area Under Curve (AUC), accuracy, sensitivity, 
specificity, F1 score, and recall. The impact of model features was analyzed 
using SHapley Additive exPlanations (SHAP).

Results: A total of 1,975 patients with acute pancreatitis were randomly 
assigned to a training set (1,480 patients) and a testing set (495 patients). In 
the training set, 480 cases (32.43%) were diagnosed with APALI. The eXtreme 
Gradient Boosting (XGBoost) and Random Forest (RF) models demonstrated 
the best predictive performance, achieving the highest AUC (0.92 and 0.914, 
respectively), along with higher accuracy, F1 score, and recall in the testing set. 
Six particularly influential factors were identified and ranked as follows: CRP, 
BMI, neutrophil, calcium, lactate, and neutrophil-to-albumin ratio (NAR). The 
global interpretability of the XGBoost and RF models, along with these six 
features, is shown in the SHAP summary plot. These two models were selected 
as the optimal models for the development of an online calculator for clinical 
applications and risk stratification.

Conclusion: We developed and internally validated a machine learning model 
to predict APALI, showing strong performance in our study population. To 
support further research and clinical use, we  created an open-access web-
based risk calculator. Prospective multicenter validation is needed to confirm 
generalizability. If successful, the tool may support early risk identification and 
guide interventions to prevent APALI.
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Introduction

Acute pancreatitis is characterized by abdominal pain, distension, 
nausea, vomiting, and systemic complications. The incidence of AP 
has been steadily increasing, with approximately 20% of patients 
progressing to severe acute pancreatitis (SAP) (1, 2). SAP can lead to 
a range of complications, among which acute lung injury is particularly 
severe (3), highlighting the need for early prediction of such outcomes. 
A multicenter retrospective study demonstrated that 92% of SAP may 
develop acute respiratory distress syndrome (ARDS), with a mortality 
rate of 37% (4), which underscores the clinical importance of 
identifying high-risk patients at an early stage. If not properly 
managed, ARDS can progress to multiple organ failure (MOF), which 
poses a significant threat to the patient’s life (5). Despite the availability 
of various treatments for acute pancreatitis-associated acute lung 
injury (APALI), the mortality and morbidity rates remain high (6). 
Timely identification and intervention could mitigate or even alleviate 
acute lung injury, reducing both patient suffering and the economic 
burden (7, 8). Therefore, developing a clinical prediction model that 
can accurately identify lung injury at an early stage in AP is essential 
for improving patient outcomes. Given the multifaceted nature of 
acute lung injury, characterized by diverse clinical and biological 
features, no single clinical indicator can adequately represent the 
disease status (9). Recently, few studies have established an prediction 
model to identify APALI in patients with AP, for instance, Samanta 
et al. (10) proposed IL-6 and IL-8 as potential biomarkers for lung 
injury in AP, while Jia et al. (11) developed a nomogram-based tool 
using routine clinical data—however, both studies were limited by 
small sample sizes and lacked external validation. These limitations 
provided a strong rationale for the development of a robust, 
interpretable, and externally validated machine learning model as 
we present in this study.

In recent years, machine learning (ML) has been increasingly 
applied in critical care, offering notable advantages over 
conventional statistical methods. Evidence indicates that ML 
contributes significantly to the early diagnosis, severity 
assessment, and personalized treatment of AP (12–14). Algorithms 
such as logistic regression, random forests, and support vector 
machines each exhibit unique strengths in processing medical 
data (15, 16). Ong et  al. demonstrated the utility of ML by 
developing an XGBoost-based model that outperformed 
traditional methods in predicting adverse outcomes—including 
readmission, mortality, and prolonged hospitalization—among 
patients requiring mechanical ventilation for more than 4 hours. 
The model achieved an AUC of 0.693 compared to 0.667 for 
conventional approaches (p  = 0.03) and showed a 6.8% 
improvement in sensitivity at 95% specificity. Their study also 
highlighted important predictors, such as the Glasgow Coma Scale 
and duration of mechanical ventilation, while emphasizing the 
critical role of external validation and model interpretability in 
AI-driven applications within critical care (17). Although current 
ML models have limited accuracy in predicting APALI, ongoing 
technological advancements and the growing availability of 
electronic medical records are expected to enhance the precision 

and timeliness of clinical decision support—particularly for 
identifying high-risk patients and supporting individualized 
risk assessments.

This study developed a clinical prediction model for APALI using 
machine learning algorithms and validated its performance on 
external datasets. By leveraging extensive clinical data, the model 
identified critical indicators associated with APALI risk, providing 
early warnings for physicians. This research may accelerate the early 
prediction of lung injury in AP and supports medical teams in 
implementing targeted interventions, ultimately improving recovery 
rates and quality of life.

Methods

Study population

This study included AP cases admitted to the Emergency Surgery 
Department of the First Affiliated Hospital of Bengbu Medical 
University from July 2012 to June 2022, which were used for both the 
training and validation cohorts. Additionally, cases from the Second 
Affiliated Hospital of Zhejiang University, admitted between January 
2018 to April 2023, served as the external validation cohort. All 
patient data were de-identified prior to analysis. The study was 
approved by the ethics committees of both participating hospitals 
(2020KY073),  and informed consent was obtained from all enrolled 
patients or their legally authorized representatives in accordance  with 
the Declaration of Helsinki.

Inclusion Criteria: Diagnosis of AP was based on the consensus 
of the International Association of Pancreatology (IAP), requiring at 
least three of the following conditions: typical clinical manifestations 
(e.g., abdominal pain); elevated serum amylase and/or lipase levels 
(generally exceeding three times the normal value), and imaging 
findings consistent with pancreatitis. Exclusion Criteria: Traumatic 
pancreatitis, acute exacerbation of chronic obstructive pulmonary 
disease (AECOPD), ARDS due to causes other than pancreatitis, and 
age under 14 years.

Definition

According to the guidelines of the American Thoracic Society 
(ATS) and the European Respiratory Society (ERS), acute lung injury 
is defined as follows (18–21): (1) rapid onset, with acute respiratory 
distress typically occurring within hours; (2) hypoxemia is defined as 
a PaO2/FiO2 ratio of 200–300 mmHg; (3) Pulmonary infiltrates on 
chest X-rays or CT scans, excluding cardiogenic causes; and (4) The 
absence of cardiogenic pulmonary edema confirms that the injury is 
not due to heart failure or fluid overload. Diagnosis of acute lung 
injury was confirmed independently by two board-certified 
radiologists who were blinded to patient clinical outcomes. In cases of 
disagreement, a third senior radiologist adjudicated the final 
classification by consensus. Standardized diagnostic criteria were 
uniformly applied across all cases.
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Data collection

Clinical data were collected from patients with AP, including vital 
signs, demographic information, CT grade, and laboratory makers 
such as calcium (Ca2+), blood glucose (BG), lactate (Lac), serum lipase 
(LPS), serum amylase (AMY), urinary amylase (UAMY), triglycerides 
(TG), total cholesterol (TC), procalcitonin (PCT), heparin-binding 
protein (HBP), C-reactive protein (CRP), albumin, globulin, and the 
neutrophil-to-albumin ratio (NAR), Data on the presence of 
mechanical ventilation, oxygen partial pressure, concentration of 
inspired oxygen, and pleural effusion were also collected.

All laboratory variables were standardized to be collected within 
24 h of hospital admission to ensure temporal consistency across 
patients. Elective admissions were excluded from the analysis to avoid 
confounding due to different baseline risk profiles and disease 
progression patterns. CT imaging was independently reviewed by two 
board-certified radiologists with 5–10 years of experience in 
abdominal imaging. Severe AP was defined as a CT Severity Index 
(CTSI) score ≥5, in accordance with the Revised Atlanta Classification. 
Discrepancies in CT grading were resolved by consensus with a senior 
radiologist with over 15 years of clinical experience. All CT evaluations 
and clinical/laboratory data were obtained within the first 24 h of 
hospital admission. Despite the class imbalance, no oversampling or 
class weighting was applied during analysis.

Model construction and evaluation

To deploy the clinical predictive model, we first applied 10-fold 
cross-validated LASSO regression for preliminary feature selection. 
This step aimed to eliminate variables with low contributions and 
address multicollinearity among highly correlated predictors. The 
number of selected variables was determined using the λ that 
minimized the cross-validation error. These selected features were 
then used as inputs for subsequent machine learning models.

We constructed six machine learning models, including Logistic 
Regression (LR), Random Forest (RF), Extreme Gradient Boosting 
(XGBoost), Support Vector Machine (SVM), K-Nearest Neighbors 
(KNN), and Neural Network (NNET). During the data preprocessing 
stage, missing values were imputed with either the median or mode, 
depending on the variable type, and categorical variables were 
encoded using one-hot encoding. The dataset was split into training 
and test sets in a 3:1 ratio. Hyperparameter optimization was 
conducted using grid search with 25 bootstrapped resamples of the 
training set to ensure robust tuning.

Model performance was assessed using multiple metrics, 
including the area under the receiver operating characteristic curve 
(AUC), accuracy, sensitivity, specificity, F1 score, and recall. To further 
ensure reliability, external validation data were used, and AUC, 
accuracy, sensitivity, specificity, F1 score, and recall were recalculated.

Model interpretation

To clarify the contribution of each feature to the final model, 
we  used Shapley Additive Explanations (SHAP) to interpret and 
visualize the impact of individual variables. We  assessed feature 
importance by calculating the mean absolute SHAP values. 

Additionally, we  plotted SHAP values for each feature across all 
samples to better understand the overall patterns and the influence of 
features on the dataset. Three SHAP examples were provided to 
illustrate these concepts.

Statistical analysis

Binary variables were summarized as counts and proportions, and 
comparisons were performed using chi-square tests or Fisher’s exact 
tests, as appropriate. Continuous variables with a normal distribution 
were compared using independent t-tests, with results presented as 
mean ± standard deviation. For non-normally distributed variables, 
the Mann–Whitney U test was employed. A p-value <0.05 was 
considered indicative of statistical significance. All statistical analyses 
were conducted using R (v4.2.3), leveraging the packages “tidymodels,” 
“glmnet,” “kernelshap,” and “shapviz.”

Results

Patient characteristics

The flowchart of the study is shown in Figure 1. A total of 1,975 
patients with AP from the First Affiliated Hospital of Bengbu Medical 
University were included in the study. The patients were randomly 
assigned to a training set (1,480 cases) and a validation set (495 cases) 
in a 3:1 ratio (Table 1). In the training set, 480 cases (32.43%) of 
APALI were identified, consisting of 268 males (55.83%) and 212 
females (44.17%). Among the 1,000 cases (67.57%) without APALI, 
566 were male (56.60%) and 434 were female (43.40%) (Table 2). The 
gender distribution did not differ significantly between the two 
groups. Table 2 and Supplementary Table S1 summarize the baseline 
characteristics of the training and testing set. Compared to the 
non-APALI group, patients in the APALI group were significantly 
younger (50 [38, 66] vs. 47 [35, 65]) (p < 0.05). In addition, the APALI 
group showed significantly higher levels of calcium ions, neutrophil 
count, lymphocyte count, lactate, BMI, pulse, blood glucose, CRP, and 
other markers. In comparison, albumin levels were notably lower 
(p < 0.05). More importantly, levels of NLR, CRP, Triglyceride-
Glucose Index, PLR, NPR, NAR, blood amylase, and urinary amylase 
were significantly higher in the APALI group compared to the 
non-APALI group (p < 0.05). The APALI group also had a higher 
prevalence of pleural effusion. In the testing set of 495 patients, 161 
(32.53%) had APALI, with 93 males (57.76%) and 68 females 
(42.24%). In the non-APALI group (n = 334), 182 were males (54.49%) 
and 152 were females (45.51%). The gender distribution was similar 
to the training set, with consistent findings in the validation set 
(Supplementary Table S1).

For the external validation, 224 additional patients with AP were 
recruited from the Second Affiliated Hospital of Zhejiang University 
(Supplementary Table S2). The cohort included 151 cases in the 
non-APALI group (70.20% males and 29.80%females) and 73 cases in 
the APALI group (66.75% males and 34.25%females). The 
characteristics of this cohort were consistent with those of the training 
set (p < 0.05). Compared to the training and testing set, patients in the 
external validation set were significantly older and had markedly 
higher levels of Ca2+, neutrophil count, lymphocyte count, lactate, and 
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CRP further supporting the external validation cohort better 
represents a wide range of clinical scenarios, enhancing the 
generalizability and reliability of the study findings.

Feature selection

We performed LASSO regression analysis combined with cross-
validation to identify potential risk factors associated with 
APALI. LASSO regression incorporates a penalty term to mitigate 
multicollinearity, optimize variable selection, and enhance model 
stability and interpretability. After the LASSO regression selection, 25 
candidate predictors were determined, including Age, Respiratory 
Rate, Calcium ions, Platelet, Neutrophil count, Lymphocyte, Globulin, 
Cholesterol, Pleural effusion, CT grade, Lactate, BMI, Temperature, 
Pulse, SBP, DBP, Red blood cell width, Blood Glucose, NLR, CRP, and 
NAR (Figures 2a,b). These variables were used as potential predictors 
in development of the machine learning model. Six machine learning 
methods-logistic regression, random forest, XGBoost, SVM, KNN, 
NNET were applied to construct the risk models.

Model evaluation in the training/testing set 
and the external validation set

The comparative performance of all models is summarized in 
Tables 3, 4 and Figures 3a–f. After evaluating six machine learning 
algorithms on both training and testing datasets, XGBoost was 
selected as the primary model due to its superior performance on 
the test set, achieving an AUC of 0.91 (95% CI: 0.89–0.94), an F1 

score of 0.90 (95% CI: 0.88–0.92), a sensitivity of 0.95 (95% CI: 
0.92–0.97), and a specificity of 0.68 (95% CI: 0.61–0.75). The 
random forest (RF) model attained the highest AUC of 0.92 (95% 
CI: 0.89–0.94) and was retained as a secondary tool for reassessing 
uncertain cases. Both tree-based models outperformed linear 
models (e.g., LR: AUC = 0.90 [95% CI: 0.87–0.93], F1 = 0.88 [95% 
CI: 0.86–0.91]) and (NNET: AUC = 0.81 [95% CI: 0.77–0.85], 
F1 = 0.82 [95% CI: 0.78–0.85]) across all metrics. The comparable 
recall (XGBoost: 0.95 [95% CI: 0.92–0.97]; RF: 0.93–0.97) and F1 
scores (XGBoost: 0.90; RF: 0.89) further demonstrate their robust 
feature-learning capabilities. Overall, XGBoost appears more 
suitable for clinical applications, whereas RF may serve as a 
complementary tool for exploratory or confirmatory analyses. The 
ROC curves for all models in the test set are presented in 
Figure 3g.

To evaluate the generalizability of our model, we  tested its 
performance on an external validation set to classify patients with 
APALI and non-APALI. The performance of the models is 
summarized in Supplementary Table S3. All models in the 
independent external validation set demonstrated strong 
discriminative performance, with ROC-AUC values consistently 
exceeding 0.750. Among them, the RF model exhibited statistically 
superior performance (DeLong’s test, *p* < 0.001). Notably, the 
XGBoost model also displayed competitive performance, with 
marginally higher metrics compared to the remaining models, 
including an AUROC of 0.990, accuracy (0.953), F1 score (0.900), 
recall (0.987), sensitivity (0.987), and specificity (0.975). The result 
indicated that the XGBoost and RF models exhibited good 
performance and clinical utility, whereas the SVM, KNN, and NNET 
models showed relatively lower performance Supplementary Figure S1.

FIGURE 1

Screening and research process for acute pancreatitis-related lung injury.
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TABLE 1 The characteristics of patients with APALI.

Characteristic Training set (N = 1,480) a Testing set (N = 495) a External validation set 
(N = 224) a

Outcome

Non-APALI 1,000 (68.57%) 334 (67.47%) 151 (67.41%)

APALI 480 (32.43%) 161 (32.53%) 73 (32.59%)

Gender

  Male 834 (56.35%) 275 (55.56%) 154 (68.75%)

  Female 646 (43.65%) 220 (44.44%) 70 (31.25%)

Age (years) 49 (37, 66) 49 (38, 65) 53 (41, 66)

Respiratory rate (cpm) 21.20 (2.81) 21.07 (2.70) 20.71 (13.03)

Ca2+ (mmol/l) 1.07 (1.00, 1.15) 1.08 (1.01, 1.15) 1.76 (1.26, 2.07)

Platelet (×10^9/l) 206.0 (159.25, 256.0) 194.0 (150.25, 255.0) 199.0 (159.0, 269.5)

Neutrophil (×10^9/l) 9.84 (6.95, 13.79) 9.78 (6.40, 13.42) 11.20 (7.90, 16.01)

Lymphocyte (×10^9/l) 1.12 (0.79, 1.57) 1.15 (0.78, 1.62) 1.05 (0.75, 1.51)

Globulin (g/l) 33.50 (29.7, 37.5) 33.15 (28.98, 37.43) 31.70 (28.83, 35.23)

Albumin (g/l) 39.30 (34.6, 43.0) 39.15 (35.0, 43.2) 35.90 (31.0, 40.5)

Total cholesterol (mmol/l) 4.01 (3.13, 5.46) 3.95 (3.11, 5.35) 3.84 (2.87, 5.22)

Pleural effusion 488 (32.97%) 177 (35.76%) 67 (29.91%)

CTSI

  A 42 (2.84%) 12 (2.42%) 44 (19.64%)

  B 758 (51.22%) 256 (51.72%) 79 (35.27%)

  C 618 (41.75%) 213 (43.03%) 51 (22.77%)

  D 62 (4.19%) 14 (2.83%) 14 (6.25%)

  E 0 (0%) 0 (0%) 36 (16.07%)

Lactate (mmol/l) 1.28 (0.84, 2.23) 1.30 (0.84, 2.21) 1.90 (1.08, 2.75)

BMI 25.15 (3.09) 25.08 (3.15) 24.55 (3.52)

Temperature (°C) 36.88 (0.54) 36.84 (0.49) 36.89 (1.09)

Pulse (bpm) 92.95 (82.0, 100.0) 92.95 (81.0, 99.0) 92.95 (84.0, 101.0)

SBP (mmHg) 133.51 (126.0, 140.0) 133.51 (125.0, 139.0) 133.51 (127.0, 141.0)

DBP (mmHg) 79.19 (76.0, 87.0) 79.19 (76.0, 88.0) 79.19 (76.0, 86.0)

RDW 13.69 (1.40) 13.65 (1.29) 13.63 (1.25)

Blood glucose (mmol/l) 7.82 (6.15, 11.23) 7.83 (6.01, 10.96) 7.33 (5.85, 9.82)

NLR 8.91 (5.15, 14.23) 8.65 (5.11, 13.67) 11.07 (6.86, 15.75)

C-reactive protein (mg/l) 46.92 (12.29, 90.0) 45.00 (11.18, 90.0) 137.00 (35.0, 229.90)

TyG 3.44 (3.07, 3.98) 3.42 (3.01, 3.96) 2.71 (2.27, 3.18)

PLR 179.08 (126.49, 260.76) 180.75 (123.17, 245.23) 180.61 (110.37, 283.96)

NPR 0.05 (0.03, 0.07) 0.05 (0.03, 0.07) 0.05 (0.04, 0.08)

NAR 0.26 (0.18, 0.37) 0.25 (0.17, 0.36) 0.32 (0.22, 0.46)

Amylase (ln) b 5.37 (4.39, 6.42) 5.51 (4.44, 6.50) 5.63 (4.63, 6.48)

Urinary Amylase (ln) b 6.61 (5.51, 8.30) 6.86 (5.82, 8.47) 5.96 (5.25, 6.96)

Triglyceride (ln) b 0.52 (0.08, 1.33) 0.52 (−0.03, 1.28) 0.46 (0.12, 1.05)

Procalcitonin (ng/ml) −0.48 (−2.12, 0.66) −0.63 (−2.21, 0.66) 0.75 (0.23, 1.72)

SII (ln) b 10.53 (9.98, 11.03) 10.47 (9.95, 10.92) 7.75 (7.13, 8.26)

aMean (SD), Median (Q1, Q3); n (%).
bln, Natural logarithm.
CTSI, CT Severity Index; BMI, Body Mass Index; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; RDW, Red Cell Distribution Width; NLR, Neutrophil-to-Lymphocyte Ratio; 
TyG, Triglyceride-Glucose Index; PLR, Platelet-to-Lymphocyte Ratio; NPR, Neutrophil-to-Platelet Ratio; NAR, Neutrophil-to-Albumin Ratio; SII, Systemic Inflammation Index.
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Model interpretation and variables of 
importance

Among the models evaluated, Random Forest, XGBoost, and 
Logistic Regression demonstrated favorable predictive performance. 
To enhance our understanding of model decisions, we utilized Shapley 

Additive Explanations (SHAP), which provides insights into the 
significance of individual features and their interactions within the 
model. SHAP values quantify the contribution of each clinical 
variable, with positive values reflecting an increased probability of 
developing APALI, and negative values suggesting a decreased 
likelihood. The global interpretability of these models was visualized 

TABLE 2 The characteristics of patients with acute pancreatitis in the training set.

Characteristic Non-APALI (N = 1,000) a APALI (N = 480) a P-value b

Gender 0.80

  Male 566 (56.60%) 268 (55.83%)

Age (years) 50 (38, 66) 47 (35, 65) 0.02

Respiratory rate (cpm) 21.08 (2.76) 21.48 (2.89) 0.002

Ca2+ (mmol/l) 1.07 (1.00, 1.13) 1.10 (1.00, 1.21) <0.001

Platelet (×10^9/l) 204.0 (157.75, 253.0) 211.0 (162.0, 263.75) 0.30

Neutrophil (×10^9/l) 8.84 (5.88, 12.07) 12.80 (9.76, 16.90) <0.001

Lymphocyte (×10^9/l) 1.10 (0.78, 1.52) 1.16 (0.82, 1.67) 0.05

Globulin (g/l) 33.60 (29.80, 37.70) 33.40 (29.50, 37.20) 0.80

Albumin (g/l) 40.30 (35.70, 43.45) 37.10 (32.60, 41.50) <0.001

Total cholesterol (mmol/l) 4.05 (3.24, 5.46) 3.94 (2.94, 5.46) 0.06

Pleural Effusion 262 (26.20%) 226 (47.08%) <0.001

CTSI <0.001

  A 37 (3.70%) 5 (1.04%)

  B 606 (60.60%) 152 (31.67%)

  C 338 (33.80%) 280 (58.33%)

  D 19 (1.90%) 43 (8.96%)

Lactate (mmol/l) 1.15 (0.80, 2.01) 1.56 (0.94, 2.90) <0.001

BMI 24.52 (3.08) 26.44 (2.70) <0.001

Temperature (°C) 36.85 (0.51) 36.96 (0.58) <0.001

Pulse (bpm) 92.95 (80.0, 98.0) 92.95 (87.0, 102.0) <0.001

SBP (mmHg) 133.51 (125.0, 141.0) 133.51 (126.75, 138.0) 0.80

DBP (mmHg) 79.19 (76.0, 87.0) 79.19 (76.0, 85.0) 0.20

RDW 13.63 (1.41) 13.81 (1.37) <0.001

Blood glucose (mmol/l) 7.68 (6.11, 10.76) 8.22 (6.31, 11.96) 0.019

NLR 8.03 (4.42, 13.06) 10.63 (7.31, 16.65) <0.001

C-reactive protein (mg/l) 27.65 (7.83, 76.18) 90.0 (48.72, 90.0) <0.001

TyG 3.44 (3.08, 3.93) 3.44 (3.03, 4.09) 0.80

PLR 181.0 (128.67, 264.01) 174.59 (124.19, 251.53) 0.30

NPR 0.04 (0.03, 0.06) 0.06 (0.04, 0.09) <0.001

NAR 0.23 (0.15, 0.31) 0.35 (0.25, 0.46) <0.001

Amylase (ln) c 5.51 (4.45, 6.55) 5.05 (4.28, 6.12) <0.001

Urinary amylase (ln) c 6.70 (5.59, 8.36) 6.42 (5.34, 8.04) 0.004

Triglyceride (ln) c 0.48 (0.07, 1.28) 0.62 (0.08, 1.38) 0.13

Procalcitonin (ng/ml) −0.40 (−2.21, 0.66) −0.56 (−1.97, 0.66) 0.40

SII (ln) c 10.53 (10.00, 11.02) 10.52 (9.97, 11.04) >0.90

aMean (SD), Median (Q1, Q3); n (%).
bPearson’s Chi-squared test; Wilcoxon rank sum test.
cln, Natural logarithm.
CTSI, CT Severity Index; BMI, Body Mass Index; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; RDW, Red Cell Distribution Width; NLR, Neutrophil-to-Lymphocyte Ratio; 
TyG, Triglyceride-Glucose Index; PLR, Platelet-to-Lymphocyte Ratio; NPR, Neutrophil-to-Platelet Ratio; NAR, Neutrophil-to-Albumin Ratio; SII, Systemic Inflammation Index.
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using the SHAP summary plot, which ranked the importance of 
variables across clinical outcomes. As shown in Figure 4, the top 10 
most influential features were identified. The variables significantly 
impacting the model’s predictions included CRP, neutrophil count, 
NAR, BMI, calcium ion levels, lactate, age, CT grade, Lym, blood 
amylase, and pleural effusion.

To enhance model simplicity while maintaining predictive 
performance, six variables—CRP, BMI, Neu, Calcium, Lactate, and 
NAR—were selected based on variable importance rankings and 
clinical relevance for model retraining. As illustrated in Figures 5a–d, 
the receiver operating characteristic (ROC) curves and calibration 
plots demonstrated that both the random forest (RF) and XGBoost 

models exhibited strong predictive performance. Furthermore, 
decision curve analysis (DCA) indicated that both models provided 
greater net clinical benefit across a wide range of clinically relevant 
threshold probabilities compared to the “treat-all” and “treat-none” 
strategies (Supplementary Figure S2). Additionally, the global 
interpretability of the XGBoost and RF model, along with the six most 
influential features, is depicted in the SHAP summary plot 
(Figures  6a,b). To further illustrate the model’s interpretability, 
we present two representative cases. The first cases describe patients 
who did not develop APALI and had low SHAP prediction scores 
(Figures  7a,b). The abdominal CT (Figure  7c) and chest CT 
(Figures 7d,e) demonstrated that this AP patient did not have signs of 

FIGURE 2

(a) LASSO coefficient profiles for texture features. (b) Selection of tuning parameter λ via 10-fold cross-validation in LASSO penalized logistic regression.

TABLE 3 Comparison of the performance of the six models in training set.

Model Training set

Accuracy AUC F1 Recall Sensitivity Specificity

KNN 0.79 (0.77, 0.81) 0.84 (0.82, 0.86) 0.85 (0.84, 0.87) 0.91 (0.89, 0.93) 0.91 (0.89, 0.93) 0.54 (0.50, 0.58)

LR 0.81 (0.79, 0.83) 0.87 (0.86, 0.89) 0.87 (0.85, 0.88) 0.90 (0.88, 0.92) 0.90 (0.88, 0.92) 0.63 (0.59, 0.67)

NNET 0.79 (0.77, 0.81) 0.86 (0.84, 0.88) 0.85 (0.83, 0.86) 0.87 (0.85, 0.89) 0.87 (0.85, 0.89) 0.63 (0.59, 0.67)

RF 0.83 (0.81, 0.84) 0.90 (0.88, 0.91) 0.88 (0.86, 0.89) 0.94 (0.92, 0.95) 0.94 (0.92, 0.95) 0.60 (0.55, 0.64)

SVM 0.79 (0.77, 0.81) 0.87 (0.85, 0.88) 0.84 (0.82, 0.85) 0.80 (0.78, 0.83) 0.80 (0.78, 0.83) 0.75 (0.71, 0.79)

XGboost 0.82 (0.80, 0.84) 0.90 (0.88, 0.91) 0.87 (0.85, 0.89) 0.90 (0.88, 0.91) 0.90 (0.88, 0.91) 0.66 (0.62, 0.71)

LR, Logistic regression; RF, Random Forest; XGBoost, Extreme Gradient Boosting; SVC, Support vector Classifier; KNN, k-nearest neighbor; NNET, Neural Network.

TABLE 4 Comparison of the performance of the six models in testing set.

Model Testing set

Accuracy AUC F1 Recall Sensitivity Specificity

KNN 0.78 (0.74, 0.81) 0.82 (0.78, 0.86) 0.85 (0.82, 0.87) 0.91 (0.88, 0.94) 0.91 (0.88, 0.94) 0.50 (0.42, 0.57)

LR 0.83 (0.80, 0.86) 0.90 (0.87, 0.93) 0.88 (0.86, 0.91) 0.94 (0.92, 0.97) 0.94 (0.92, 0.97) 0.61 (0.53, 0.68)

NNET 0.74 (0.70, 0.78) 0.81 (0.77, 0.85) 0.82 (0.78, 0.85) 0.84 (0.80, 0.88) 0.84 (0.80, 0.88) 0.53 (0.45, 0.61)

RF 0.84 (0.81, 0.87) 0.92 (0.89, 0.94) 0.89 (0.87, 0.91) 0.95 (0.93, 0.97) 0.95 (0.93, 0.97) 0.62 (0.55, 0.69)

SVM 0.82 (0.79, 0.85) 0.89 (0.86, 0.92) 0.87 (0.84, 0.89) 0.86 (0.83, 0.90) 0.86 (0.83, 0.90) 0.74 (0.67, 0.81)

XGboost 0.86 (0.83, 0.89) 0.91 (0.89, 0.94) 0.90 (0.88, 0.92) 0.95 (0.92, 0.97) 0.95 (0.92, 0.97) 0.68 (0.61, 0.75)

LR, Logistic regression; RF, Random Forest; XGBoost, Extreme Gradient Boosting; SVC, Support vector Classifier; KNN, k-nearest neighbor; NNET, Neural Network.
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lung injury. In contrast, the second case involved a patient diagnosed 
with APALI, showing a high SHAP prediction score (Figures 7f,g). 
And the abdominal CT (Figure  7h) and chest CT (Figures  7i,j) 

demonstrated that this AP patient had obvious lung consolidation 
with associated pleural effusion. All of these results proved the 
accuracy of the prognostic prediction system.

FIGURE 3

Performance comparison of machine learning models. (a–f) Bar plots or metrics distributions (AUC, accuracy, F1 score, recall, sensitivity, specificity) 
across models. (g) Receiver operating characteristic (ROC) curves for each model in the testing set.
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FIGURE 4

(a–c) Global interpretability of top-performing models (XGBoost, RF, LR) via SHAP. Summary plots rank the top 10 clinical features by mean absolute 
SHAP values, indicating their predictive contribution to APALI. Key features are CRP, neutrophil count, NAR, BMI, calcium ions, lactate, age, CT grade, 
lymphocytes (Lym), blood amylase, and pleural effusion.

FIGURE 5

Performance evaluation of simplified models (XGBoost, RF, LR) using six key predictors (CRP, BMI, neutrophil count, calcium ions, lactate, NAR). (a) 
ROC curves demonstrating maintained predictive accuracy for XGBoost, RF, LR model despite feature reduction. (b–d) Calibration curves assessing 
agreement between predicted probabilities and observed outcomes, with closer-to-diagonal curves indicating better reliability.
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Application of the model

To enhance the convenience and practice utility of the developed 
model, we created a web-based tool to facilitate clinicians in clinical 
decision-making (accessible at: https://yyiyis.shinyapps.io/APALI/). 
Using this tool, clinicians can input key clinical data, such as BMI, Neu 
(neutrophil), ALB (albumin), CRP, and calcium ion levels, to predict 
likelihood of APALI in patients with AP (Figure 8).

Discussion

This study is the first and most comprehensive to apply 
machine learning methods to develop a model for predicting the 
occurrence of acute pancreatitis-associated lung injury (APALI). 
The RF and XGBoost models outperformed four other machine 
learning algorithms in the validation set, demonstrating superior 
AUC, accuracy, and F1 score, and exhibiting strong discriminatory 
power and calibration performance. We  identified CRP, BMI, 
neutrophil count, calcium ions, lactate, and NAR as the most 
important independent predictors for APALI. Additionally, 
we  developed a web-based tool to enhance the model’s 
convenience and practical utility. This study may facilitate the 
early detection of lung injury in AP and support healthcare teams 

in delivering targeted interventions, accelerating recovery, and 
improving quality of life.

Currently, there are limited studies on the prediction for ALI in 
AP. Jayanta Samanta identified that IL-6 and IL-8 could predict the 
development of ALI in AP and may serve as a composite biomarker 
(10). Lawrence Owusu proposed that γ-enolase could serve as an early 
indicator of lung tissue damage, even before significant 
histopathological injury is evident (22). Although the efficacy of these 
biomarkers has been partially validated, their complexity and limited 
availability may restrict their clinical applicability. Mengyu Jia 
developed a predictive model incorporating routine clinical data, such 
as diabetes, oxygen supplementation, neutrophil count, and D-dimer 
levels, and visualized the model using a nomogram (11). While this 
study based on relatively small cohorts (91 cases) which may 
undermine the stability of the model and restrict its practical 
applicability and suggest that machine learning models may 
outperform traditional manual scoring systems. Fei et al. compared 
artificial neural networks with logistic regression in predicting acute 
ALI among 217 patients with SAP. The ANN model achieved a 
sensitivity of 87.5%, specificity of 83.3%, and overall accuracy of 
84.43%, significantly outperforming logistic regression (23). Ong et al. 
demonstrated that ML models (XGBoost) modestly outperformed 
conventional statistical methods in predicting poor post-ICU 
outcomes for mechanically ventilated patients, albeit with limited 

FIGURE 6

Global interpretability of the simplified XGBoost (a) and RF (b) models using SHAP summary plots.
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sensitivity at high specificity thresholds (17). These results suggest that 
ML offer superior early-warning capabilities for AP-related disease. 
Therefore, we conducted a retrospective study aimed at identifying 
valuable risk factors for APALI via six machine learning. The result 
revealed that The XGBoost and Random Forest (RF) models 
demonstrated the best predictive performance, achieving the highest 

AUC, along with higher accuracy, F1 score, and recall in the testing 
set. And we  identified six key risk factors (CRP, BMI, neutrophil 
count, calcium ions, lactate, and NAR), which may predict the 
occurrence of APALI in the early phase of the disease. In our study, 
although both KNN and logistic regression models performed 
reasonably well, their overall predictive performance was inferior to 

FIGURE 7

Case examples demonstrating model interpretability and clinical correlation. (a,b) SHAP force plots showing low-risk prediction scores for a non-APALI 
case. (c–e) Corresponding abdominal (c) and chest (d,e) CT images demonstrating absence of pulmonary abnormalities. (f,g) SHAP force plots of an 
APALI case with high-risk prediction. (h–j) Confirmatory CT findings showing abdominal (h) and chest (i,j) imaging with characteristic lung 
consolidation and pleural effusion, validating the model’s predictive accuracy.
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that of the random forest and XGBoost models. Compared to previous 
studies, our research is based on a larger-scale population dataset and 
demonstrates significant advantages across multiple key predictive 
indicators. The model’s predictive performance has notably improved, 
particularly in terms of accuracy, sensitivity, and specificity, achieving 
high levels in these areas. These results indicate that our model not 
only holds strong clinical application value but also has considerable 
potential for widespread implementation, offering robust support for 
early disease prediction and intervention in broader clinical practices.

This study demonstrates that the neutrophil-to-albumin ratio 
(NAR) is a significant predictor of APALI, a relationship seldom 
explored in previous research. Neutrophils play a central role in 
APALI pathogenesis by releasing inflammatory mediators—such as 
myeloperoxidase (MPO) (24, 25), matrix metalloproteinases (MMP-8 
and MMP-9), neutrophil elastase, and other proteolytic enzymes—
that collectively drive systemic inflammation and tissue damage. 
Albumin reflects nutritional and hepatic status and declines during 
inflammation, infection, and organ dysfunction (26, 27). By 
integrating inflammatory burden and nutritional status, NAR has 
recently emerged as a robust prognostic biomarker across multiple 
clinical contexts. Elevated NAR predicts poor outcomes in sepsis, 
cardiovascular disease, and various malignancies, reflecting its strong 
association with systemic inflammation and organ failure (28). For 
example, in sepsis, high NAR correlates with increased mortality and 
organ dysfunction (29). Similar patterns appear in colorectal, gastric, 
and lung cancers, likely reflecting a proinflammatory tumor 

microenvironment (30). Furthermore, elevated NAR has been linked 
with adverse long-term outcomes in cardiovascular disease, including 
higher risks of heart failure and cardiac events (31–34).

Large-scale population studies further support NAR’s prognostic 
value, as well as that of its variant, the neutrophil-to-prealbumin ratio. 
Feng et al. reported that each 10-point increase in the Life’s Crucial 9 
score corresponded to a 28% reduction in COPD odds, with NAR 
mediating 4.8% of the effect (35). Han et al. identified a J-shaped 
relationship between NAR and all-cause or cardiovascular mortality 
in CKD, partially mediated by eGFR (36). Li et al. found that CKD 
patients with cardiovascular disease and elevated NPAR had 
significantly increased mortality risks (37). Ma et al. demonstrated a 
linear association between log-transformed NPAR and albuminuria, 
and Gao et al. identified NAR as a key predictor of poor outcomes 
after endovascular stroke therapy (38, 39). In our study, NAR ranked 
third in importance in the random forest model—after CRP and 
neutrophil count—and was strongly and positively correlated with 
APALI. Given its simplicity and predictive strength, NAR may serve 
as an efficient and early biomarker for identifying patients at high risk 
of APALI.

Lactate levels reflect tissue hypoxia, metabolic disturbances, and 
inflammatory responses, all of which are prevalent in AP (40). Lactate 
accumulation arises from microcirculatory dysfunction and tissue 
hypoxia, central to the pathogenesis of acute lung injury and ARDS (40). 
Studies have shown that persistently elevated lactate levels are associated 
with poor outcomes, complications such as ARDS, and increased 

FIGURE 8

Web-based clinical decision support tool for APALI risk prediction. Screenshot of the interactive interface showing input parameters (CRP, BMI, 
neutrophil count/albumin, calcium, lactate) and real-time risk calculation. Example output displaying predicted APALI probability with interpretative 
guidance. The tool is publicly available at: https://yyiyis.shinyapps.io/APALI/.
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mortality in AP (41). Therefore, lactate monitoring is essential for 
prognostication and guiding therapeutic interventions, including fluid 
resuscitation and oxygen therapy (42, 43). The relationship between BMI 
and AP, as well as its associated lung injuries, such as ARDS, represents 
an important area of research (44, 45). Our study showed that BMI was 
ranked highly in both the Random Forest and XGBoost model. Obesity 
negatively impacts pancreatic health by disrupting fat metabolism, 
inducing insulin resistance, and promoting the release of 
pro-inflammatory cytokines. These factors contribute to systemic 
inflammation in patients with AP, increasing the risk of lung injury 
(44–46). An elevated BMI may further amplify inflammatory responses, 
as excess adipose tissue releases inflammatory mediators that worsen 
pancreatic damage and contribute to pulmonary complications (47). 
Therefore, a high BMI can serve as a critical early warning indicator for 
pulmonary injury and its progression in severe AP, playing a crucial role 
in the early identification and treatment of pulmonary complications.

We employed Shapley Additive Explanations (SHAP) to interpret 
the model and identify key clinical features influencing predictions. 
The SHAP values indicated that CRP, BMI, neutrophil count, calcium 
levels, lactate, and NAR were the most significant predictors of acute 
lung injury. Notably, SHAP visualizations provided clarity on the 
contribution of each variable and highlighted feature interactions, 
offering valuable insights into the underlying mechanisms of acute 
lung injury in AP. These findings support the utility of machine 
learning models in predicting the risk of acute lung injury in AP 
patients. By identifying key clinical features such as NAR, lactate, and 
BMI, our model could aid clinicians in early detection and 
personalized intervention. This predictive capability may facilitate 
timely therapies to reduce systemic inflammation and prevent 
progression to acute respiratory distress syndrome (ARDS). Despite 
strong predictive performance, real-world use of the APALI model 
faces three main challenges. First, technical integration: hospitals 
with fragmented IT systems may need middleware to support real-
time use, even though the model relies on structured EHR data. 
Second, workflow compatibility: clinician trust requires explainability 
(e.g., SHAP plots) and smooth integration into systems like order 
entry. Third, scalability: retraining may be needed to adapt to local 
case-mix differences.

This study has several limitations. As a retrospective case–control 
study, it may be affected by selection bias, and some patients may have 
received treatment before laboratory data were collected, potentially 
influencing the results. Although we employed rigorous methodology, 
the external validation yielded exceptionally high performance. While 
we applied strict data separation and anti-leakage procedures, this result 
may reflect specific characteristics of the external dataset, such as small 
sample size, case homogeneity, and a higher proportion of critically ill 
patients from a tertiary referral center. Therefore, this finding should 
be interpreted with caution. To enhance the accuracy, generalizability, 
and clinical applicability of the model, future studies should focus on 
large-sample, multi-center prospective research, incorporate real-time 
clinical data, and minimize treatment-related biases.

Conclusion

In this study, we developed a clinical prediction model for the 
early identification of lung injury in patients with AP by utilizing 
machine learning algorithms to analyze clinical data. The model 

exhibited robust predictive performance, validated through 
external testing and individual assessments, underscoring its 
clinical utility for timely interventions in AP-associated lung injury. 
Additionally, we created a web-based calculator to facilitate the 
model’s application in clinical practice, enabling healthcare 
professionals to make faster decisions and potentially improve 
patient outcomes. This tool represents a valuable resource for 
clinicians managing AP, ensuring timely and appropriate care for 
patients at high risk of lung injury. Future work will focus on 
enhancing the model through multi-center validation, 
incorporating diverse clinical variables, and optimizing the tool for 
broader clinical application.
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