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Background: Type 2 diabetes mellitus (T2DM) is an endocrine and metabolic 

disorder that can lead to multi-organ damage and dysfunction, imposing 

significant financial burden on national healthcare systems. Currently, 

the early identification of high-risk individuals and the prevention of 

T2DM remain major challenges for clinicians. This study aimed to use 

easily obtainable clinical indicators to perform cluster analysis on healthy 

individuals, in order to accurately identify high-risk population requiring 

early intervention. 

Methods: This study was a multicenter retrospective cohort study with a median 

follow-up period of 3 years. A total of 12,607 Chinese adult individuals without 

diabetes at baseline were included. The K-means clustering algorithm was 

applied to five standardized indicators: age, body mass index (BMI), fasting 

blood glucose (FBG), triglycerides (TG), and HDL-C (high-density lipoprotein 

cholesterol). After clustering, multivariate Cox proportional hazards regression 

analysis was used to evaluate and compare the risk of diabetes incidence among 

different clusters. 

Results: The study population comprising 12,607 subjects was clustered 

into four distinct groups: Cluster 1 (metabolic health cluster), Cluster 2 

(low HDL-C cluster), Cluster 3 (old age and mild metabolic disorder 

cluster), and Cluster 4 (severe obesity and insulin resistance cluster). The 

proportional distributions of each cluster were 37.95, 29.99, 24.95, and 

7.11%, respectively. The clinical characteristics and diabetes incidence risks 

varied significantly among the four clusters. Cluster 4 exhibited the highest 

diabetes incidence rate, followed by Cluster 3, Cluster 2, and Cluster 1. In 

all models adjusted for covariates, the diabetes incidence rates in Cluster 3 

and Cluster 4 were significantly higher than those in Cluster 1 and Cluster 

2. However, no significant difference was observed between Cluster 3 and 

Cluster 4. 
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Conclusion: Cluster-based analyses can effectively identify individuals at high 

risk of diabetes in the normal population. These high-risk groups (clusters 3 

and 4) are often associated with aging, obesity, and insulin resistance (IR), 

necessitating early and targeted interventions. 

KEYWORDS 

type 2 diabetes mellitus, cluster analysis, aging, obesity, insulin resistance 

1 Introduction 

Type 2 diabetes mellitus (T2DM) is an endocrine and 
metabolic disorder characterized primarily by insulin resistance 
(IR) and insuÿcient insulin secretion (1). According to data 
from the International Diabetes Federation (IDF), approximately 
537 million people worldwide were living with diabetes mellitus 
(DM) in 2021. By 2045, this number is projected to rise to 
783 million (2). Chronic hyperglycemia not only leads to multi-
organ damage and dysfunction, including the kidneys, retina, liver, 
and cardiovascular system, but also contributes to high mortality 
rates, imposing significant psychological and physiological burdens 
on individuals (3). Therefore, timely identification of high-risk 
population for T2DM, screening for risk factors, and implementing 
early intervention and management are crucial to mitigating its 
adverse impacts on individuals and healthcare systems. 

Currently, the diagnosis of DM still primarily relies on blood 
glucose, a single metabolic marker. However, due to the combined 
influence of genetic, environmental, and lifestyle factors, DM 
exhibits significant heterogeneity, particularly in T2DM, which 
accounts for over 90% of all DM cases (1). In fact, multiple 
factors contribute to the onset and progression of DM, including 
abnormal pancreatic islet development, impaired islet function, 
autoimmunity, inflammation, reduced insulin sensitivity, and 
decreased incretin activity, among others (4). The predominant 
role of a single factor or the synergistic eects of multiple factors 
can lead to substantial phenotypic variability among individuals 
with DM (5). Consequently, the approach of focusing solely on 
blood glucose control is insuÿcient for preventing DM in the 
general population. 

Clustering analysis may oer a potential solution to the 
aforementioned challenges. As an unsupervised machine 
learning algorithm, it categorizes study subjects into distinct 
phenotypes based on the similarity of input features (6). In 
2018, Ahlqvist et al. (7) utilized clustering analysis on a newly 
diagnosed DM cohort, incorporating variables such as glutamic 
acid decarboxylase antibodies (GADA), age, body mass index 
(BMI), glycated hemoglobin (HbA1c), HOMA2-estimated insulin 
resistance (HOMA2-IR), and HOMA2-estimated beta-cell function 
(HOMA2-β). Their analysis identified five subtypes with markedly 
dierent clinical phenotypes and metabolic characteristics. 
Similarly, Ye et al. (8) employed clustering analysis on metabolic 
parameters, including age, BMI, HbA1c, and triglycerides (TG), 
to develop and validate a novel classification for metabolic 
dysfunction-associated fatty liver disease (MAFLD) in Chinese 
and United Kingdom (UK) cohorts. This approach enabled more 

accurate identification of DM, coronary heart disease, and stroke 
risks across dierent subtypes. Furthermore, multiple studies have 
demonstrated that the results of clustering analysis maintain a 
certain degree of robustness even after years of follow-up (9, 10). 
These findings underscore that clustering analysis could serve as a 
powerful tool for precision medicine in disease management. 

Previous studies have extensively explored risk factors for 
T2DM in general populations but have overlooked the clinical 
manifestations, pathophysiological characteristics, and genetic 
features of specific subgroups. This oversight may hinder eective 
prevention and management of T2DM (11–13). Additionally, key 
parameters in DM assessment, such as GADA and C-peptide, are 
rarely evaluated in clinical practice or epidemiological surveys, 
limiting their widespread application. Currently, clinical research 
utilizing clustering analysis to predict T2DM onset remains limited. 
For these reasons, this study selected five easily accessible indicators 
in epidemiological screening [age, BMI, fasting blood glucose 
(FBG), TG, and high-density lipoprotein cholesterol (HDL-C)] to 
conduct a data-driven clustering analysis in a large Chinese cohort. 
The aim was to identify clusters with distinct metabolic profiles 
and compare diabetes incidence rates among these clusters, thereby 
identifying high-risk populations requiring early intervention prior 
to diabetes onset. 

2 Materials and methods 

2.1 Study design and participants 

The data used in this study were derived from a public, 
non-profit computerized database established by China Rich 
Healthcare. Initially compiled and uploaded by Chen et al. (14) 
to the “DATADRYAD” website, the dataset is openly accessible to 
researchers.1 This database encompasses 32 medical institutions 
across 11 cities in China, including Shanghai, Beijing, Guangzhou, 
Shenzhen, Chengdu, Nanjing, Wuhan, Hefei, Suzhou, Changzhou, 
and Nantong. Each participant underwent at least two routine 
health check-ups between 2010 and 2016 (n = 685,277). 

During the data compilation process, the following exclusions 
were applied: missing baseline weight or height (n = 103,946), 
absence of gender information (n = 1), missing baseline FBG values 
(n = 31,370), extreme BMI values (< 15 kg/m2 or > 55 kg/m2 , 
n = 152), follow-up intervals of less than 2 years (n = 324,233), 

1 https://datadryad.org/dataset/doi:10.5061/dryad.ft8750v 
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FIGURE 1 

Flowchart of the study population. 

a history of T2DM at baseline (2,997 participants self-reported 
a diagnosis, and 4,115 participants were diagnosed based on 
FPG ≥ 7.0 mmol/L), and participants whose diabetes status 
remained undetermined at the end of follow-up (n = 6,630). After 
these exclusions, 211,833 participants were initially included. For 
this study, we further excluded participants with missing baseline 
variables, resulting in a final cohort of 12,607 participants, as 
illustrated in Figure 1. This study was conducted in accordance 
with the Declaration of Helsinki and was approved by the Ethics 
Committee of the 987th Hospital of the Joint Logistics Support 
Force of the People’s Liberation Army (Approval No. 2025A-187). 
Since the database used was publicly available and all participant 
identities were anonymized, the requirement for informed consent 
was waived. 

2.2 Collection, assessment and 
measurement of covariates 

The following clinical information was included in this study. 
(1) Demographic Information: This encompassed gender (male 

or female), age, smoking history (current smoker, ever smoker, 
or never smoker), alcohol consumption history (current drinker, 
ever drinker, or never drinker), and family history of diabetes 
(yes or no). These details were collected, recorded, and measured 
by trained professionals using standardized questionnaires. 
(2) Anthropometric Measurements: Height, weight, and blood 
pressure were measured by trained sta. Participants were required 
to wear lightweight clothing and no shoes during height and 
weight measurements, which were recorded to the nearest 0.1 cm 
and 0.1 kg, respectively. BMI was calculated as weight (kg) divided 
by height squared (m2). Blood pressure was measured using the 
standard mercury sphygmomanometer. (3) Laboratory Indicators: 
Fasting venous blood samples were collected from participants after 
at least 10 h of fasting during each visit. FBG, TG, total cholesterol 
(TC), low-density lipoprotein cholesterol (LDL-C), HDL-C, alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), blood 
urea nitrogen (BUN), and serum creatinine (Scr) were measured 
using the Beckman 5,800 automated analyzer. Standardized 
procedures were implemented across all analytical equipment to 
ensure consistency in measurements and parameters. (4) Derived 
Parameters: To assess the degree of IR, the following indices were 
calculated. Triglyceride–glucose (TyG) index: TyG = Ln [TG 
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(mg/dL) × FBG (mg/dL)/2] (15). Atherogenic Index of Plasma 
(AIP): AIP = Log10 [TG (mmol/L)/HDL-C (mmol/L)] (16). Non-
HDL-C: Non-HDL-C = TC (mmol/L)—HDL-C (mmol/L) (17). 
Estimated glomerular filtration rate (eGFR): eGFR was calculated 
using the CKD-EPI formula (18). 

2.3 Study outcomes 

The outcome event was defined as the occurrence of new-onset 
diabetes in participants. Diabetes was identified during follow-up 
if the participant had the FBG level ≥ 7.0 mmol/L and/or self-
reported a diagnosis of diabetes (19). The follow-up period ended 
either on the date of the first occurrence of the outcome event or on 
the date of the last visit, whichever came first. 

2.4 Cluster analysis 

The clustering analysis for diabetes was performed using 
the K-means algorithm in R software. Prior to clustering, the 
five clustering variables (age, BMI, FBG, TG, and HDL-C) were 
standardized using the Z-score method to eliminate dierences in 
scale and numerical ranges among the variables (20). Subsequently, 
clustering analysis was conducted on the standardized variables 
(with a mean of 0 and a standard deviation of 1). In the 
K-means algorithm, determining the optimal number of clusters 
(K) is crucial. Based on criteria outlined in previous studies and 
supported by the elbow method and silhouette measure in TwoStep 
clustering method (Supplementary Figure S1 and Supplementary 
Table S1), four clusters were identified as optimal (21, 22). The 
TwoStep clustering method was applied using log-likelihood as 
the distance measure and Schwarz’s Bayesian information criterion 
(BIC) to determine the optimal number of clusters (ranging from 
2 to 15). Furthermore, based on the optimal cluster number 
(K = 4) determined above, hierarchical clustering was additionally 
performed to validate the stability of the k-means clustering results 
(Supplementary Tables S2, S3). Radar charts were generated for 
each cluster using Z-scores, which were calculated by adjusting the 
mean values of the variables within each cluster to the cohort mean 
and standard deviation. 

2.5 Statistical analysis 

Continuous variables were presented as mean ± standard 
deviation. Comparisons between two groups were performed 
using independent samples t-tests, while comparisons among 
multiple groups were conducted using one-way analysis of variance 
(ANOVA) followed by the least significant dierence (LSD) method 
for post hoc pairwise comparisons. Categorical variables were 
expressed as frequencies (percentages). Comparisons between 
two or more groups were performed using chi-square tests. If 
significant dierences were observed among multiple groups, 
post hoc pairwise comparisons were conducted with Bonferroni 
correction. The cumulative risk of diabetes incidence across clusters 
was compared and analyzed using Kaplan-Meier curves and log-
rank tests. To assess the risk of diabetes occurrence in dierent 

clusters, multivariate Cox proportional hazards regression analysis 
was employed to compare the hazard ratios [HRs, 95% confidence 
intervals (CIs)] of diabetes incidence among the four clusters. To 
control for confounding variables, three models with progressively 
adjusted covariates were constructed. Model 1 adjusted for gender, 
model 2 adjusted for gender, smoking history, alcohol consumption 
history, and family history of diabetes, and model 3 further adjusted 
for SBP, DBP, TC, non-HDL-C, LDL-C, ALT, AST, BUN, Scr, 
and eGFR in addition to the variables in model 2. Statistical 
analyses were performed using SPSS 27.0 (IBM Corp., Armonk, 
NY, United States) and R version 4.3.1 (R Foundation for Statistical 
Computing, Vienna, Austria). A P-value < 0.05 was considered 
statistically significant. 

3 Results 

3.1 Basic characteristics of the 
population 

Table 1 summarized the clinical characteristics of the study 
population, stratified by those who developed new-onset diabetes 
and those who did not. Over a median follow-up period of 
3 years, 251 out of the 12,607 adult participants developed diabetes, 
comprising 203 males and 48 females. Compared to the non-
diabetes group (all P < 0.01), participants with new-onset diabetes 
were older and exhibited higher body weight, BMI, blood pressure 
(SBP and DBP), blood glucose levels (FBG and FBG at the final 
visit), and lipid-related parameters (TC, TG, LDL-C, non-HDL-C, 
TyG index, and AIP). Regarding renal and hepatic function, the 
new-onset diabetes group had significantly higher levels of BUN, 
ALT, and AST, but lower eGFR compared to the non-diabetes 
group (all P < 0.001). Additionally, the new-onset diabetes group 
had higher rates of smoking, alcohol consumption, and the family 
history of diabetes (all P < 0.01). The proportion of individuals 
with FBG levels between 5.6 and 6.9 mmol/L was also significantly 
higher in new-onset diabetes population compared to the non-
diabetic population (P < 0.001). 

3.2 Clinical characteristics of the four 
clusters 

Using the K-means clustering algorithm, the 12,607 
participants were categorized into four distinct clusters. 
Details regarding the cluster centers, which can be used for the 
stratification of dierent clusters, were provided in Supplementary 
Table S4. Figure 2 illustrated the clinical characteristics of the 
four clusters across the clustering variables. Cluster 1 (n = 4,784, 
37.95%): This cluster had the youngest participants, with a mean 
age of 35.22 years. It exhibited the lowest levels of BMI, FBG, 
and TG, along with the highest levels of HDL-C. Given its 
optimal metabolic profile, this cluster was labeled the metabolic 
health cluster (MHC). Cluster 2 (n = 3,781, 29.99%): This cluster 
demonstrated the relatively favorable metabolic state, with a mean 
age of 37.25 years, lower FBG and TG levels, and moderate BMI. 
However, it had the lowest HDL-C levels among the clusters, 
leading to its designation as the low HDL-C cluster (LHC). 
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TABLE 1 Basic clinical characteristics of the study population. 

Variables Overall (n = 12,607) Without new-onset 
DM (n = 12,356) 

With new-onset DM 
(n = 251) 

P-value 

Age (years) 41.90 ± 11.46 41.67 ± 11.35 53.21 ± 10.91 < 0.001 

Gender n, (%) < 0.001 

Male 8,456 (67.1) 8,253 (66.8) 203 (80.9) 

Female 4,151 (32.9) 4,103 (33.2) 48 (19.1) 

Height (cm) 167.78 ± 8.13 167.76 ± 8.13 168.63 ± 8.02 0.093 

Weight (kg) 66.70 ± 12.09 66.54 ± 12.04 74.52 ± 11.93 < 0.001 

BMI (kg/m2) 23.59 ± 3.29 23.54 ± 3.27 26.11 ± 3.17 < 0.001 

SBP (mmHg) 119.00 ± 15.26 118.81 ± 15.16 128.65 ± 17.30 < 0.001 

DBP (mmHg) 74.74 ± 10.41 74.62 ± 10.36 80.67 ± 11.11 < 0.001 

FBG (mmol/L) 5.00 ± 0.61 4.98 ± 0.60 5.96 ± 0.66 < 0.001 

FBG5.6−6.9 mmol/L n, (%) 1,951 (15.5) 1,775 (14.4) 176 (70.1) < 0.001 

FBG of final visit (mmol/L) 5.19 ± 0.61 5.15 ± 0.49 7.48 ± 1.24 < 0.001 

TC(mmol/L) 4.76 ± 0.89 4.76 ± 0.89 5.08 ± 0.86 < 0.001 

TG(mmol/L) 1.45 ± 1.12 1.44 ± 1.10 2.28 ± 1.53 < 0.001 

HDL-C (mmol/L) 1.35 ± 0.31 1.35 ± 0.30 1.28 ± 0.65 < 0.001 

LDL-C (mmol/L) 2.73 ± 0.69 2.73 ± 0.69 2.87 ± 0.68 0.001 

Non-HDL-C (mmol/L) 3.80 ± 1.11 3.41 ± 0.86 3.80 ± 1.11 < 0.001 

TyG 8.47 ± 0.63 8.46 ± 0.62 9.10 ± 0.62 < 0.001 

AIP –0.04 ± 0.30 –0.05 ± 0.30 0.19 ± 0.31 < 0.001 

BUN (mmol/L) 4.75 ± 1.18 4.74 ± 1.17 5.20 ± 1.42 < 0.001 

Scr (µmol/L) 73.59 ± 15.19 73.57 ± 15.17 74.40 ± 16.02 0.399 

eGFR (mL/min/1.73 m2) 102.69 ± 14.02 102.83 ± 13.97 95.72 ± 14.44 < 0.001 

ALT (U/L) 25.95 ± 22.18 25.73 ± 22.06 36.47 ± 25.30 < 0.001 

AST (U/L) 25.09 ± 10.67 25.00 ± 10.56 29.62 ± 14.76 < 0.001 

Smoking status n, (%) < 0.001 

Current smoker 2,524 (20.0) 2,433 (19.7) 91 (36.2) 

Ever smoker 563 (4.5) 543 (4.4) 20 (8.0) 

Never smoker 9,520 (75.5) 9,380 (75.9) 140 (55.8) 

Drinking status n, (%) 0.005 

Current drinker 377 (3.0) 361 (2.9) 16 (6.4) 

Ever drinker 2,541 (20.1) 2,487 (20.1) 54 (21.5) 

ever drinker 9,689 (76.8) 9,508 (77.0) 181 (72.1) 

Family history of diabetes n, (%) < 0.001 

Yes 778 (6.2) 748 (6.1) 30 (12.0) 

No 11,829 (93.8) 11,608 (93.9) 221 (88.0) 

Year of follow-up 3.00 ± 0.88 3.00 ± 0.88 3.23 ± 0.98 < 0.001 

Values are means ± SD for continuous variables. Values are frequency counts and percentages for categorical variables. P-value was calculated by the t-test for continuous variables and 
chi-square tests were performed for categorical variables. P < 0.05 was considered significant. DM, diabetes mellitus; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; FBG, fasting blood glucose; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TyG, triglyceride-glucose 
index; AIP, atherogenic index of plasma; BUN, blood urea nitrogen; Scr, creatinine; eGFR, estimated glomerular filtration rate; ALT, alanine transferase; AST, aspartate transferase. 

Cluster 3 (n = 3,146, 24.95%): This cluster exhibited the moderate 

metabolic profile. It had the oldest participants, with a mean age 

of 56.41 years, along with relatively higher BMI and FBG levels 
and moderate HDL-C levels. It was named the old age and mild 

metabolic disorder cluster (OMDC). Cluster 4 (n = 896, 7.11%): 

This cluster displayed the poorest metabolic state. Participants 
were relatively older, with a mean age of 46.22 years, and had the 

highest levels of BMI, FBG, and TG, coupled with relatively low 

HDL-C levels. Consequently, it was designated the severe obesity 

and insulin resistance cluster (SOIRC). 
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FIGURE 2 

Distribution and clinical features of clusters. (A) Proportional distribution of 12,607 participants. (B–F) Characteristics of each cluster regarding age, 
BMI, FBG, TG, and HDL-C. Cluster 1: Metabolic health cluster; Cluster 2: Low HDL-C cluster; Cluster 3: Old age and mild metabolic disorder cluster; 
Cluster 4: Severe obesity and insulin resistance cluster. 

3.3 Basic information and biochemical 
parameters characteristics of each 
cluster 

Table 2 provided the detailed overview of the distribution 
and clinical characteristics of the four clusters. The incidence 
of new-onset diabetes increased progressively from Cluster 1 to 
Cluster 4. Cluster 4 had the highest proportion of males and 
exhibited the highest levels of blood pressure (SBP and DBP), 
blood glucose (FBG at the final visit), lipid profiles (TC and 
non-HDL-C), and parameters reflecting IR, including AIP and 
TyG index. This cluster also showed the poorest liver function 
(highest ALT and AST levels) and suboptimal kidney function 
(elevated BUN, Scr, and reduced eGFR). Additionally, Cluster 4 
had the highest rates of smoking, alcohol consumption, family 
history of diabetes and FBG5.6−6.9 (the proportion of people 
with FBG levels between 5.6 and 6.9 mmol/L). Similarly, Cluster 
3 demonstrated relatively high levels of SBP, DBP, FBG at the 
final visit, TC, and non-HDL-C, along with elevated rates of 
smoking and alcohol consumption. This cluster also had the 
highest LDL-C and BUN levels but the lowest eGFR. The TyG 
index, AIP, Scr, ALT, and AST levels were moderate in this 
group. Cluster 2 exhibited lower levels of SBP, DBP, FBG at 
the final visit, TC, LDL-C, non-HDL-C, and BUN, along with 
lower rates of smoking and alcohol consumption. This cluster also 

had higher eGFR lever compared to the others. Cluster 1 had 
the lowest proportion of males and displayed the lowest levels 
of blood pressure (SBP and DBP), blood glucose (FBG at the 
final visit), and lipid profiles (TC, LDL-C, and non-HDL-C). It 
also had the lowest degree of IR (TyG and AIP) and the best 
liver and kidney function (lowest BUN, Scr, ALT, and AST, and 
highest eGFR). Additionally, this cluster had the lowest rates of 
smoking, alcohol consumption, family history of diabetes and 
FBG5.6−6.9. Detailed pairwise comparisons between clusters are 
presented in Table 2. Furthermore, using the adjusted cohort 
mean as a reference, radar charts (Figure 3) were generated to 
visually compare the clusters. These charts highlight that Cluster 
4 exhibited significant metabolic disturbances, while Cluster 
1 demonstrated optimal metabolic health. The characteristics 
of the study participants clustered by hierarchical clustering 
were grossly similar to those clustered by k-means clustering 
(Supplementary Table S3). 

3.4 Association between new-onset 
diabetes and clusters 

The cumulative risk of diabetes incidence across the four 
clusters was analyzed using Kaplan-Meier (K-M) curves, as 
illustrated in Figure 4. The results revealed significant dierences 
in the cumulative risk of diabetes among the four clusters over 
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TABLE 2 Baseline clinical characteristics of the four clusters. 

Variables Cluster 1 
(n = 4,784) 

Cluster 2 
(n = 3,146) 

Cluster 3 
(n = 3,781) 

Cluster 4 
(n = 896) 

P-value 

Age (years) 35.22 ± 6.60 37.25 ± 6.64a 56.41 ± 8.48ab 46.22 ± 9.48abc < 0.001 

Gender n, (%) < 0.001 

Male 2,323 (48.6) 3,203 (84.7)a 2,119 (67.4)ab 811 (90.5)abc 

Female 2,461 (51.4) 578 (15.3) 1,027 (32.6) 85 (9.5) 

Height (cm) 166.48 ± 8.15 170.39 ± 7.56a 165.99 ± 8.11b 170 ± 7.00ac < 0.001 

Weight (kg) 58.06 ± 8.34 75.19 ± 10.17a 66.74 ± 9.74ab 76.88 ± 10.47abc < 0.001 

BMI (kg/m2 ) 20.87 ± 1.96 25.84 ± 2.62a 24.15 ± 2.59ab 26.56 ± 2.93abc < 0.001 

SBP (mmHg) 112.93 ± 13.18 120.84 ± 13.79a 123.93 ± 16.58ab 126.32 ± 15.25abc < 0.001 

DBP (mmHg) 70.68 ± 9.18 76.09 ± 10.04a 77.53 ± 10.37ab 80.95 ± 10.50abc < 0.001 

FBG (mmol/L) 4.75 ± 0.54 4.93 ± 0.55a 5.35 ± 0.58ab 5.39 ± 0.61ab < 0.001 

FBG5.6−6.9 mmol/L n, (%) 229 (4.8) 378 (10.0)a 1026 (32.6)ab 318 (35.5)ab < 0.001 

FBG of final visit (mmol/L) 4.99 ± 0.41 5.17 ± 0.55a 5.45 ± 0.70ab 5.55 ± 0.88ab < 0.001 

TC(mmol/L) 4.53 ± 0.80 4.69 ± 0.85a 5.04 ± 0.86ab 5.36 ± 1.02abc < 0.001 

TG(mmol/L) 0.89 ± 0.42 1.55 ± 0.65a 1.39 ± 0.60ab 4.29 ± 1.93abc < 0.001 

HDL-C (mmol/L) 1.48 ± 0.30 1.16 ± 0.23a 1.42 ± 0.27ab 1.19 ± 0.28ac < 0.001 

LDL-C (mmol/L) 2.56 ± 0.62 2.75 ± 0.68a 2.94 ± 0.68ab 2.84 ± 0.81abc < 0.001 

Non-HDL-C (mmol/L) 3.05 ± 0.74 3.53 ± 0.83a 3.62 ± 0.81ab 4.17 ± 0.98abc < 0.001 

TyG 8.04 ± 0.44 8.62 ± 0.45a 8.59 ± 0.47ab 9.75 ± 0.33abc < 0.001 

AIP -0.25 ± 0.21 0.09 ± 0.21a -0.04 ± 0.23ab 4.72 ± 1.11abc < 0.001 

BUN (mmol/L) 4.49 ± 1.12 4.72 ± 1.11a 5.12 ± 1.24ab 4.99 ± 1.16ab < 0.001 

Scr (umol/L) 69.24 ± 15.11 77.61 ± 13.92a 73.85 ± 15.20ab 78.86 ± 14.12ac < 0.001 

eGFR (ml/min/1.73 m2) 109.01 ± 12.19 104.59 ± 12.23a 92.23 ± 12.33ab 97.69 ± 13.06abc < 0.001 

ALT (U/L) 18.75 ± 16.83 33.62 ± 26.21a 23.57 ± 17.69ab 40.29 ± 25.85abc < 0.001 

AST (U/L) 22.39 ± 9.63 26.65 ± 11.26a 25.67 ± 10.04a 30.85 ± 11.65abc < 0.001 

Smoking status n, (%) < 0.001 

Current smoker 470 (9.8) 868 (23.0)a 843 (26.8)ab 343 (38.3)abc 

Ever smoker 153 (3.2) 232 (6.1) 122 (3.9) 56 (6.3) 

Never smoker 4161 (87.0) 2681 (70.9) 2181 (69.3) 497 (55.5) 

Drinking status n, (%) < 0.001 

Current drinker 60 (1.3) 109 (2.9)a 146 (4.6)ab 62 (6.9)abc 

Ever drinker 710 (14.8) 995 (26.3) 595 (18.9) 241 (26.9) 

Never drinker 4014 (83.9) 2677 (70.8) 2405 (76.4) 593 (66.2) 

Family histroy of diabetes n, (%) < 0.001 

Yes 254 (5.3) 276 (7.3)a 182 (5.8) 66 (7.4)a 

No 4530 (94.7) 3505 (92.7) 2964 (94.2) 830 (92.6) 

New-onset DM n, (%) 5 (0.1) 37 (1.0)a 147 (4.7)ab 62 (6.2)abc < 0.001 

Continuous variables are presented as the mean ± SD. All categorical variables were represented by numbers or proportions. Group comparisons of continuous variables are performed using 
ANOVA. When comparing pairwise, the least significant dierence method was used. Group comparisons of categorical variables were conducted using the chi-square test. For multiple 
comparisons of proportions among multiple groups, Bonferroni correction is used to adjust the significance level. When P < 0.05, the dierence is considered statistically significant. DM, 
diabetes mellitus; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; TC, total cholesterol; TG, triglyceride; HDL-C, high-density 
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TyG, triglyceride-glucose index; AIP, atherogenic index of plasma; BUN, blood urea nitrogen; Scr, creatinine; eGFR, 
estimated glomerular filtration rate; ALT, alanine transferase; AST, aspartate transferase. a P < 0.05 when cluster 1 is compared with cluster 2, cluster 3, and cluster 4. bP < 0.05 when cluster 2 
is compared with cluster 3 and cluster 4. cP < 0.05 when cluster 3 is compared with cluster 4. 

the follow-up period (Log-rank test, P < 0.0001). Clusters 3 

and 4 exhibited a notably higher cumulative risk of diabetes 

incidence. 

To further elucidate the association between dierent clusters 

and diabetes incidence, Cox proportional hazards regression 

models were employed. The detailed results were presented in 
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FIGURE 3 

Profile of the four clusters in the cohort study. (A–D) Individual distributions of metabolic components in cluster 1, cluster 2, cluster 3 and cluster 4. 
(E) Combined distribution of metabolic components in clusters 1–4. Cluster 1: Metabolic health cluster; Cluster 2: Low HDL-C cluster; Cluster 3: Old 
age and mild metabolic disorder cluster; Cluster 4: Severe obesity and insulin resistance cluster. Radar plots were drawn for each cluster by using 
z-values which were calculated by adjusting the cluster mean for each variable to the cohort mean and SD for each variable. We then compared the 
radar plots visually and describe the particular characteristics of each cluster. 
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FIGURE 4 

Kaplan-Meier estimated the cumulative hazard of new-onset DM risk among four clusters. Cluster 1: Metabolic health cluster; Cluster 2: Low HDL-C 
cluster; Cluster 3: Old age and mild metabolic disorder cluster; Cluster 4: Severe obesity and insulin resistance cluster. 

TABLE 3 Multiple Cox proportional hazard regression analysis for DM incidence according to clusters. 

Cluster Unadjusted Model1 Model 2 Model 3 

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value 

Cluster 1 vs. Cluster 2 9.64 (3.79–24.53) < 0.001 8.86 (3.46–22.69) < 0.001 8.52 (3.32–21.82) < 0.001 7.15 (2.74–18.68) < 0.001 

Cluster 1 vs. Cluster 3 56.97 (23.36–138.95) < 0.001 54.03 (22.09–132.13) < 0.001 51.96 (21.23–127.20) < 0.001 25.11 (9.61–65.61) < 0.001 

Cluster 1 vs. Cluster 4 70.23 (28.23–174.68) < 0.001 63.59 (25.34–159.58) < 0.001 58.54 (23.27–147.27) < 0.001 32.04 (11.92–86.07) < 0.001 

Cluster 2 vs. Cluster 3 5.91 (4.12–8.48) < 0.001 6.10 (4.24–8.77) < 0.001 6.10 (4.23–8.80) < 0.001 3.51 (2.19–5.63) < 0.001 

Cluster 2 vs. Cluster 4 7.28 (4.85–10.95) < 0.001 7.18 (4.77–10.79) < 0.001 6.88 (4.56–10.37) < 0.001 4.48 (2.80–7.17) < 0.001 

Cluster 3 vs. Cluster 4 1.23 (0.92–1.66) 0.168 1.18 (0.87–1.59) 0.292 1.13 (0.83–1.53) 0.443 1.28 (0.86–1.90) 0.232 

Unadjusted. Model 1: adjusted for gender. Model 2: adjusted for gender, smoking status, drinking status, and family histroy of diabetes. Model 3: adjusted for gender, SBP, DBP, TC, non-HDL, 
LDL, ALT, AST, BUN, Scr, eGFR, smoking status, drinking status, and family history of diabetes. 

Table 3. Compared to Cluster 1, Clusters 2, 3, and 4 showed 

significantly increased risks of diabetes incidence, consistent across 
all models with progressively adjusted covariates (unadjusted, 
Model 1, Model 2, and Model 3; P < 0.001). In pairwise 

comparisons, both Cluster 3 and Cluster 4 demonstrated 

significantly higher risks of diabetes incidence compared to Cluster 

2, and these associations remained robust across all adjusted models 
(P < 0.001). However, no significant dierence in diabetes risk was 
observed between Cluster 3 and Cluster 4 in any of the adjusted 

models (P > 0.05). 

We have detailed the distribution of characteristic levels 
and the results of pairwise comparison tests between clusters 
(Clusters 1, 2, 3, and 4) within both male and female 
subgroups. These results align well with the metabolic level 
comparisons in the overall population (Supplementary Figures 
S2–S5; Supplementary Tables S5, S6). Similarly, we analyzed 
the risk of diabetes incidence across clusters within male and 
female subgroups separately (Supplementary Table S7). The 
findings demonstrated that, in fully adjusted models, Clusters 
3 and 4 had significantly higher risks of diabetes incidence 
compared to Clusters 1 and 2 (P < 0.05). However, no 
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significant dierence in diabetes risk was observed between 
Clusters 3 and 4 (P > 0.05), aligning with the results from the 
overall population. 

4 Discussion 

This study conducted clustering analysis using five easily 
accessible clinical indicators (age, BMI, FBG, TG, and HDL-C) 
and identified four distinct clusters with significant characteristic 
dierences within the population. The characteristics of the study 
participants derived from k-means clustering were essentially 
consistent with those obtained by hierarchical clustering. These 
clusters were labeled as MHC (Cluster 1), LHC (Cluster 2), 
OMDC (Cluster 3), and SOIRC (Cluster 4). At the end of 
the follow-up period, Cluster 4 exhibited the highest incidence 
of diabetes, followed by Cluster 3, Cluster 2, and Cluster 1. 
Furthermore, in multiple models adjusted for covariates, the 
diabetes incidence rates in Cluster 3 and Cluster 4 were significantly 
higher than those in Cluster 1 and Cluster 2, although no 
significant dierence was observed between Cluster 3 and Cluster 
4. These findings were consistently validated across dierent 
genders. The results suggest that clustering analysis can eectively 
reveal the heterogeneity in diabetes incidence among clusters 
with distinct metabolic profiles, highlighting the need for early 
intervention in high-risk populations characterized by aging, 
obesity, and IR. 

In this study, Cluster 4 had the highest incidence of 
diabetes and exhibited the worst metabolic profile, characterized 
by hypertension (elevated SBP and DBP), dysregulated glucose 
and lipid metabolism (high FBG, TC, LDL-C, and Non-HDL-
C, and low HDL-C), and impaired liver and kidney function 
(elevated ALT, AST, BUN, Scr, and reduced eGFR). This 
may be related to the cluster’s IR (elevated TyG (23) and 
AIP (24), which have been identified as surrogate markers 
of IR) and obesity status (high BMI). In multiple studies 
focusing on newly diagnosed patients with T2DM, IR- and 
obesity-related subgroups have indeed demonstrated severe 
metabolic disturbances and a high incidence of complications 
(7, 9, 25, 26). 

Dyslipidemia is one of the common complications of 
T2DM, with a prevalence as high as 72–85% (27). Under 
conditions of IR, elevated levels of free fatty acids (FFA) in 
the circulation lead to increased hepatic synthesis of very low-
density lipoprotein (VLDL). Additionally, reduced activity 
of lipoprotein lipase (LPL) contributes to decreased VLDL 
degradation, ultimately resulting in hypertriglyceridemia (28). 
Elevated TG activates cholesterol ester transfer protein (CETP), 
promoting the transfer of TG from triglyceride-rich lipoproteins 
(TRLs) to HDL-C and LDL-C. TG-rich HDL-C and its surface 
apolipoprotein AI (ApoAI) are rapidly cleared, while TG-rich 
LDL-C is transformed into sdLDL (29). Under the combined 
influence of these lipid abnormalities, individuals with T2DM 
are prone to vascular endothelial dysfunction, hypertension, 
atherosclerosis (AS), and cardiovascular diseases (CVD). 
Ultimately, approximately 70–80% of individuals die from 
cardiovascular and cerebrovascular diseases (30). Therefore, 

close attention to lipid profiles in Cluster 4 is essential in 
the early stages. 

Obesity is another critical factor that cannot be overlooked in 
Cluster 4. On one hand, increased lipolysis in obese individuals 
leads to elevated FFA entering the liver and muscles. This 
can cause mitochondrial dysfunction, endoplasmic reticulum 
stress (ERS), or ectopic fat deposition, interfering with 
insulin signaling (e.g., insulin receptor substrate 1 (IRS-1) 
phosphorylation) and resulting in reduced glucose uptake 
and impaired glucose tolerance (31–33). On the other hand, 
the accumulation of visceral fat promotes the release of 
inflammatory cytokines such as tumor necrosis factor-α (TNF-
α) and interleukin-6 (IL-6) from adipocytes. These cytokines 
can circulate through the bloodstream and aect organs like 
the liver and muscles, exacerbating adipose and systemic IR 
and creating the vicious cycle (34). These mechanisms have 
been well-documented as significant contributors to T2DM and 
impaired liver and kidney function (35, 36). Therefore, weight 
reduction is essential. 

In this study, Cluster 3 had the oldest participants and exhibited 
a relatively poor metabolic profile. The risk of developing diabetes 
in this cluster was not significantly dierent from that in Cluster 
4 but was higher than in Cluster 1 and Cluster 2. A study in 
Korea found that the oldest subgroup had the highest levels of 
C-reactive protein (CRP) (37), and the risk of T2DM in this 
subgroup was similar to that in the IR subgroup, which aligned with 
the findings of this study. Unfortunately, the database used in this 
study did not include inflammation-related indicators. Research 
has shown that aging is significantly associated with a persistent 
increase in systemic pro-inflammatory cytokine levels (38). Age-
dependent accumulation of visceral fat can induce adipocyte 
hypertrophy and the formation of a hypoxic microenvironment, 
driving macrophages to polarize toward the M1 phenotype and 
secrete large amounts of inflammatory mediators (e.g., TNF-α and 
IL-6) (39, 40). These cytokines activate serine phosphorylation 
sites (e.g., Ser307) on IRS-1, hindering its normal binding to 
the insulin receptor and ultimately disrupting the PI3K-Akt 
signaling pathway (39, 40). Additionally, age-related hormonal 
remodeling significantly exacerbates metabolic imbalances. The 
progressive decline in the growth hormone (GH)/insulin-like 
growth factor-1 (IGF-1) axis leads to an annual loss of skeletal 
muscle mass by 1–2%. Reduced muscle glucose uptake capacity 
directly impairs systemic insulin sensitivity, contributing to the 
development of T2DM (41). These mechanisms have been 
validated in large-scale epidemiological studies (42, 43). Therefore, 
elderly patients may benefit from anti-inflammatory diets [e.g., the 
Mediterranean diet, which reduces CRP levels and improves insulin 
sensitivity (44)] and regular exercise [e.g., resistance training 
and aerobic exercise, which counteract muscle loss and IR (45)] 
to prevent T2DM. 

Compared to other clusters, Cluster 1 and Cluster 2 exhibited 
lower incidences of diabetes. Among these, Cluster 1 displayed 
the healthiest metabolic profile, characterized by the lowest 
levels of blood pressure, blood glucose, lipid profiles, and 
IR, as well as optimal liver and kidney function. The low-
risk features of Cluster 1 may stem from the synergistic 
eects of genetic factors and healthy behaviors, as evidenced 
by the lowest proportions of family history of diabetes, 
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smoking, and alcohol consumption. Studies have confirmed 
that specific genetic traits and healthy lifestyles can enhance 
insulin sensitivity and strengthen metabolic protective eects 
(46, 47). 

Notably, although Cluster 2 demonstrated relatively favorable 
metabolic characteristics (as shown in the radar chart) and 
a significant age advantage (mean age of 37.25 years), its 
incidence and risk of new-onset diabetes were still significantly 
higher than those of Cluster 1. This phenomenon suggests 
that traditional metabolic indicators may not fully capture 
early pathological changes, and unaccounted environmental 
exposure factors may play a critical role in young and middle-
aged populations. For instance, long-term consumption of 
highly processed foods (48), chronic stress exposure (49), sleep 
deprivation (50), and environmental endocrine disruptors 
(51) can exacerbate metabolic disturbances through multiple 
mechanisms. In the future, incorporating non-traditional risk 
factors such as dietary patterns, stress load, circadian rhythms, 
and environmental toxins could provide a multidimensional 
explanation for diabetes risk. These factors may initiate 
β-cell exhaustion during the metabolic compensation phase 
(e.g., the compensatory hyperinsulinemia stage), ultimately 
leading to overt T2DM. 

In this study, we have detailed the distribution of 
characteristic levels and the results of pairwise comparison 
tests between clusters (Clusters 1, 2, 3, and 4) within both 
male and female subgroups. These results align well with the 
metabolic level comparisons in the overall population. This 
consistency supports the robustness of our primary analysis 
while providing nuanced gender-specific insights through 
subgroup comparisons. 

The strengths of this study lie in the fact that age, BMI, 
and glucose-lipid metabolic indicators are easily obtainable during 
routine health check-ups in the general healthy population. By 
employing clustering analysis based on these routine clinical 
indicators, we eectively identified high-risk individuals for 
diabetes in the Chinese population, providing a scientific basis 
for targeted early intervention and reducing the additional 
healthcare burden caused by disease progression. However, this 
study also has several limitations. First, the sample was derived 
exclusively from the Chinese adult population, necessitating 
caution when extrapolating the findings to other populations. 
Moreover, only baseline data were used, and clustering indicators 
at multiple time points were not recorded. Future studies should 
incorporate longitudinal designs with longer follow-up periods to 
explore the association between metabolic trajectories and T2DM. 
Third, due to sample size constraints, we did not perform sex-
stratified clustering, although subgroup analyses demonstrated 
consistent cluster characteristics across genders. Future studies 
with larger cohorts are needed to validate. Fourth, the absence 
of HbA1c data should be noted as a limitation. As a well-
established marker of long-term glycemic control, HbA1c could 
have oered supplementary perspectives on glucose homeostasis. 
Subsequent investigations incorporating HbA1c measurements 
may further validate our clustering results. Finally, the clustering 
indicators (Age, BMI, FBG, TG, HDL-C) selected in this study 
may not be comprehensive. In subsequent research, multi-
omics data (e.g., gut microbiota, epigenetic markers) could 

be included to provide a more detailed understanding of the 
heterogeneity of T2DM. 

5 Conclusion 

Clustering analysis, based on simple and easily measurable 
clinical indicators, can eectively identify individuals at high risk 
of developing diabetes. Aging, obesity, and IR are significant 
risk factors for diabetes onset. Early identification of such 
populations and the implementation of targeted interventions 
(such as improving glucose and lipid metabolism, enhancing 
insulin sensitivity, and controlling body weight) may help delay 
the progression of T2DM and reduce the burden of complications. 
Future studies should incorporate multidimensional data to further 
validate clusters characteristics, thereby providing the theoretical 
foundation for precision medicine. 
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