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Background: Aspergillus fumigatus sensitized asthma (AFSA) is associated with
severe exacerbations and progressive lung damage; however, diagnosis remains
challenging in resource-limited settings owing to limited access to Aspergillus-
specific IgE (A. f-sIgE) testing. We aimed to develop a clinical prediction model
using routinely available biomarkers for AFSA identification.

Methods: This retrospective study enrolled 92 adult patients with asthma at
The First Hospital of Qinhuangdao between 2023 and 2025. Participants were
classified into AFSA and non-AFSA groups. Candidate predictors (demographics
and hematological parameters) were analyzed using Least Absolute Shrinkage
and Selection Operator (LASSO) regression, with subsequent multivariable
logistic regression. Performance was validated via receiver operating
characteristic (ROC) curves, calibration plots, and decision curve analysis (DCA).

Results: Among 92 patients (mean age 56.5 + 12.8 years; 60.9% female),
44.6% (n = 41) had AFSA. LASSO selected five predictors: sex, monocyte
percentage, monocyte absolute count, lymphocyte percentage, and total IgE
(TIgE). Final model retained male sex (Odds Ratio [OR] = 10.688; 95% Confidence
Interval [CI]: 1.661-152.999) and TIgE (OR = 1.006; 95% Cl: 1.003-1.011). The
model achieved excellent discrimination: training cohort (Area Under the Curve
[AUC] = 0.96, sensitivity = 0.93, specificity = 0.92); validation cohort (AUC = 0.88,
sensitivity = 0.75, specificity = 1.00). Sex-specific TIgE cutoffs (527.5 IU/mL
[males], 906.1 IU/mL [females]) yielded 79.2% accuracy.

Conclusions: The developed prediction model using gender and TIgE provides
a practical, accessible tool for AFSA screening, overcoming diagnostic
barriers in settings lacking A. f-sIgE testing. However, this model remains
exploratory and requires multicenter external validation before widespread
clinical implementation.
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Introduction

Asthma is a chronic respiratory disease, affecting 1%-29% of
population globally. It contributes significantly to disease burden
due to recurrent exacerbations, progressive lung function decline,
and increasing healthcare costs (1). Recent epidemiological data
from China indicate that over 45 million adults aged >20 years
are affected by asthma (2).
allergic asthma represents the most clinically significant subtype

Among all asthma phenotypes,

due to its high prevalence (3). Filamentous fungi, particularly
Aspergillus fumigatus (A. f), are well-recognized aeroallergens
implicated in allergic asthma pathogenesis. Sensitization to
A. f (A. f-sensitization) elevates the risk of severe asthma
development. Approximately 20%-30% of patients with severe
asthma demonstrate fungal allergen sensitization, predominantly to
A. f (4). Severe asthma with fungal sensitization (SAFS) constitutes
a distinct clinical phenotype, characterized by markedly impaired
pulmonary function, heightened symptom severity (5), elevated
mortality risk from acute exacerbations (6), refractoriness to
conventional pharmacotherapy (7), and an increased likelihood
of life-threatening attacks requiring intensive care (8). Allergic
bronchopulmonary aspergillosis (ABPA), a complex pulmonary
disorder driven by intense A. f-sensitization, is characterized
by refractory clinical manifestations and bronchiectasis (9,
10). Notably, A. f-sensitization is also prevalent in mild-
to-moderate asthmatics with near-normal lung function (11).
A recent systematic review (73 studies; 23,003 asthmatics)
reported A. f-sensitization prevalence ranging from 1.6 to
73%, with a pooled estimate of 25.1% (12). Given this high
prevalence, differentiating A. f-sensitized asthma (AFSA) from non
A. f-sensitized asthma (non-AFSA) and implementing universal
A. f-sensitization routine in tertiary care settings are critical
(13, 14).

Currently, elevated serum Aspergillus fumigatus-specific
IgE (A. f-sIgE) levels exceeding the diagnostic cutoft value
of 0.35 KUA/L represent the most sensitive test for detecting
A. f-sensitization (13). While an immediate skin sensitivity
reaction following skin prick test or intradermal antigen injection
demonstrates the presence of fungus-specific IgE, skin testing
presents several limitations, including operator-dependent
variability in test quality, batch-to-batch antigen inconsistency,
and a theoretical risk of anaphylaxis (13, 15). Consequently, skin
tests demonstrate inferior diagnostic performance compared
to A. f-sIgE, leading the Delphi Expert Consensus Group
(DECG) to recommend A. f-sIgE as the preferred screening
tool for A. f-sensitization due to its superior sensitivity
(99%—100%) relative to Aspergillus skin testing (88%-94%)
(14, 16, 17).

Although the fluorescent enzyme immunoassay (FEIA) using
the Phadia platform is the goldstandard for detecting A. f-sIgE (13),
its limited availability in primary healthcare settings across China
frequently delays the diagnosis and management of AFSA patients.
To address this clinical gap, we developed and validated a novel
predictive model based on routinely accessible clinical biomarkers,
offering primary care physicians a practical tool for early screening
and personalized therapeutic interventions.
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Materials and methods

Patients

This retrospective cohort study enrolled asthma patients who
underwent A. f-sIgE testing at The First Hospital of Qinhuangdao
(a 2,500-bed tertiary care center in Hebei province) between
August 2023 and January 2025. The Institutional Review Board
granted ethical approval with waiver of informed consent, in
accordance with the Declaration of Helsinki’s provisions for
retrospective studies. Patients were classified into two groups based
on sensitization status: the AFSA group and non-AFSA group.

Study protocol

This study strictly adhered to the TRIPOD-AI (Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis with Artificial Intelligence) guidelines—a
contemporary reporting framework that enhances the transparent
documentation of clinical prediction models incorporating both
traditional regression and machine learning approaches (18).

Definition of Aspergillus fumigatus
sensitization

This study adopted the diagnostic criteria for A. f-sensitization
as described in published literature (19, 20). The diagnosis of A. f-
sensitization was established by: serum A. f-sIgE > 0.35 kUA/L
(ImmunoCAP® Phadia 250 system, Thermo Fisher Scientific) (21,
22).

Inclusion and exclusion criteria

Inclusion criteria: (1) Hospitalized patients at our tertiary
referral center; (2) Age >18 vyears; (3) Diagnosis of asthma
confirmed by the Global Initiative for Asthma (GINA) guidelines?;
(4) At least one A. f-sIgE test performed during hospitalization.
Exclusion criteria: (1) Primary or secondary immunodeficiency
disorders or autoimmune diseases; (2) Comorbid chronic
conditions, including tuberculosis, chronic obstructive pulmonary
disease, coronary heart disease, hypertension, diabetes, or
malignancies, as well as long-term systemic corticosteroid use
(>5 mg prednisone-equivalent/day for >4 weeks) or monoclonal
antibody therapy within the preceding 1 month; (3) Missing
data exceeding 20% for core variables. Figure 1 demonstrates the
participant screening flow, with quantitative documentation of
exclusion criteria at each selection stage.

Data collection and potential predictors

After reviewing relevant literature and applying clinical

judgment, we collected the following data: demographic

1 http://ginasthma.org/
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( A total of 1091 inpatients underwent Af-sIgE detection from Aug 2023 to Jan 2025 )
("Exclude: )
(1) Age <18 years (n=358)
(2) Diagnosis without asthma or ABPA (n=292)
(3) Diagnosed with immunodeficiency disorders
— or autoimmune diseases (n=35)
(4) Diagnosis with chronic diseases (n=203)
(5) Long-term systemic corticosteroid use
or monoclonal antibodies within 1 month (n=25)
\(6) Core variables missingness exceeding 20% (n=45) )
( 133 patients included in the study j
y
AFSA patients non-AFSA patients
(n=41) (n=92)
A
Down-sampling to handle class imbalance
(n=51)
y
( 92 patients included in the study j
( Random grouping (7:3) j
Y
Training cohort Validation cohort
(n=68) (n=24)
FIGURE 1

Flowchart of participant screening and enrollment.

characteristics (gender and age) and hematological parameters
including total IgE (TIgE), monocyte percentage (MONO%),
monocyte absolute count (MONO#), lymphocyte percentage
(LY%), and lymphocyte absolute count (LY#), basophil percentage
(BASO%), and basophil absolute count (BASO#), eosinophil
percentage (EOS%) and eosinophil absolute count (EOS#),
neutrophil percentage (NEUT%) and neutrophil absolute count
(NEUT#) from the 7-day period before and after the A. f-sIgE
test. For repeated measurements, the highest recorded values
were used for analysis. Following the exclusion of variables
with >20% missing data, the multiple imputation method was
employed to address remaining missing information. Specifically,
for variables with a missing rate <20% (e.g., TIgE: 6.2% missing
rate; MONO#: 7.1% missing rate), missing values were imputed
using the “Multiple Imputation by Chained Equations (MICE)”
method —implemented via the “mice” package in R?—which
generated 5 complete datasets based on standard MICE parameter

2 https://CRAN.R-project.org/package=mice
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settings. Serum samples were analyzed for TIgE and A. f-sIgE using
the ImmunoCAP 1000 system (Thermo Fisher Scientific Inc.).

Prediction model development

To mitigate potential biases associated with training on an
imbalanced dataset (23), we used downsampling techniques to
address class imbalance. Considering the positivity rate of A.f-
sensitization, we utilized stratified sampling to allocate participants
into training and validation cohorts (ratio 7:3). Subsequently,
we applied LASSO regression to the training cohort to identify
candidate predictors, which effectively mitigates multicollinearity
by performing automated feature selection through coefficient
shrinkage that reduces redundant variables to zero. Our analysis
followed a two-stage approach: (1) LASSO-selected predictors were
evaluated using multivariable logistic regression (Model 1), and
(2) only significant predictors (P < 0.05) from Model 1 were
retained in a refined multivariable model (Model 2). Finally,
the optimal prediction model was determined via analysis of
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variance (ANOVA) and externally validated in the independent
validation cohort.

Performance of the prediction model

The prediction model’s performance was evaluated using the
area under the receiver operating characteristic (ROC) curve
(AUC), which was calculated with 95% confidence intervals
(CI) via DeLong’s method. This metric quantifies the model’s
discriminative ability to differentiate between AFSA and controls.
Bootstrap-corrected calibration curves (500 resamples) were
generated, and the Hosmer-Lemeshow goodness-of-fit test was
applied to assess the agreement between predicted and observed
probabilities. Additionally, decision curve analysis (DCA) was
performed across threshold probabilities ranging from 0 to
100%, comparing the net benefit of the prediction model against
"treat-all" and "treat-none" strategies to guide clinical decision-
making.

Statistical analysis

Continuous variables with a normal distribution were
expressed as mean (standard deviation [SD]), while non-
normally distributed (skewed) data were reported as median
(interquartile range [IQR]). For intergroup comparisons, normally
distributed variables were analyzed using the Student’s t-test,
and non-normally distributed variables were assessed with the
Mann-Whitney U test. Categorical variables were compared
using the x 2 test or Fisher’s exact test when expected frequencies
were <5. All statistical analyses were performed in R version
4.4.1 (R Foundation for Statistical Computing)®, utilizing the
following packages: "glmnet" for LASSO regression, "pROC" for
ROC analysis, "caret" for model training, and "rms" for nomogram
development. A two-sided P-value < 0.05 was considered
statistically significant.

Results
Demographic and clinical characteristics

Table 1 clinical

characteristics of the study cohort, which included 92 eligible

summarizes the demographic and
asthma patients with a mean age of 56.5 (12.84) years (range:
18-87 years) and a sex distribution of 39.1% male and 60.9%
female. Using stratified sampling based on sensitization status,
participants were randomly allocated to either the training cohort
(n = 68) or the validation cohort (n = 24). Among the total cohort,
44.6% (41/92) met the diagnostic criteria for AFSA, with baseline
characteristics demonstrating homogeneity across the training and
validation cohorts (Table 2).

3 https://www.r-project.org/
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TABLE 1 Baseline characteristics between the AFSA and
non-AFSA groups.

Characteristic Non-AFSA
N =511

Age 58 (15) 55 (11) 03
Sex 0.003

female 18 (44%) 38 (75%)

male 23 (56%) 13 (25%)
TIgE (0-60 kU/L) 1,673 (505, 3,908) 77 (25,197) <0.001
MONO% (3%-10%) 9.40 (7.30,11.10) | 9.30 (7.75, 11.05) 0.8
MONO# (0.1-0.6 x 10°/L) | 0.82(0.61,1.02) | 0.72 (0.56, 1.05) >0.9
LY% (20%-50%) 30 (23, 42) 31(28,41) 02
LY# (1.1-3.2 x 10°/L) 2.12(1.53,3.38) | 2.32(1.84,2.89) 0.6
BASO% (0%-1%) 0.90 (0.60, 1.50) |  0.80 (0.50, 1.10) 02
BASO# (0-0.06 x 10°/L) | 0.07(0.05,0.09) | 0.06 (0.04,0.08) 03
EOS% (0.4%-8.0%) 8 (4, 16) 7(3,12) 02
EOS# (0.02-0.52 x 10°/L) | 0.55(0.27,0.86) | 0.46 (0.24, 1.00) 0.7
NEUT% (40%-75%) 74 (59, 86) 78 (67, 88) 04
NEUT# (1.8-6.3 x 10°/L) | 8.2(3.7,11.4) 7.5 (5.4, 11.5) 0.7

Mean (SD); n (%); Median (IQR). 2Welch Two Sample t-test; Pearson’s Chi-squared
test; Wilcoxon rank sum test. TIgE, total IgE; MONO%, monocyte percentage; MONO#,
monocyte absolute count; LY%, lymphocyte percentage; LY#, lymphocyte absolute
count; BASO%, basophil percentage; BASO#, basophil absolute count; EOS%, eosinophil
percentage; EOS#, eosinophil absolute count; NEUT%, neutrophil percentage; NEUT#,
neutrophil absolute count. Bold text indicates statistical significance (p < 0.05).

Development of the prediction model

We first performed preliminary screening using LASSO
regression to identify potential predictors (Figures 2A, B),
which yielded five candidate variables: Gender, MONO#,
MONO%, LY%, and TIGE. These predictors were subsequently
included in a multivariable logistic regression analysis (Model
1). Using the independent predictors identified in Model
1—male gender (OR = 15.688, 95% CI, 1.719-447.188) and
TIgE (OR = 1.008, 95% CI, 1.004-1.016)—we constructed
another multivariable logistic regression model (Model 2) and
compared both models using ANOVA. The superior model
(Model 2) was selected as the final prediction model and used
to develop a nomogram, which incorporated two significant
predictors: male gender (OR = 10.688, 95% CI, 1.661-152.999),
and TIgE (OR = 1.006, 95% CI, 1.003-1.011) for predicting AFSA.
The detailed multivariate analyses for the training cohort are
presented in Table 3.

Validation of the prediction model

Discrimination

The model demonstrated robust discriminative performance,
with AUC values of 0.96 (95% CI, 0.92-0.99) in the training
cohort and 0.88 (95% CI, 0.74-1.00) in the validation cohort.
Optimal cutoft probabilities were identified as 0.29 (95% CI,
0.16-0.69) and 0.78 (95% CI, 0.03-0.80) for the training
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TABLE 2 Baseline characteristics of participants in training and validation cohorts.

Characteristic Overall Training cohort Validation cohort
N =921 N = 68! N =241

Age 57 (13) 57 (14) 56 (10) 0.8
Sex 0.8

female 56 (61%) 41 (60%) 15 (63%)

male 36 (39%) 27 (40%) 9 (38%)
TigE (0-60 kU/L) 241 (58, 1,137) 213 (39, 953) 407 (121, 1,445) 0.2
MONO% (3%-10%) 9.35 (7.45, 11.10) 9.40 (7.45, 11.10) 9.20 (7.58, 11.13) 0.8
MONO# (0.1-0.6 x 10°/L) 0.80 (0.57, 1.02) 0.80 (0.61, 1.01) 0.76 (0.51, 1.08) 0.6
LY% (20%-50%) 30 (24, 41) 31(24,42) 30 (24, 34) 0.5
LY# (1.1-3.2 x 10°/L) 2.26 (1.81,3.04) 239 (1.77,3.27) 221 (1.84,2.64) 0.5
BASO% (0%-1%) 0.80 (0.50, 1.20) 0.80 (0.50, 1.20) 0.85 (0.50, 1.20) 0.6
BASO# (0-0.06 x 10°/L) 0.07 (0.05, 0.08) 0.07 (0.05, 0.08) 0.06 (0.05, 0.09) 0.9
EOS$% (0.4%-8.0%) 8 (4,15) 7(3,15) 8 (4,14) 0.9
EOS# (0.02%-0.52 x 10°/L) 0.54 (0.24, 1.00) 0.54 (0.24, 1.01) 051 (0.19, 0.78) 0.5
NEUT% (40%-75%) 76 (64, 87) 79 (66, 86) 73 (60, 87) 0.6
NEUT# (1.8-6.3 x 10°/L) 7.8 (4.9,11.5) 82(53,11.4) 7.5(4.2,11.8) 0.6

IMean (SD); n (%); Median (IQR). 2Welch Two Sample t-test; Pearson’s Chi-squared test; Wilcoxon rank sum test. TIgE, total IgE; MONO%, monocyte percentage; MONO#, monocyte
absolute count; LY %, lymphocyte percentage; LY#, lymphocyte absolute count; BASO%, basophil percentage; BASO#, basophil absolute count; EOS%, eosinophil percentage; EOS#, eosinophil
absolute count; NEUT%, neutrophil percentage; NEUT#, neutrophil absolute count.
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FIGURE 2
Feature selection using least absolute shrinkage and selection operator (LASSO) regression. (A) The optimal parameter (1) selection in the LASSO
model employed tenfold cross-validation using 1-standard error rule. The optimal values of \ are represented by dotted vertical lines. Among these
values, 1 = 0.026, corresponding to a logarithm of % equal to —3.67, was selected as the optimal choice. (B) LASSO coefficient profiles of 13 clinical
features. The optimal lambda value led to the identification of 5 features with non-zero coefficients.

and validation cohorts, respectively. DeLong’s test confirmed — Calibration of the prediction model
no significant difference in ROC curve performance between

cohorts (P = 0.326). Sensitivity reached 0.93 (95% CI, 0.76— The calibration plots showed excellent agreement between the
1.00) in the training cohort and 0.75 (95% CI, 0.50-1.00) in  predicted and observed probabilities of A. f-sensitization in both
validation cohort, while specificity was 0.92 (95% CI, 0.72-  the training (Hosmer-Lemeshow %2 = 1.3, df = 3, P = 0.73) and
1.00) and 1.00 (95% CI, 0.58-1.00), respectively (Figure 3 and  validation (Hosmer-Lemeshow x? = 2.78, df = 3, P = 0.427) cohorts,
Table 4). demonstrating robust model fit (Figure 4).
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TABLE 3 The prediction model with multivariate logistic regression.

Model 1 Model 2
Characteristic |OR|95% CI* 95% CIt
TIgE 1.01 1.00, 1.02 0.007 1.01 1.00,1.01 | <0.001
Sex (male) 15.7 1.72, 447 0.038 10.7 1.66, 153 0.030
LY% 0.90 0.80, 1.01 0.058
MONO# 0.06 0.00, 2.05 0.2
MONO% 1.20 0.89, 1.72 0.3

LOR = Odds Ratio, CI = Confidence Interval. LY%, lymphocyte percentage; MONO%,
monocyte percentage; MONO#, monocyte absolute count. Bold text indicates statistical
significance (p < 0.05).

Clinical use

Decision curve analysis (DCA) confirmed the superior clinical
utility of the model for predicting A. f sensitization, with
significantly higher net benefit rates across threshold probabilities
of 2%—99% in the training cohort and 12%—99% in the
validation cohort compared to both "treat-all" and "treat-none"
strategies (Figure 5). In the validation cohort, sex-specific TIgE
thresholds (527.5 TU/mL for males and 906.1 IU/mL for females)

10.3389/fmed.2025.1640399

demonstrated a sensitivity of 0.75 (95% CI, 0.50-1.00), specificity of
1.00 (95% CI, 0.58-1.00), and overall diagnostic accuracy of 79.2%
for AFSA. The corresponding nomogram is presented in Figure 6.

Discussion

We developed a novel diagnostic model based on conventional
clinical biomarkers to accurately identify AFSA, thereby
overcoming the limited availability of A. f-sIgE test in primary
care settings. The model demonstrated high diagnostic accuracy
and clinical practicality in differentiating AFSA from non-AFSA,
thereby providing clinicians with an efficient and accessible tool to
optimize therapeutic management and improve patient outcomes.

Our study exclusively included common laboratory parameters,
a decision driven by its core objective: developing a clinically
accessible predictive tool translatable to primary care and resource-
limited settings. However, relying solely on laboratory indicators
may omit more critical variables, whereas incorporating clinical
and imaging variables could provide additional informative
insights. For instance, demographic variables such as sex and region
are associated with population genetic susceptibility, while factors
like age and comorbidities directly relate to individual immune
function—all key contributors to Aspergillus fumigatus-sensitized
asthma (24-26). A predictive model for childhood allergic asthma

A B
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FIGURE 3
Receiver operating characteristic (ROC) curve analysis of the prediction model. (A) Training cohort demonstrated an area under the curve (AUC) of
0.96 (95% Cl, 0.92-0.99). (B) Validation cohort showed an AUC of 0.88 (95% CI, 0.74-1.00). No significant difference was observed between the
training and validation cohorts by DelLong's test (P = 0.326), indicating preserved discriminative performance.

TABLE 4 Performance of the model in training and validation cohorts.

Dataset

Training cohort 0.29 (0.16,0.69) 0.96 (0.92,1.00) 0.93 (0.76,1.00)

0.92 (0.72,1.00) 0.88 (0.72,1.00) 0.94 (0.84,1.00) 0.882

Validation cohort 0.78 (0.03,0.80) 0.88 (0.74,1.00) 0.75 (0.50,1.00)

1.00 (0.58,1.00) 1.00 (0.71,1.00) 0.80 (0.67,1.00) 0.792

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the ROC curve.
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Decision curve analysis (DCA) evaluating the clinical utility of the prediction model. (A) Training cohort demonstrated superior net benefit across
threshold probabilities 0.01-0.99 compared to extreme scenarios: all-negative strategy (black line) and all-positive strategy (gray line). (B) Validation
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integrating symptoms, age, and various IgE levels for airborne
allergens achieved an AUC of 0.838 in the validation set (27). In
contrast, another study showed that adding occupational exposure
data improved risk stratification accuracy for A. flavus-sensitized
conditions versus lab-only (IgE-based) models, as it identified
"environmentally at-risk" individuals (e.g., workers in high-fungal-
load settings) (28). Similarly, a model combining A. f-sIgE with
HRCT-detected bronchiectasis had 22% higher specificity and 18%

higher positive predictive value for ABPA severity stratification

Frontiers in Medicine

than lab-only models, directly guiding targeted interventions
earlier models could not inform (29).

Nevertheless, non-laboratory variables pose challenges noted
in prior studies. First, clinical variables (e.g., smoking history)
have inconsistent documentation across centers, impairing model
reproducibility. Second, HRCT has poor accessibility in primary
care settings and highly subjective interpretation. These issues
collectively limit the practical utility of non-laboratory indicators.

TIgE serves as a non-specific immunological marker with broad
diagnostic applications, including helminth infections, HIV, and
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tuberculosis (30). In A.f-related pathologies, TIgE demonstrates
particular clinical significance for diagnosing and monitoring
ABPA (31), where consensus guidelines recommend >500 IU/mL
as the diagnostic threshold and a >50% increase from baseline as
an indicator of exacerbation—highlighting its dual role as both a
diagnostic criterion and monitoring tool (14). Our findings further
establish TIgE as a strong independent predictor of AFSA patients,
consistent with its well-documented role in fungal-associated
airway disease stratification (median levels: 375 [IQR: 521] IU/mL
in non-AFSA, 1569 [IQR: 3000] IU/mL in AFSA, and 3068 [IQR:
4575] TU/mL in ABPA) (32). Although our study did not categorize
ABPA separately due to sample limitation, the results underscore
TIgE’s critical role in disease classification. Mechanistically, TIgE
elevation likely represents sustained T helper 2 (Th2) immune
activation, wherein A.f proteases induce epithelial alarmins to
stimulate IL-4/IL-13 production, thereby promoting B-cell class
switching to IgE synthesis. This hyperproduction perpetuates a
self-amplifying cycle via FceRI-bound IgE on mast cells and
basophils, enabling rapid reactivation upon fungal re-exposure
and exacerbating type 2 inflammation through histamine and
leukotriene release (13). Clinically, TIgE’s widespread availability
and high sensitivity render it valuable for initial A. f-sensitization
screening, though its limited specificity—due to cross-reactivity
with other allergens (e.g., pollens, helminths) and conditions like
hyper-IgE syndrome—requires contextual interpretation (33).

In contrast to TIgE, which shows strong correlations with
AFSA, our data revealed that peripheral blood eosinophils,
neutrophils, basophils, lymphocytes, and monocytes displayed
no significant differences between AFSA and non-AFSA groups,
suggesting their minimal value in differentiating these clinical
conditions. While AFSA is clearly a type 2 inflammatory
disorder driven by eosinophilic responses (34), peripheral blood
eosinophils possess poor sensitivity and specificity for detecting
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A. f-sensitization except in ABPA cases (35). Additionally, no
meaningful correlation was found between eosinophil levels and
either lung function parameters or other immunological markers
(36). Rather than diagnostic utility, peripheral blood eosinophilia
holds clinical relevance primarily for therapeutic decision-making,
particularly regarding the use of anti-type 2 biological agents or
combination therapy with prednisolone and itraconazole (37).

Monocytes, as innate immune cells that circulate in the
bloodstream before migrating into tissues to differentiate into
macrophages or dendritic cells, play crucial roles in host defense,
inflammation, and immune regulation (38). Monocyte-derived
macrophages may serve as key initial players in muco-obstructive
lung diseases, particularly A. f-sensitized bronchiectasis and
ABPA, where they act as primary detectors and defenders against
Aspergillus (39). These cells detect fungal pathogens via pattern
recognition receptors and initiate inflammatory responses through
cytokine secretion, including tumor necrosis factor-alpha (TNF-
o) and interleukin-1 beta (IL-1B), which subsequently recruit
neutrophils and eosinophils in conditions like bronchiectasis
and ABPA (40). In allergic asthma, bronchoalveolar lavage fluid
monocyte counts increase following allergen exposure, with these
cells interacting with T helper 2 (Th2) cytokines to potentially
worsen mucus hypersecretion (41). Supporting this mechanism,
a previous study reported significantly higher blood monocyte
counts in AFSA patients with bronchiectasis (Mean: 439 [SD:
226] cells/pLL) compared to non-sensitized controls (Mean: 329
[SD: 137] cells/pL) (32). While our LASSO regression analysis
identified monocyte count and proportion as significant variables,
these parameters failed to achieve statistical significance in logistic
regression analysis, thereby excluding them from the prediction
model. This discrepancy may reflect variations in disease severity
among study populations.
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Neutrophils exhibit a dual role in host defense against fungi
and allergic airway inflammation, functioning as key effector cells
that rapidly respond to infected lungs by suppressing A.f conidial
germination through both phagocytosis and extracellular trap
formation (42, 43), while simultaneously driving neutrophilic
airway inflammation during acute asthma exacerbations.
Experimental evidence shows that sensitized mice exposed to
fungal conidia develop bronchial hyperreactivity accompanied by
significant neutrophilic infiltration, underscoring the pivotal role
of neutrophils at the nexus of antifungal immunity and allergic
inflammation (42).

Basophils serve as pivotal effectors in allergic immune
responses to A.f, bridging innate and adaptive immunity via
their high-affinity IgE receptor (FceRI) activation (44). Clinical
studies reveal that basophils from A.f-sensitized patients display
a hyper-responsive phenotype, demonstrating enhanced activation
and degranulation upon allergen challenge relative to non-
sensitized individuals (45). This functional priming is quantified
by upregulated activation markers (e.g., CD203¢c, CD63), which
are detectable via the basophil activation test (BAT) to accurately
differentiate fungal colonization from true sensitization (46).
Notably, the BAT has proven robust for ABPA diagnosis, exhibiting
strong concordance with serologic markers (e.g., A. f-sIgE) and
validated diagnostic criteria (45).

Lymphocytes play pivotal roles in type 2 inflammatory diseases,
particularly allergic asthma and fungal-induced airway disorders.
Type 2 innate lymphoid cells (ILC2s) drive eosinophilic asthma
pathogenesis through IL-13 production, which compromises
bronchial epithelial barrier integrity and induces airway
hyperreactivity (47). In fungal infection contexts, adaptive
Th2 lymphocytes orchestrate fibroblast recruitment and mediate
tissue remodeling during allergic responses. Experimental models
reveal time-dependent lymphocyte recruitment post-allergen
challenge, peaking at day 7 alongside eosinophil surge (41).
These observations underscore lymphocytes’ dual functionality—
initiating early type 2 inflammation via ILC2s while propagating
chronic Th2-driven fibrotic changes.

The observed absence of significant differences in peripheral
blood leukocyte populations between AFSA and non-AFSA
patients likely results from compartmentalized inflammation
primarily localized to airways rather than systemic circulation,
dynamic cellular recruitment patterns that standard clinical
sampling cannot fully capture, or the dominant role of IgE-
mediated pathways over cellular responses in AFSA pathogenesis
(48, 49). Future research should investigate longitudinal cellular
trafficking patterns, assess activation states using advanced
techniques like flow cytometry for surface markers, perform
compartment-specific analyses (e.g., bronchoalveolar lavage versus
blood), and develop integrated biomarker panels incorporating
cellular data with proteomic/transcriptomic profiles (50).
Additionally, therapeutic targeting of specific cell subsets in
well-characterized A.f-sensitized patients warrants exploration,
given peripheral blood leukocyte counts demonstrate limited
diagnostic value for AFSA in routine clinical practice.

Our study demonstrated a significantly higher proportion of
males in the AFSA group compared with the non-AFSA group
(56% vs. 25%, respectively), with multivariable logistic regression
analysis confirming male sex as a independent predictive factor for
A. f-sensitization (OR: 10.7). These findings are consistent with
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previous reports showing a male predominance in both AFSA and
ABPA (73.8 and 71.4%, respectively) compared to non-sensitized
asthmatics (54.8%, P = 0.012) (20, 51). In a recent retrospective
analysis involving 2732 adult patients with asthma, sex male and
black race were identified as high-risk factors for sensitization
to various molds (52). This observed male predominance likely
reflects the complex interaction of biological, environmental, and
occupational factors.

Biologically, males inherently exhibit a subdued immune
response compared to females, partly attributed to the lack of
a second X chromosome—this genetic difference reduces the
expression of immune-related genes, leading to weaker T cell
activation and lower production of pro-inflammatory cytokines
(e.g., IL-4, IL-13) that are critical for constraining fungal allergen-
induced inflammation (53). Compounding this, testosterone, the
primary male sex hormone, exerts distinct immunosuppressive
effects: it attenuates B cell function and weakens the clearance
of fungal spores, allowing persistent allergen exposure to
trigger sensitization cascades (53). Environmentally, males are
overrepresented in occupations (e.g., agriculture, construction)
characterized by high A. f spore concentrations, resulting in
more frequent and intense allergen contact than females (54-
56). Unlike females who benefit from estrogen-mediated immune
enhancement (supporting early fungal clearance), males lack
such hormonal protection, making their immune systems less
capable of counteracting repeated fungal exposure. Collectively,
these factors—blunted baseline immunity, testosterone-driven
suppression, and heightened environmental exposure—explain
males’ greater risk of A. f sensitization, highlighting gender-specific
mechanisms in fungal allergy pathophysiology.

Moreover, while sex appears to affect susceptibility, it does
not appear to influence immunological markers of sensitization
(e.g., total IgE levels, eosinophil counts, and Aspergillus-specific
IgE/IgG) (57), highlighting the need for further research to better
understand sex-specific risk factors while accounting for potential
confounding variables such as healthcare access or regional
allergen prevalence, and residual confounding needs to be further
controlled through multivariable adjustment.

Notably, the CI for the OR of male sex is wide, which may
be attributed to the small sample size of the study; therefore, the
effect size of male sex on AFSA susceptibility should be interpreted
with caution. It is anticipated that the CI of this OR will narrow
significantly with an expanded sample size in future multicenter
studies, which will enable more robust and reliable estimation of
the effect size, thereby validating the association between male
sex and AFSA risk.

In clinical practice, the prediction model and A. f-sIgE—
the established gold-standard diagnostic test for AFSA—exhibit
a complementary relationship rather than a substitutive one.
Specifically, the model can be integrated into clinical practice across
two key healthcare settings, with applications aligned to real-world
resource constraints and diagnostic needs. In primary hospital
settings—where access to A. f-sIgE testing remains frequently
limited—it can be incorporated into routine assessment workflows
for asthmatic patients. Male patients with TIgE levels exceeding
527.5 TU/mL and female patients with TIgE > 906.1 IU/mL
should be classified as high-risk for AFSA. For these high-risk
individuals, clinical recommendations include referral to tertiary
hospitals for confirmatory A. f-sIgE testing; alternatively, empirical
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antifungal therapy may be considered in cases where standard
asthma treatment fails to achieve adequate disease control. In
tertiary hospital settings, the model functions as a pre-screening
tool prior to A. f-sIgE testing, a role that helps reduce unnecessary
diagnostic procedures, minimize healthcare expenditures, and
streamline the diagnostic pathway for AFSA. Notably, the model
functions as a screening tool rather than a diagnostic tool. For
patients with elevated TIgE levels, clinicians should rule out other
potential causes (e.g., recent parasitic infections, a history of
pollen allergy) based on the patient’s detailed medical history. By
enabling early identification of high-risk AFSA patients, the model
facilitates timely initiation of targeted therapies, thereby reducing
the frequency of acute asthma exacerbations and optimizing long-
term patient outcomes.

Limitations

This study has several limitations that require careful
consideration. First, the model’s predictive accuracy may be
compromised due to its inability to account for other sensitizing
fungi or contributing factors, which could lead to a reduced positive
predictive value and an increased risk of false-positive results.
Second, the relatively small sample size and lack of multicenter
validation limit the robustness and generalizability of the prediction
model. Third, the absence of imaging features, such as high-
resolution computed tomography (HRCT) findings, represents
a notable gap, as these could enhance diagnostic accuracy by
identifying structural abnormalities (e.g., bronchiectasis or mucus
plugs) often associated with fungal sensitization (58). Additionally,
the analytical approach focused exclusively on linear relationships,
potentially missing non-linear interactions that could refine risk
factor understanding and improve prediction. Notably, the non-
specificity of TIgE may result in false-positive outcomes of the
model; future studies could incorporate Aspergillus fumigatus-
specific IgG (A. f-sIgG) or other parameters to improve the model’s
specificity. Despite these constraints, the model remains clinically
practical and sufficiently effective for its primary objective.

Conclusion

In summary, our study fills a crucial clinical gap by developing a
practical prediction model for AFSA using routine laboratory tests,
thereby overcoming diagnostic limitations in resource-constrained
settings where specialized fungal testing remains unavailable. While
previous research has established the clinical significance of fungal
sensitization in asthma severity and exacerbations, our model
provides a translatable tool for primary care, enabling clinicians
to assess A. f-sensitization risk during routine asthma evaluations
without requiring additional infrastructure. This work paves the
way for early identification of high-risk patients and targeted
interventions in AFSA management. The clinical application of
this model must be preceded by multicenter external validation;
future studies should focus on multicenter validation across diverse
populations and healthcare settings with a larger sample size and
incorporate additional clinical and imaging indicators to further
improve diagnostic accuracy.

Frontiers in Medicine

10.3389/fmed.2025.1640399

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Ethics
Committee of Qinhuangdao First Hospital. The studies were
conducted in accordance with the local legislation and institutional
requirements. The participants provided their written informed
consent to participate in this study. The manuscript presents
research on animals that do not require ethical approval for
their study. Written informed consent was obtained from the
individual(s) for the publication of any potentially identifiable
images or data included in this article.

Author contributions

FL: Writing - original draft. QT: Writing - review & editing.
SY: Writing - review & editing. CN: Writing - original draft. SX:
Writing - original draft, Writing - review & editing.

Funding

The author (s) declare that no financial support was received
for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The authors declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1640399
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Liu et al.

References

1. Global Initiative for Asthma. Global Strategy for Asthma Management and
Prevention. Geneva: World Health Organization (2024).

2. Huang K, Yang T, Xu ], Yang P, Zhao P, Zhang X, et al. Prevalence, risk factors,
and management of asthma in China: a national cross-sectional study. Lancet. (2019)
394:407-18. doi: 10.1016/S0140-6736(19)31147-X

3. Arbes S Jr., Gergen P, Vaughn B, Zeldin D. Asthma cases attributable to atopy:
results from the third national health and nutrition examination survey. J Allergy Clin
Immunol. (2007) 120:1139-45. doi: 10.1016/j.jaci.2007.07.056

4. Chen H, Zhang X, Zhu L, An N, Jiang Q, Yang Y, et al. Clinical and
immunological characteristics of Aspergillus fumigatus-sensitized asthma and allergic
bronchopulmonary aspergillosis. Front Immunol. (2022) 13:939127. doi: 10.3389/
fimmu.2022.939127

5. Agarwal R, Noel V, Aggarwal A, Gupta D, Chakrabarti A. Clinical significance of
Aspergillus sensitisation in bronchial asthma. Mycoses. (2011) 54:¢531-8. doi: 10.1111/
j.1439-0507.2010.01971.x

6. Targonski P, Persky V, Ramekrishnan V. Effect of environmental molds on risk of
death from asthma during the pollen season. J Allergy Clin Immunol. (1995) 95:955-61.
doi: 10.1016/s0091-6749(95)70095- 1

7. Gan P, Linke K, Liao W, Wong W. Formoterol, the most effective bronchodilator,
has no anti-inflammatory nor metabolic modulatory effects in severe asthma induced
by Aspergillus fumigatus. ACS Pharmacol Transl Sci. (2025) 8:1556-66. doi: 10.1021/
acsptsci.4c00672

8. Black P, Udy A, Brodie S. Sensitivity to fungal allergens is a risk factor for
life-threatening asthma. Allergy. (2000) 55:501-4. doi: 10.1034/j.1398-9995.2000.00
293.x

9. Sehgal I, Choudhary H, Dhooria S, Aggarwal A, Bansal S, Garg M,
et al. Prevalence of sensitization to Aspergillus flavus in patients with allergic
bronchopulmonary aspergillosis. Med Mycol. (2019) 57:270-6. doi: 10.1093/mmy/
myy012

10. Deepak D, Singh Rajput M, Sharma B, Chowdhary A. Allergic
bronchopulmonary mycosis due to fungi other than Aspergillus. Eur Ann Allergy
Clin Immunol. (2019) 51:75-9. doi: 10.3109/1040841X.2012.754401

11. Agarwal R, Khan A. ABPA or AFAA: that is the question. Am J Respir Crit Care
Med. (2011) 183:1281; authorrely 1281-2. doi: 10.1164/ajrccm.183.9.1281

12. Agarwal R, Muthu V, Sehgal I, Dhooria S, Prasad K, Soundappan K, et al.
Prevalence of Aspergillus sensitization and allergic bronchopulmonary aspergillosis in
adults with bronchial asthma: a systematic review of global data. ] Allergy Clin Immunol
Pract. (2023) 11:1734-51.e3. doi: 10.1016/j.jaip.2023.04.009

13. Agarwal R, Muthu V, Sehgal 1. Relationship between Aspergillus
and asthma. Allergol Int. (2023) 72:507-20. doi: 10.1016/j.alit.2023.
08.004

14. Agarwal R, Sehgal I, Muthu V, Denning D, Chakrabarti A, Soundappan K,
et al. Revised ISHAM-ABPA working group clinical practice guidelines for diagnosing,
classifying and treating allergic bronchopulmonary aspergillosis/mycoses. Eur Respir J.
(2024) 63:2400061. doi: 10.1183/13993003.00061-2024

15. Sehgal I, Agarwal R. Specific IgE is better than skin testing for detecting
Aspergillus sensitization and allergic bronchopulmonary aspergillosis in asthma. Chest.
(2015) 147:194. doi: 10.1378/chest.15-0069

16. Agarwal R, Maskey D, Aggarwal A, Saikia B, Garg M, Gupta D, et al. Diagnostic
performance of various tests and criteria employed in allergic bronchopulmonary
aspergillosis: a latent class analysis. PLoS One. (2013) 8:¢61105. doi: 10.1371/journal.
pone.0061105

17. Saxena P, Choudhary H, Muthu V; Sehgal I, Dhooria S, Prasad K, et al. Which
are the optimal criteria for the diagnosis of allergic bronchopulmonary aspergillosis? A
latent class analysis. ] Allergy Clin Immunol Pract. (2021) 9:328-335.el. doi: 10.1016/j.
jaip.2020.08.043

18. Collins G, Moons K, Dhiman P, Riley R, Beam A, Van Calster B, et al.
TRIPOD+AI statement: updated guidance for reporting clinical prediction models that
use regression or machine learning methods. BMJ. (2024) 385:¢078378. doi: 10.1136/
bmj-2023-078378

19. Aguiar S, Damaceno N, Forte W. TESTS TO ASSESS SENSITIZATION TO
ASPERGILLUS FUMIGATUS IN CYSTIC FIBROSIS. Rev Paul Pediatr. (2017) 35:252-
7. doi: 10.1590/1984-0462/;2017;35;3;00003

20. Celik E, Kocacik Uygun D, Kaya M, Gungoren M, Keven A, Bingol A.
Aspergillus-sensitized asthma in children. Pediatr Allergy Immunol. (2024) 35:¢14212.
doi: 10.1111/pai.14212

21. Lukaszewicz R, Mahay G, Boyer O, Martinet J. Medical rithm: Aspergillus
fumigatus components in the diagnosis of allergic bronchopulmonary aspergillosis.
Allergy. (2022) 77:327-30. doi: 10.1111/all.15001

22. Muthu V, Sehgal I, Dhooria S, Aggarwal A, Agarwal R. Utility of recombinant
Aspergillus fumigatus antigens in the diagnosis of allergic bronchopulmonary
aspergillosis: a systematic review and diagnostic test accuracy meta-analysis. Clin Exp
Allergy. (2018) 48:1107-36. doi: 10.1111/cea.13216

Frontiers in Medicine

11

10.3389/fmed.2025.1640399

23. Budiarto A, Sheikh A, Wilson A, Price D, Shah S. Handling class imbalance
in machine learning-based prediction models: a case study in asthma management.
Annu Int Conf IEEE Eng Med Biol Soc. (2023) 2023:1-5. doi: 10.1109/EMBC40787.
2023.10340751

24. Rai G, Das S, Ansari M, Singh P, Dar S, Gupta N, et al. Implications of CD45RA
and CD45RO T cell subsets in patients of chronic rhinosinusitis with nasal polyposis
infected with Aspergillus flavus. Scand ] Immunol. (2023) 98:¢13318. doi: 10.1111/sji.
13318

25. Rudhra O, Gnanam H, Sivaperumal S, Namperumalsamy V, Prajna L,
Kuppamuthu D. Melanin depletion affects Aspergillus flavus conidial surface proteins,
architecture, and virulence. Appl Microbiol Biotechnol. (2024) 108:291. doi: 10.1007/
500253-024-13107-4

26. Ramirez-Camejo L, Bayman P. Gene expression on the fly: a transcriptome-level
view of Drosophila’s immune response to the opportunistic fungal pathogen Aspergillus
flavus. Infect Genet Evol. (2020) 82:104308. doi: 10.1016/j.meegid.2020.104308

27. Yue C, Xiang L, Hou X, Huang H. [Construction of a diagnostic prediction
model for childhood allergic asthma based on the detection results of specific IgE
for airborne allergens]. Zhonghua Yu Fang Yi Xue Za Zhi. (2025) 59:658-66. doi:
10.3760/cma.j.cn112150-20250210-00098

28. HurraB ], Heinzow B, Walser-Reichenbach S, Aurbach U, Becker S, Bellmann R,
et al. [Medical clinical diagnostics for indoor mould exposure - update 2023 (AWMF
register No. 161/001)]. Pneumologie. (2024) 78:693-784. doi: 10.1055/a-2194-6914

29. Agarwal R, Muthu V, Sehgal I, Dhooria S, Prasad K, Aggarwal A. Allergic
bronchopulmonary aspergillosis. Clin Chest Med. (2022) 43:99-125. doi: 10.1016/j.
ccm.2021.12.002

30. Denning D, Pfavayi L. Poorly controlled asthma — easy wins and future prospects
for addressing fungal allergy. Allergol Int. (2023) 72:493-506. doi: 10.1016/j.alit.2023.
07.003

31. Agarwal R, Aggarwal A, Sehgal I, Dhooria S, Behera D, Chakrabarti A. Utility
of IgE (total and Aspergillus fumigatus specific) in monitoring for response and
exacerbations in allergic bronchopulmonary aspergillosis. Mycoses. (2016) 59:1-6. doi:
10.1111/myc.12423

32. Nomura N, Matsumoto H, Asano K, Hayashi Y, Yokoyama A, Nishimura Y, et al.
Refractory phenotype of Aspergillus-sensitized asthma with bronchiectasis and allergic
bronchopulmonary aspergillosis. | Allergy Clin Immunol Glob. (2025) 4:100364. doi:
10.1016/j jacig.2024.100364

33. Agarwal R, Sehgal I, Dhooria S, Prasad K, Aggarwal A. Allergic
bronchopulmonary aspergillosis. Indian ] Med Res. (2020) 151:529-49.
doi: 10.1016/j.ccm.2021.12.002

34. Wardlaw A, Rick E, Pur Ozyigit L, Scadding A, Gaillard E, Pashley C. New
perspectives in the diagnosis and management of allergic fungal airway disease. J
Asthma Allergy. (2021) 14:557-73. doi: 10.2147/JAA.S251709

35. Agarwal R, Chakrabarti A. Allergic bronchopulmonary aspergillosis in asthma:
epidemiological, clinical and therapeutic issues. Future Microbiol. (2013) 8:1463-74.
doi: 10.2217/fmb.13.116

36. Agarwal R, Khan A, Aggarwal A, Varma N, Garg M, Saikia B, et al.
Clinical relevance of peripheral blood eosinophil count in allergic bronchopulmonary
aspergillosis. J Infect Public Health. (2011) 4:235-43. doi: 10.1016/j.jiph.2011.08.006

37. Agarwal R, Muthu V, Sehgal I, Dhooria S, Prasad K, Garg M, et al. A randomised
trial of prednisolone versus prednisolone and itraconazole in acute-stage allergic
bronchopulmonary aspergillosis complicating asthma. Eur Respir J. (2022) 59:2101787.
doi: 10.1183/13993003.01787-2021

38.Roy R, Paes H, Nanjappa S, Sorkness R, Gasper D, Sterkel A, et al.
Complement component 3C3 and C3a receptor are required in chitin-dependent
allergic sensitization to Aspergillus fumigatus but dispensable in chitin-induced innate
allergic inflammation. mBio. (2013) 4:¢162-113. doi: 10.1128/mBi0.00162-13

39. Wang K, Espinosa V, Rivera A. Commander-in-chief: monocytes rally the troops

for defense against aspergillosis. Curr Opin Immunol. (2023) 84:102371. doi: 10.1016/
j.€01.2023.102371

40. Asakura T, Okuda K, Chen G, Dang H, Kato T, Mikami Y, et al. Proximal and
distal bronchioles contribute to the pathogenesis of non-cystic fibrosis bronchiectasis.
Am ] Respir Crit Care Med. (2024) 209:374-89. doi: 10.1164/rccm.202306-10930C

41. Samarasinghe A, Hoselton S, Schuh J. The absence of the VPAC(2) receptor does
not protect mice from Aspergillus induced allergic asthma. Peptides. (2010) 31:1068-75.
doi: 10.1016/j.peptides.2010.03.001

42. Moran G, Uberti B, Ortloff A, Folch H. Aspergillus fumigatus-sensitive IgE is
associated with bronchial hypersensitivity in a murine model of neutrophilic airway
inflammation. ] Mycol Med. (2018) 28:128-36. doi: 10.1016/j.mycmed.2017.11.005

43. Shevchenko M, Bolkhovitina E, Servuli E, Sapozhnikov A. Elimination of
Aspergillus  fumigatus conidia from the airways of mice with allergic airway
inflammation. Respir Res. (2013) 14:78. doi: 10.1186/1465-9921-14-78

44. Mirkovi¢ B, Lavelle G, Azim A, Helma K, Gargoum F, Molloy K, et al. The
basophil surface marker CD203c identifies Aspergillus species sensitization in patients

frontiersin.org


https://doi.org/10.3389/fmed.2025.1640399
https://doi.org/10.1016/S0140-6736(19)31147-X
https://doi.org/10.1016/j.jaci.2007.07.056
https://doi.org/10.3389/fimmu.2022.939127
https://doi.org/10.3389/fimmu.2022.939127
https://doi.org/10.1111/j.1439-0507.2010.01971.x
https://doi.org/10.1111/j.1439-0507.2010.01971.x
https://doi.org/10.1016/s0091-6749(95)70095-1
https://doi.org/10.1021/acsptsci.4c00672
https://doi.org/10.1021/acsptsci.4c00672
https://doi.org/10.1034/j.1398-9995.2000.00293.x
https://doi.org/10.1034/j.1398-9995.2000.00293.x
https://doi.org/10.1093/mmy/myy012
https://doi.org/10.1093/mmy/myy012
https://doi.org/10.3109/1040841X.2012.754401
https://doi.org/10.1164/ajrccm.183.9.1281
https://doi.org/10.1016/j.jaip.2023.04.009
https://doi.org/10.1016/j.alit.2023.08.004
https://doi.org/10.1016/j.alit.2023.08.004
https://doi.org/10.1183/13993003.00061-2024
https://doi.org/10.1378/chest.15-0069
https://doi.org/10.1371/journal.pone.0061105
https://doi.org/10.1371/journal.pone.0061105
https://doi.org/10.1016/j.jaip.2020.08.043
https://doi.org/10.1016/j.jaip.2020.08.043
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.1590/1984-0462/;2017;35;3;00003
https://doi.org/10.1111/pai.14212
https://doi.org/10.1111/all.15001
https://doi.org/10.1111/cea.13216
https://doi.org/10.1109/EMBC40787.2023.10340751
https://doi.org/10.1109/EMBC40787.2023.10340751
https://doi.org/10.1111/sji.13318
https://doi.org/10.1111/sji.13318
https://doi.org/10.1007/s00253-024-13107-4
https://doi.org/10.1007/s00253-024-13107-4
https://doi.org/10.1016/j.meegid.2020.104308
https://doi.org/10.3760/cma.j.cn112150-20250210-00098
https://doi.org/10.3760/cma.j.cn112150-20250210-00098
https://doi.org/10.1055/a-2194-6914
https://doi.org/10.1016/j.ccm.2021.12.002
https://doi.org/10.1016/j.ccm.2021.12.002
https://doi.org/10.1016/j.alit.2023.07.003
https://doi.org/10.1016/j.alit.2023.07.003
https://doi.org/10.1111/myc.12423
https://doi.org/10.1111/myc.12423
https://doi.org/10.1016/j.jacig.2024.100364
https://doi.org/10.1016/j.jacig.2024.100364
https://doi.org/10.1016/j.ccm.2021.12.002
https://doi.org/10.2147/JAA.S251709
https://doi.org/10.2217/fmb.13.116
https://doi.org/10.1016/j.jiph.2011.08.006
https://doi.org/10.1183/13993003.01787-2021
https://doi.org/10.1128/mBio.00162-13
https://doi.org/10.1016/j.coi.2023.102371
https://doi.org/10.1016/j.coi.2023.102371
https://doi.org/10.1164/rccm.202306-1093OC
https://doi.org/10.1016/j.peptides.2010.03.001
https://doi.org/10.1016/j.mycmed.2017.11.005
https://doi.org/10.1186/1465-9921-14-78
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

Liu et al.

with cystic fibrosis. J Allergy Clin Immunol. (2016) 137:436-43.9. doi: 10.1016/j.jaci.
2015.07.045

45. Tracy M, Okorie C, Foley E, Moss R. Allergic bronchopulmonary aspergillosis. /
Fungi. (2016) 2:17. doi: 10.1016/j.ccm.2021.12.002

46. Michel M, Sereme Y, Mankouri F, Gouitaa M, Gautier C, Mége J, et al. Basophil
activation test with Aspergillus molecules: the case for ABPA. Front Allergy. (2022)
3:898731. doi: 10.3389/falgy.2022.898731

47. AlBloushi S, Al-Ahmad M. Exploring the immunopathology of type 2
inflammatory airway diseases. Front Immunol. (2024) 15:1285598. doi: 10.3389/fimmu.
2024.1285598

48. Ghebre M, Desai D, Singapuri A, Woods J, Rapley L, Cohen S, et al
Sputum inflammatory mediators are increased in Aspergillus fumigatus culture-
positive asthmatics. Allergy Asthma Immunol Res. (2017) 9:177-81. doi: 10.4168/aair.
2017.9.2.177

49. Namvar S, Labram B, Rowley J, Herrick S. Aspergillus fumigatus-host interactions
mediating airway wall remodelling in asthma. J Fungi. (2022) 8:159. doi: 10.3390/
jof8020159

50. Labram B, Namvar S, Hussell T, Herrick S. Endothelin-1 mediates Aspergillus
fumigatus-induced airway inflammation and remodelling. Clin Exp Allergy. (2019)
49:861-73. doi: 10.1111/cea.13367

51. Kumari J, Jat K, Lodha R, Jana M, Xess I, Kabra S. Prevalence and risk factors of
allergic bronchopulmonary Aspergillosis and Aspergillus sensitization in children with
poorly controlled asthma. ] Trop Pediatr. (2020) 66:275-83. doi: 10.1093/tropej/fmz066

Frontiers in Medicine

12

10.3389/fmed.2025.1640399

52. Gleeson P, Morales K, Kerlin M, Fadugba O, Apter A, Christie ], et al. Racial
differences in odds of asthma exacerbations among Aspergillus fumigatus-sensitized
adults with asthma. Ann Allergy Asthma Immunol. (2025) 134:190-97.e10. doi: 10.
1016/j.anai.2024.08.959

53. Sciarra F, Campolo F, Franceschini E, Carlomagno F, Venneri M. Gender-specific
impact of sex hormones on the immune system. Int ] Mol Sci. (2023) 24:6302. doi:
10.3390/ijms24076302

54. Tiew P, Narayana ], Quek M, Ang Y, Ko E Poh M, et al. Sensitisation to
recombinant Aspergillus fumigatus allergens and clinical outcomes in COPD. Eur
Respir J. (2023) 61:2200507. doi: 10.1183/13993003.00507-2022

55. Khan S, Bilal H, Shafiq M, Zhang D, Awais M, Chen C, et al. Distribution
of Aspergillus species and risk factors for aspergillosis in mainland China: a
systematic review. Ther Adv Infect Dis. (2024) 11:20499361241252537. doi: 10.1177/
20499361241252537

56. Nasir I, Shuwa H, Emeribe A, Adekola H, Dangana A. Phenotypic profile
of pulmonary aspergillosis and associated cellular immunity among people living
with human immunodeficiency virus in Maiduguri, Nigeria. Tzu Chi Med ]. (2019)
31:149-53. doi: 10.4103/tcmj.tcmj_46_18

57. Kwizera R, Bongomin F, Olum R, Worodria W, Bwanga F, Meya D, et al.
Evaluation of an Aspergillus IgG/IgM lateral flow assay for serodiagnosis of fungal
asthma in Uganda. PLoS One. (2021) 16:€0252553. doi: 10.1371/journal.pone.0252553

58. Ayub I, Venkatramanan P. High-attenuation mucus
bronchopulmonary aspergillosis. Arch Dis  Child. (2023)
10.1136/archdischild-2022-324674

in allergic
108:101-2. doi:

frontiersin.org


https://doi.org/10.3389/fmed.2025.1640399
https://doi.org/10.1016/j.jaci.2015.07.045
https://doi.org/10.1016/j.jaci.2015.07.045
https://doi.org/10.1016/j.ccm.2021.12.002
https://doi.org/10.3389/falgy.2022.898731
https://doi.org/10.3389/fimmu.2024.1285598
https://doi.org/10.3389/fimmu.2024.1285598
https://doi.org/10.4168/aair.2017.9.2.177
https://doi.org/10.4168/aair.2017.9.2.177
https://doi.org/10.3390/jof8020159
https://doi.org/10.3390/jof8020159
https://doi.org/10.1111/cea.13367
https://doi.org/10.1093/tropej/fmz066
https://doi.org/10.1016/j.anai.2024.08.959
https://doi.org/10.1016/j.anai.2024.08.959
https://doi.org/10.3390/ijms24076302
https://doi.org/10.3390/ijms24076302
https://doi.org/10.1183/13993003.00507-2022
https://doi.org/10.1177/20499361241252537
https://doi.org/10.1177/20499361241252537
https://doi.org/10.4103/tcmj.tcmj_46_18
https://doi.org/10.1371/journal.pone.0252553
https://doi.org/10.1136/archdischild-2022-324674
https://doi.org/10.1136/archdischild-2022-324674
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

	Development and validation of a clinical prediction model for Aspergillus fumigatus sensitization in adults with asthma: a retrospective study
	Introduction
	Materials and methods
	Patients
	Study protocol
	Definition of Aspergillus fumigatus sensitization
	Inclusion and exclusion criteria
	Data collection and potential predictors
	Prediction model development
	Performance of the prediction model
	Statistical analysis

	Results
	Demographic and clinical characteristics
	Development of the prediction model

	Validation of the prediction model
	Discrimination
	Calibration of the prediction model
	Clinical use

	Discussion
	Limitations
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


