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Traditional studies of pulmonary fibrosis (PF) have focused on alveolar epithelial cells 
injury and abnormal myofibroblast aggregation, but recent studies have revealed 
that imbalances in pulmonary capillary homeostasis also play pivotal roles in this 
disease. The pulmonary microvasculature, composed of aerocyte capillary (aCap) 
and general capillary (gCap) endothelial cells, forms the core structure of the 
alveolar-capillary membrane. It performs key roles in gas exchange and nutrient/
metabolite transport, while modulating the trafficking of inflammatory factors 
and immune cells and regulating alveolar damage repair. Abnormal activation of 
pulmonary microvascular endothelial cells in pulmonary fibrosis, reprogramming 
of cellular metabolism, secretion of proinflammatory and profibrotic factors, and 
disruption of pulmonary capillary homeostasis, lead to abnormal remodeling of 
the pulmonary microvasculature and other pathological changes, promoting 
the deterioration of PF. Notably, maintaining and restoring normal pulmonary 
capillary homeostasis is beneficial for improving the local microenvironment 
of fibrotic lesions and attenuating pathological changes such as hypoxia. In this 
review, the pathological changes associated with pulmonary capillary homeostasis 
imbalance in PF are described. Therapeutic directions for restoring pulmonary 
capillary homeostasis are also proposed with the expectation that they will provide 
assistance in the treatment of PF.
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1 Introduction

Interstitial lung diseases (ILDs) are characterized by inflammation or fibrosis of the lung 
parenchyma. ILD with fibrosis as the predominant pathological manifestation may be classified 
as secondary or idiopathic. Common causes of secondary ILD include connective tissue 
disease-associated ILD (e.g., rheumatoid arthritis, scleroderma), environmental/occupational 
exposure-related ILD (e.g., silicosis, asbestosis), and drug-induced ILD (e.g., amiodarone, 
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bleomycin), among others (1). Idiopathic pulmonary fibrosis (IPF) is 
the most important subtype of ILD, and accounts for approximately 
one-third of ILD patients (2). The incidence of IPF varies according 
to region, with 7–1,650 IPF cases per 100,000 people worldwide, and 
the annual incidence of IPF is increasing (3–5). IPF has a high 
mortality rate, a life expectancy of 2–3 years (6), and a lack of effective 
treatments. Pirfenidone and nintedanib are approved antifibrotic 
drugs that can slow the decline in lung function in IPF but do not 
reverse pulmonary fibrosis (7, 8). And Long-term use of these drugs 
has a high incidence of adverse events, such as gastrointestinal events 
(dyspepsia, diarrhea, etc.), skin-related events (rash, photosensitivity 
reactions, etc.), and in severe cases, discontinuation is required due to 
intolerable adverse events (9–13). The cost of treating IPF is much 
greater than that of the general population because of the long 
treatment period, which imposes a significant financial burden on the 
families of IPF sufferers and poses a significant challenge to global 
public health (14–16). This is due to the complexity of the pathogenesis 
of IPF, which hinders the development of effective therapeutic options.

Previous studies have suggested that dysregulation of alveolar 
epithelial cells (AECs) injury and repair, and overproduction of 
myofibroblasts are the central mechanisms underlying the emergence 
of pulmonary fibrosis (PF) (17). However, this does not explain the 
pathological changes in PF lesions, where the density of pulmonary 
capillaries decreases or disappears. Furthermore, 16% of 
myofibroblasts in PF lesions are derived from vascular endothelial 
cells (VECs) (18). This evidence suggests that the role of VECs in PF 
has been overlooked (19, 20). An analysis of VECs in fibrosis revealed 
that abnormal activation of VECs stimulated by pathological factors 
leads to structural and functional alterations in the cells, disrupting 
pulmonary capillary homeostasis and leading to pathological 
alterations in the vasculature, such as increased permeability and 
vascular remodeling (21, 22). Moreover, an imbalance in pulmonary 
microvascular homeostasis disrupts alveolar–capillary gas exchange 
function (19). Therefore, this review summarizes the specific 
pathological mechanisms by which the abnormal activation of 
pulmonary microvascular endothelial cells (PMVECs) disrupts 
pulmonary capillary homeostasis and promotes the progression of 
PF. And it proposes a therapeutic strategy to restore pulmonary 
capillary homeostasis for the treatment of PF, which provides ideas for 
the development of new therapeutic options.

2 The normal structure and function 
of PMVECs are fundamental to the 
maintenance of pulmonary capillary 
homeostasis

Pulmonary capillaries are vascular barriers formed by the 
interconnection of VECs, which control the entry and exit of nutrients, 
metabolic products, cells, etc. When lung tissue is damaged, the 
vascular barrier also allows cytokines and immune cells, among others, 
to enter the damaged area and participate in the inflammatory 
response, among others (23). Pulmonary capillaries are closely 
connected to alveoli, forming an alveolar–capillary membrane 
structure (Figure 1A), which facilitates gas exchange between the lungs 
and the external environment. Pulmonary capillaries are composed of 
two types of VECs (Figure  1B) (24–26). The first type is aerocyte 
capillary (aCaps) ECs, which are responsible for gas exchange and 

cellular transport within the lungs. The second type consists of general 
capillary (gCaps) ECs, which have a progenitor cell function and are 
involved in processes such as vascular repair, immunomodulation and 
maintenance of capillary homeostasis. Single-cell analysis revealed that 
in the healthy state, aCap and gCap ECs were stable, and only a very 
small number of gCap ECs intermittently differentiated into aCap ECs 
(26). This study also found that gCap ECs could differentiate into aCap 
ECs in the injured state, but the exact differentiation process was not 
explained. Subsequent single-cell transcriptome profiling revealed that 
after damage to the pulmonary capillary endothelium, gCap ECs 
appeared as a new population expressing apelin and the stem cell 
marker protein C receptor, and then continued to transform into 
proliferative endothelial progenitor-like cells expressing the apelin 
receptor and the pro-proliferative transcription factor Foxm1, which 
rapidly replenished depleted ECs, including the highly specialized 
aCap ECs (27).

3 Abnormal activation of PMVECs 
disrupts pulmonary capillary 
homeostasis and promotes the 
progression of PF

Normal VECs are usually in a homeostatic state and are transiently 
activated in response to stimulation by injurious factors, and return to 
the homeostatic state after the injury has been repaired (Figure 2A). 
Single-cell RNA sequencing further demonstrates that the activation 
of VECs is reversible; for example, in young mice, after bleomycin 
stimulation, activated VECs return to a resting state after completion 
of repair (28). However, in pathological conditions, such as persistent 
fibrosis, this leads to sustained aberrant activation of VECs. PMVECs 
showed persistent activation in response to stimulation by pathogenic 
factors (Table 1). Moreover, single-cell RNA sequencing showed that 
PMVECs are activated to undergo pro-fibrotic changes at an early 
stage of PF (21, 29).

3.1 Aberrant activation of PMVECs in PF 
lesions alters their cytoarchitecture and 
disrupts vascular homeostasis

The cytoarchitectural alterations of PMVECs in PF are mainly 
reflected in the altered number and abnormal distribution of VECs 
subpopulations, disruption of the connective structures between 
VECs, and endothelial mesenchymal transition (EndMT). These 
pathological changes lead to an imbalance in pulmonary capillary 
homeostasis, increasing vascular permeability and driving abnormal 
vascular remodeling in PF.

3.1.1 Altered subpopulation numbers and 
abnormal distribution of PMVECs

PMVEC subpopulations and numbers were different in healthy and 
fibrotic lung tissues (Figure 2B). Typical gCap capillary endothelial cell 
numbers were significantly reduced in lung fibrotic tissues (19, 30, 31). 
Phenotypic changes in activated pulmonary capillary endothelial cells 
occur under the influence of the fibrotic environment of the lung. Single-
cell RNA sequencing of different phenotypes of PMVECs differentiated 
them, and typical phenotypes included Cxcl12+, ACKR1+, TrkB+, LRG1+, 

https://doi.org/10.3389/fmed.2025.1639043
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhou et al.� 10.3389/fmed.2025.1639043

Frontiers in Medicine 03 frontiersin.org

and COL15A1+. The Cxcl12+ subpopulation was associated with various 
pro-fibrotic activities, including inflammation, vascular remodeling, and 
ECM deposition (21). The ACKR1+ subpopulation is distributed within 
the veins and is involved in the regulation of inflammatory pathways, 
pulmonary vein remodeling and angiogenesis-related pathways, and is 
closely associated with αSMA+ mesenchymal cells (28, 32, 33). The 
presence of TrkB+ subpopulation marks the activation of capillary ECs, is 
predominantly located in areas where fibroblasts accumulate after lung 
tissue injury, and correlates with the severity of PF (28). LRG1+ 
subpopulation interacts with lung fibroblasts through the TGFβ/Smad2 
pathway, and promotes ECM deposition (34). COL15A1+ VECs are 
located in the blood vessels surrounding the proximal fine bronchioles in 
healthy lung tissue. However, in IPF, a large number of COL15A+ VECs 
were abnormally distributed in fine bronchioles and fibrotic areas (35, 36).

3.1.2 Disruption of VECs junctions and increased 
vascular permeability in PF lesions

Normal VECs make up the vascular barrier by means of tight 
junctions, adherent junctions, and gap junctions (Figure 1B) (37). This 
gives the vasculature the ability to selectively pass metabolic 
substances and cells. In PF lesions, the connective structure between 
PMVECs is disrupted (Figure 2C) (38), the barrier function of the 
vasculature is impaired, and vascular permeability within the lesion is 
increased, leading to local inflammation. Sphingosine-1 phosphate 

(S1P) in phospholipid membranes plays an important role in 
maintaining the connections between PMVECs. Under normal 
conditions, S1P maintains the connectivity between lung capillaries 
(39). When vascular endothelial junctions are disrupted, the 
overexpression of S1P restores endothelial cell junctions and 
strengthens the endothelial barrier function (40–42). Decreased 
expression of S1P was observed in PF, along with increased levels of 
ceramide, which has a disruptive effect on intercellular junctions and 
disrupts the integrity of the vascular endothelium (43).

3.1.3 EndMT disrupts vascular integrity and 
promotes perivascular extracellular matrix 
protein deposition

PMVECs can be  activated into mesenchymal cells with ECM 
secretion after lung tissue injury, a process known as EndMT (36, 44), 
which is one of the key pathological changes that promote the 
exacerbation of PF (Figure 2D). Persistent endothelial cell activation 
is prevalent in pulmonary fibrosis lesions (28, 45). Recently, it has 
been found that there is a transient acquisition of mesenchymal 
characteristics after Plvap+ gCap endothelial cell activation in PF, 
while still maintaining endothelial properties (46). As fibrosis 
worsened, endothelial cell activation became more frequent. This 
better explains the course of pathological changes of PMVECs in 
PF. With the accumulation of inflammation (IL-1β, TNF-α, etc.), 

FIGURE 1

(A) Cross-sectional view of the alveolar-capillary junction. AECs and PMVECs make up the alveolar-capillary membrane, an important structure for gas 
exchange in the lungs. (B) Schematic representation of the pulmonary capillary wall. The walls of healthy pulmonary capillaries are formed by two 
distinct endothelial cell types: aerocytes and general capillary endothelial cells.
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FIGURE 2

(A) Schematic representation of the pulmonary capillary wall. (B) Changes in the type and number of PMVECs. The number of pulmonary 
microvascular gCap ECs was significantly reduced in the area of PF. And new VEC phenotypes appeared, including Cxcl12+, ACKR1+, TrkB+, LRG1+, and 
COL15A1+ phenotypes. (C) Intercellular junctions of PMVECs in the region of pulmonary fibrosis lesions were disrupted, vascular permeability was 
increased, and the barrier function of blood vessels suffered disruption. (D) Disruption of vascular integrity and ECM deposition. Pulmonary capillary 
permeability is altered in the area of pulmonary fibrosis lesions, and some VECs produce large amounts of ECM via EndMT, which promotes lung 
fibrosis progression.

pro-fibrotic factor (TGF-β1) and other cytokines in fibrotic lungs, the 
microenvironment around PMVECs is altered (47–49). This leads to 
an increased susceptibility of PMVECs to fibrosis, and transient 
EndMT promotes vascular repair. However, as fibrosis progresses, 
processes such as iron death, glycolysis, and lipid metabolism are 
altered in PMVECs (50, 51), promoting increased expression of sterol 
regulatory element-binding protein 2 (SREBP2) (a key protein for 
cholesterol homeostasis), the transcription factors Sox9 and Snail, and 
ultimately leading to persistent endothelial cell activation (47, 52, 53). 
And it induces EndMT in the ECs of neighboring lung microvessels, 
leading to over-repair of lung capillaries, disruption of their integrity, 
increased vascular permeability, and the appearance of a distinct 
honeycomb structure (54–56).

3.2 Abnormal activation of VECs in PF alters 
their cellular function and promotes the 
formation of a local inflammatory 
environment and fibrotic lesions

PMVECs in the physiological state are associated with the 
intrinsic immune response, intercellular adhesion and endothelial 

regeneration (21, 57). In contrast, in PF, activated PMVECs are 
involved in the inflammatory response and fibrosis, and are also 
involved in coagulation processes. Some activated PMVECs 
exhibit reduced endothelial-specific gene expression and 
increased expression of inflammation-related genes (58, 59), 
secrete large amounts of inflammatory factors (Table 2) and form 
a local inflammatory microenvironment.

Peripheral immune cells, including macrophages and 
monocytes, are also recruited to amplify the inflammatory 
response (60). In addition to the increased expression of 
inflammatory genes, this fraction of cells also overexpresses 
profibrotic genes, promoting the deterioration of pulmonary 
fibrotic lesions (61), as shown in Table 2. Microvascular thrombus 
formation has also been observed in damaged pulmonary 
capillaries and is associated with VEC injury, leading to the release 
of anticoagulant molecules and increased levels of procoagulant 
factors on the vascular surface (50, 62). Microthrombi also slow 
local blood flow, exacerbate local thrombus formation, lead to a 
localized hypoxic state in the lesion, promote the expression of 
inflammatory and fibrotic genes in the pulmonary capillary 
endothelium, and recruit immune cells, among other types of 
cells (63).
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4 Imbalances in pulmonary capillary 
homeostasis promote pulmonary 
capillary remodeling and ECM protein 
deposition and attenuate lung tissue 
repair

Metabolic reprogramming occurs in pulmonary microvascular 
endothelial cells in pulmonary fibrotic lesions, which disrupts the 
balance between damage to and repair of the pulmonary capillaries 

and changes vascular permeability within the lesion, leading to 
pathological changes such as hypoxia, inflammatory infiltrates, and 
ECM protein deposition in the lesion. Pulmonary capillaries, in 
turn, undergo vascular remodeling (Figure 3) (20, 30). In the early 
stages of pulmonary fibrosis, pulmonary capillaries exhibit reduced 
integrity and increased permeability (64, 65). With the abnormal 
repair of pulmonary fibrosis lesions, the distribution of blood 
vessels within the lesion area decreases, whereas the density of 
blood vessels increases in the area surrounding the lesion (66–68). 

TABLE 1  Triggers of PMVECs activation.

Sources of triggers Precipitating factor Pathway/mode of activation References

In vitro factors Radiation Activation of ubiquitin-specific peptidase 11 (110–112)

Dust (silica, Silicosis, PM2.5, 

etc.)

Decreased expression of LncRNA Gm16410

(95, 113–117)

Down-regulation of NOX2 protein expression and overexpression of CAT protein 

promote intracellular reactive oxygen species accumulation

Overexpression of ZC3H4 promotes endoplasmic reticulum stress and autophagy

Increasing circHECTD1 expression and thus inhibiting HECTD1 protein 

expression

Overexpression of the transcriptional regulator CEBP3

Volatile organic compounds Suppression of Atf3 gene and promotion of Gas6 overexpression (96)

Viruses (COVID-19, 

Influenza A virus, etc.)

PD-L1, IDO and STAT3 were abnormally expressed

(64, 105, 118–121)
Promotion of GRK2 overexpression that inhibits S1PR1 protein expression

Activation of intercellular adhesion molecule-1

Overexpression of phosphodiesterase type 5

In vivo factors Heredity Rare Variants in Telomere Maintenance and Surfactant Protein Genes (122)

Aging
Cellular senescence or premature senescence

(58, 95)
Loss of ERG function

Disease Reactive oxygen species generation and transglutaminase (TGase) activation (123)

Pathological changes of 

adjacent cells

AECs Caveolin-1 was overexpressed (124)

Fibroblasts Secretion of cytokines (98)

TABLE 2  Inflammatory and profibrotic factors secreted by PMVECs.

Categories Cytokines Function References

Inflammatory factors
CXCL12

CXCL12-CXCR4 axis is involved in inflammation, immunity, 

EndMT, angiogenesis.
(125, 126)

CXCL10 Involved in inflammation response. (58)

IL-6
Alteration of vascular permeability via JAK/STAT3 pathway, MEK/

ERK pathway
(127)

TNF-α It is involved in innate immune response and inflammatory 

response. (58)
INF-γ

Profibrotic factors TGF-β It promotes fibrotic processes such as EndMT. (61, 112, 128, 129)

CTGF Synergistic TGF-β1 promotes fibrosis progression. (50, 61, 128, 130, 131)

PDGF PDGF-C acting on ECs promotes fibrosis. (61)

IL-1α IL-1α secreted byECs promotes ECM production. (132)

Endothelin-1 (ET-1) Promotes TGF-β1 production and synergises its profibrotic effects. (129, 133)

IL-11 Promotion of EndMT. (134)

MMP-19 Synergises with ET-1 to promote EndMT; recruits monocytes. (135)
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FIGURE 3

(A) Healthy alveoli and pulmonary capillaries. (B) Fibrotic lesion alveoli and pulmonary capillaries. ECM protein deposition and reduced density of 
PMVECs within fibrotic lesions in lung tissue with PF. (C) Alveoli and pulmonary capillaries around fibrotic lesions.

In the end stage of pulmonary fibrosis, because of the expansion of 
fibrotic lesions, the cross-sectional area of pulmonary capillaries 
within the lesions decreases or even disappears, leading to an 
increase in pulmonary circulatory resistance and even pulmonary 
hypertension (69, 70).

4.1 Vascular homeostatic imbalance in PF 
results in the disappearance of pulmonary 
capillaries within the lesion and an increase 
in the density of pulmonary capillaries 
around the lesion

Vascular injury and regenerative imbalance in PF are central to 
pulmonary capillary remodeling. Pulmonary capillaries show different 
pathological manifestations at different stages of PF. As PF progresses, 
there is a gradual decrease in capillary density within the lesion and a 
lack of vascular structures within the mature fibrotic lesion (Figure 3B) 
(30). This phenomenon is associated with increased expression of 
vascular inhibitory factors (e.g., PEDG) and decreased expression of 
angiogenic factors (e.g., VEGF) and vasculoprotective factors (e.g., 
BMPR2) in lesions (67). PEDG inhibits the expression of VEGF in 
lesions and induces apoptosis in VECs, which results in undetectable low 
levels of VEGF in lesions (66, 67, 71). Moreover, in the microenvironment 
of fibrosis, the expression of BMPR2, which is protective for endothelial 
cells, is reduced, increasing the susceptibility of the vascular endothelium 
to fibrosis (72).

In PF, in contrast to the situation within fibrotic lesions, VEGF 
proteins were detected in the vascular endothelium within nonfibrotic 
lesions (67, 71). These VEGFs are mainly due to the activation of the 
HIF-α pathway by hypoxic vascular endothelial cells, which initiates 
VEGF transcription and expression (73, 74). This process is a 
compensatory manifestation of the pathology. In addition, the reduced 
vascular density within the lesion leads to an increase in fluid shear stress 
in the blood around the lesion, which stimulates endothelial cells to 

produce miR-143-3p and promotes capillary regeneration in healthy 
lung tissue (75). In addition to the role of VECs in angiogenesis, the 
upregulation of proangiogenic genes was also observed in the gene 
expression profile of airway epithelial cells (76). Furthermore, recent 
studies have shown that a subpopulation of myofibroblasts characterized 
by the expression of collagen triple helix repeat containing 1 (CTHRC1) 
exists in PF (77–81). These cells are derived from alveolar fibroblasts and 
can express high levels of ECM (82–86). In tumor-related studies, 
CTHRC1 protein promotes vascular remodeling and angiogenesis by 
enhancing glycolytic processes in VECs (87, 88). This suggests a potential 
mechanism whereby CTHRC1+ fibroblasts may contribute to the 
increased capillary density around fibrotic lesions, representing a 
promising future research direction. Together, these factors contribute to 
the emergence of newborn pulmonary capillaries around the lesion and 
the increased percentage of VECs in the PF (Figure 3C) (89). Thus, 
protection of pulmonary capillaries in the lesion helps delay the onset of 
pulmonary vascular remodeling and increases the time needed for the 
repair of damaged lung tissue.

4.2 Imbalances in vascular homeostasis 
within pulmonary fibrosis lesions reduce 
alveolar repair capacity and increase ECM 
protein deposition

The essence of PF is the deposition of ECM proteins due to 
excessive repair. More studies have suggested that PF begins with 
dysregulated damage and repair of AECs. Under normal conditions, 
PMVECs can secrete S1P or perform paracrine delivery of 
miR-200c-3p, which promotes the differentiation of AT2 cells into AT1 
cells to repair damaged alveoli (60, 90). It can also secrete MMP-14 to 
promote the repair of AECs (91). However, in pulmonary fibrosis 
lesions, MMP-14 and miR-200c-3p expression was reduced in 
damaged PMVECs, which attenuated the repair capacity of damaged 
alveoli (92). In addition, pulmonary capillaries suffer damage in the 
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early stage of fibrosis, resulting in increased vascular permeability, 
plasma exudation into the interalveolar stroma and alveolar lumen, and 
ultimately, the formation of hyaline membranes covering the surface 
of the alveolar epithelium, which affects the gas exchange capacity of 
alveolar capillaries (93). Thus imbalances in pulmonary capillary 
homeostasis can attenuate the repair capacity of damaged alveoli.

In PF, damaged PMVECs can activate the proliferation and 
differentiation of fibroblasts through multiple pathways. Changes in the 
content of proteins secreted by damaged PMVECs influence lung 
fibroblasts to develop a fibrotic response, such as decreased expression 
of ERG and BMPR2 or increased expression of CTGF in endothelial 
cells, which can lead to fibroblasts expressing a fibrotic phenotype (58, 
72, 94). Some PMVECs with reduced expression of the chemokine 
receptor CXCR7 were recruited toward perivascular macrophages. This 
resulted in sustained upregulation of Jagged1 (ligand for Notch) on 
PMVECs, activating the Notch signaling pathway in perivascular 
fibroblasts (60). At the same time, Galectin-3 (Gal3) secreted by 
senescent PMVECs can initiate fibroblast-myofibroblast differentiation 
by binding to TGFBR1 on the cell membrane of lung fibroblasts (95). 
In addition, Gas6, secreted by PMVECs with a PANoptosis phenotype, 
binds to Axl in fibroblasts and activates fibroblasts (96). These molecular 
pathways demonstrate how aberrant PMVECs signaling directly 
promotes pathogenic fibroblast transitions and ECM deposition.

5 Therapeutic strategies to restore 
pulmonary capillary homeostasis in PF

The maintenance of pulmonary capillary homeostasis is the basis for 
the exchange of gasses, nutrients and metabolites between the blood and 
alveoli. In PF lesions, the structure and function of VECs are highly 
abnormal. Maintaining and restoring normal pulmonary capillary 
homeostasis is conducive to attenuating pathological changes such as 
hypoxia in fibrotic lesions, as well as increasing the efficiency of drug 
delivery and ameliorating PF (65, 97). Therefore, to restore pulmonary 
capillary homeostasis, damaged PMVECs can be repaired by improving 
the inflammatory and fibrotic microenvironments around PMVECs and 
increasing the resistance of endothelial cells to fibrotic alterations.

The first step is to improve the microenvironment. Structural and 
functional changes in PMVECs during fibrosis are strongly linked to the 
surrounding inflammatory and fibrotic environment. Because it is not 
possible to isolate the communication between endothelial cells and the 
surrounding environment, the microenvironment can be improved by 
inhibiting the secretion of factors with damaging effects or by increasing 
beneficial factors in the microenvironment. Myofibroblasts, the core cells 
involved in the development of pulmonary fibrosis, can secrete large 
amounts of profibrotic cytokines. A team developed an engineered 
mesenchymal stem cell (MSC) called MSC-MM@LPHN to target 
myofibroblasts in lung tissues by modifying the surface of MSCs to 
encapsulate ROS-responsive paper polymer hybrid nanoparticles of 
metformin and macitentan, which induced their dedifferentiation, 
reduced endothelial damage factor secretion and restored vascular 
homeostasis (98). Thrombopoietin mimetic (TPOm), which acts on the 
TPOm receptor, inhibits ICAM-1 expression in primary mouse PMVECs, 
reducing endothelial cell–neutrophil adhesion and decreasing immune 
cell recruitment (99). Another study inhibited iron death and fibrotic 
alterations in endothelial cells by increasing dopamine in the 
periendothelial environment and balancing lipid/glucose metabolism in 
endothelial cells (51).

The next step is to repair damaged PMVECs. Maintaining the 
normal differentiation of gCaps repaired damaged lung capillaries and 
restored vascular homeostasis. Matrix Gla protein (MGP), an antagonist 
of bone morphogenic protein (BMP), is highly expressed in lung cells 
(100, 101), and MGP supports the normal differentiation of progenitor 
cells and inhibits the abnormal differentiation of endothelial cells (102, 
103). However, the mechanism by which MGP promotes the 
differentiation of gCaps ECs to repair damaged pulmonary capillaries in 
PF needs to be further investigated. Moreover, MGP binds to BMP-1 and 
reduces the production of mature TGFβ1, thereby inhibiting EndMT 
(100). Treamid may be a promising antifibrotic drug that can stimulate 
regeneration of the lung endothelium in patients with IPF (104).

Finally, the resistance of PMVECs to fibrotic alterations is 
enhanced. In the lung fibrosis environment, PMVECs are susceptible 
to fibrotic stimuli. This is related to the fact that the stimulation of 
PMVECs in the fibrotic microenvironment leads to intracellular 
metabolic reprogramming, with alterations such as increased glycolysis 
and reduced expression of nicotinamide adenine dinucleotide and the 
stromal cell proteins CCN3 and S1PR1 (45, 105–108). Therefore, 
maintaining normal intracellular metabolic processes in PMVECs 
enhances their resistance to fibrotic alterations. For example, inhibition 
of CD38 gene expression can significantly affect fibrotic lesions during 
EndMT (45). The overexpression of S1PR1 can also increase the 
stability of connections between PMVECs and improve vascular 
permeability (105, 107). In PMVECs that have undergone fibrotic 
changes, the EndMT process can be inhibited by miR-218 in exosomes 
secreted from MSCs, which inhibits the MeCP2/BMP2 pathway (109). 
Therefore, enhancing the resistance of PMVECs to fibrotic alterations 
could inhibit pathological changes in the vasculature within pulmonary 
fibrotic lesions and protect the integrity of the vascular endothelium.

6 Conclusion

Abnormal activation of PMVECs disrupts pulmonary 
capillary homeostasis one of the core pathological mechanisms 
underlying the progression of PF. Abnormal activation of 
PMVECs disrupts the structure and function of normal cells, 
leading to disruption of intercellular junctions, altered vascular 
permeability, and imbalance of pulmonary capillary homeostasis. 
These pathological changes cause impaired substance exchange 
function, inflammatory response, abnormal ECM deposition and 
other pathological changes within the fibrotic lesions. This 
ultimately leads to abnormal vascular remodeling. Therefore 
maintaining or restoring pulmonary capillary homeostasis is 
conducive to ameliorating the above pathological changes, and 
improving the efficiency of drug delivery to fibrotic lesions, 
thereby inhibiting or reversing the progression of PF.
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