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Multi-omics integration to 
identify immune-associated 
biomarkers and potential 
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Background: Periodontitis, a chronic inflammatory disease of periodontal 
tissues, is linked to immune response and epigenetic modifications, with DNA 
methylation playing a crucial role. This study integrates transcriptomic and 
DNA methylation profiles from periodontitis patients to explore the immune 
microenvironment and identify potential biomarkers and therapeutic targets.
Methods: Transcriptomic and methylation profiles from 24 periodontitis patients 
were analyzed to evaluate the immune microenvironment and identify related 
abnormal genes. WGCNA was used to identify immune cell-associated genes. 
Subsequently, machine learning algorithms identified diagnostic biomarkers for 
periodontitis, which then validated in two cohorts with 247 and 310 periodontitis 
patients, respectively. Finally, network pharmacology analysis identified potential 
targeted drugs for the candidate genes.
Results: We obtained 23,528 differentially methylated sites and 1,641 differential 
expressed genes. Immune cell analysis identified eight abnormal cell types 
in periodontitis, and WGCNA highlighted two gene modules linked to these 
immune alterations. Machine learning with random forest and SVM identified 
nine key genes (ATP2C2, FAM43B, FOXA3, HSPA12A, KIF1C, NCS1, PGM1, 
RASSF6, SH2B2) with diagnostic efficacy, achieving high AUC scores across 
validation datasets. Network pharmacology analysis identified three drugs—
bisphenol A, acetaminophen, and valproic acid—as potential regulators of these 
genes, offering new treatment avenues.
Conclusion: Through integrating s transcriptomic and DNA methylation profiles, 
nine genes have been filtered as potential diagnostic biomarkers of periodontitis. 
Drugs targeting these genes may serve as potential therapeutics for periodontitis. 
These findings reveal valuable insights into immune and epigenetic mechanisms 
in periodontitis, presenting new biomarkers and therapeutic options that may 
enhance clinical diagnosis and treatment of the disease and provide unique 
insights for further exploration of the pathogenesis of periodontitis and the 
development of related therapeutic drugs.
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Introduction

Periodontal disease is considered to be the most common disease 
in humans. The prevalence of periodontal disease is showing a 
significant increase (1), and globally, the prevalence of severe 
periodontal disease is 11%, affecting 743 million people (2). 
Epidemiologic surveys have shown that the leading cause of tooth loss 
worldwide is periodontitis, which is associated with a reduced quality 
of life and may cause a variety of other systemic health problems (3). 
Periodontitis is a chronic inflammatory condition affecting the tissues 
that support teeth, initiated by plaque buildup. This process results in 
progressive tissue destruction, formation of periodontal pockets, loss 
of attachment, and resorption of alveolar bone, ultimately causing 
tooth mobility, gum recession, and eventually, tooth loss (4). Previous 
studies have reported the complex molecular mechanisms of this 
periodontitis (5). However, the specific roles of genes, cell types, and 
cellular mechanisms in the development of periodontitis remain 
unclear, and there are currently no reliable early diagnostic markers 
or therapeutic targets available (6, 7). For instance, researchers found 
that chronic injury may alter transglutaminase gene expression, 
potentially playing a crucial role in remodeling and adaptation (8); It 
has been found that a significant link between miRNA in gingival 
sulcus fluid and the risk of periodontitis (9).

While bacteria are essential in initiating periodontitis, disease 
progression largely relies on the host’s immune response. An excessive 
or imbalanced immune reaction to these microorganisms can speed 
up both the onset and advancement of periodontitis (10), accompanied 
by the release of various inflammatory mediators and cytokines (11). 
For example, prostaglandin E2 (PGE2), interleukin-1β (IL-1β), tumor 
necrosis factor-α (TNF-α) (12), IL-8 (13), and interferon-γ (IFN-γ) 
(14). Thus, the immune response of the host, particularly the cellular 
immune response, is crucial in regulating the equilibrium between the 
repair and damage of periodontal tissues (15). Therefore, current 
research on periodontitis focuses on understanding how the immune 
system and immunomodulatory factors influence periodontal 
inflammation and alveolar bone degradation, as well as the role of 
molecular regulatory networks in immune cell activation and 
differentiation (4).

To further elucidate the mechanisms underlying periodontitis, 
it is important to consider not only the immune response but also 
the epigenetic factors that regulate gene expression. Epigenetics 
refers to changes in gene expression that do not involve alterations 
to the underlying DNA sequence. Key epigenetic processes include 
DNA methylation, histone modifications, and chromatin 
remodeling. Recent studies suggest that chronic inflammatory 
conditions, such as periodontitis, can induce epigenetic changes, 
thereby modulating the immune response and contributing to 
disease progression. Growing evidence indicates that these epigenetic 
changes are linked to the development of periodontitis (15). In 
particular, epigenetic modifications occur in periodontal tissues 
during the periodontitis process. Currently, DNA methylation is the 
most studied epigenetic modification associated with periodontitis 
(16). DNA methylation is a widespread epigenetic alteration in 
eukaryotic cells, involving the attachment of methyl groups to 
cytosine residues within CpG dinucleotides. This modification can 
be  either hypermethylation or hypomethylation, leading to the 
repression or activation of certain genes (17). DNA methylation of 
cytokine-encoding genes has been found in periodontal tissues of 

patients with periodontitis (18). For instance, the IL6 gene expression 
in the gingival tissues of patients with periodontitis was elevated 
compared to healthy controls (19). In addition, DNA methylation 
affects genes encoding interferons and chemokines (20). Recently, 
researchers investigated CpG methylation of 22 inflammatory 
candidate genes (21). These findings may provide some new insights 
into the relationship between altered methylation of encoded genes 
and periodontitis.

In this study, we hypothesize that integrating transcriptomic and 
DNA methylation profiles will reveal novel immune-related 
biomarkers and mechanistic links in periodontitis. To confirm it, 
we systematically integrated periodontitis-associated transcriptome 
and DNA methylation data to explore the immune microenvironment 
of periodontitis. We aimed to identify key immune biomarkers in 
multiple omics dimensions using a range of bioinformatics approaches 
(Figure 1). These findings may offer new insights for the development 
of diagnostic and therapeutic biomarkers for periodontitis.

Methods

Data source

DNA methylation and corresponding mRNA expression data 
from periodontitis patients were retrieved from the GEO database 
under accession numbers GSE173081 (DNA methylation, Ntotal = 24, 
Nperiodontitis = 12, and Nhealthy = 12) and GSE173078 (mRNA expression, 
Ntotal = 24, Nperiodontitis = 12, and Nhealthy = 12). Two additional 
independent datasets, GSE16134 (testing dataset1, Ntotal = 310, 
Nperiodontitis = 241, and Nhealthy = 69) and GSE10334 (testing dataset2, 
Ntotal = 247, Nperiodontitis = 183, and Nhealthy = 64), were used for testing. 
All FPKM expression values were normalized using a log2 
transformation. All these datasets are publicly available and 
unrestricted re-use is permitted via the open license of GEO database.

DNA methylation profiles

The Illumina Human Methylation EPIC Array was used to 
analyze the methylation status of periodontitis patients (Ntotal = 24, 
Nperiodontitis = 12, and Nhealthy = 12). This bead chip covers more than 
810,000 methylation sites per sample. The raw data were processed by 
the following steps: firstly, probes with a null value and located in sex 
chromosomes were removed. Then, probes that mapped to multiple 
genes or were not mapped to genes or containing SNPs were removed.

The minfi R package was used for the normalization of the raw 
Methylation EPIC Array data. Probes with a p-value < 0.05 and 
absolute detabeta (|Δβ|) > 0.1 were considered differentially methylated.

Immune microenvironment analysis

The xcell R package was employed to estimate the abundance of 
64 immune cell types in periodontitis patients, including various 
T-cell subtypes and other immune cells such as B cells, NK cells, 
monocytes, and macrophages. The abundance of immune cells in 
periodontitis patients was compared to that in healthy individuals to 
identify distinctive features for further investigation.
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Differential expression analysis

The limma R package was employed to analyze gene expression 
differences between periodontitis and control groups. 
Differentially expressed mRNAs were identified with an adjusted 
p-value < 0.05 and an absolute log2 fold change ≥ 0.263 (22). 
Subsequently, Pearson correlation analysis was conducted to 
assess the relationship between DNA methylation levels and 
gene  expression. Only correlations with an absolute Pearson 

coefficient above 0.4 and a p-value below 0.05 were considered  
significant.

WGCNA

Co-expression networks were constructed using the WGCNA R 
package to analyze candidate genes showing correlated patterns in 
both methylation and expression levels, alongside abnormal immune 

FIGURE 1

Workflow of the study.
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cell types in periodontitis patients. In this study, hierarchical clustering 
was used to group genes with similar expression patterns. These gene 
clusters were then linked to the altered immune cells in patients, and 
the most relevant genes within these clusters were selected for 
further investigation.

Machine learning

The randomForest R package was employed to build a periodontitis 
prediction model using the random forest method, which involved 
training and testing categorical models to identify gene combinations 
with high discriminatory power for distinguishing periodontitis from 
normal groups. The key genes were identified using an SVM algorithm 
with the e1071 R package to construct an optimal diagnostic model.

Function enrichment analysis

We extracted all differentially expressed genes (DEGs) and 
differentially methylated genes (DMGs) for further functional 
enrichment analysis using the Metascape webserver. Enrichment 
analysis was conducted for KEGG pathways and Hallmark gene sets, 
with functions selected based on a false discovery rate of less than 0.05.

Statistical analyses were performed using R software (version 
4.3.2). A t-test was used to assess differences between the two groups, 
and a p-value of less than 0.05 was considered statistically significant.

Results

Differently expressed and differentially 
methylated genes are associated with 
inflammatory and immune-related 
pathways in periodontitis

We first assessed methylation levels in patients with periodontitis. 
First, we performed differential analysis of the EPIC methylation array 
and obtained a total of 23,528 differentially methylated sites (p < 0.05, 
|Δβ| > 0.1). Subsequently, we categorized the differentially methylated 
probes into promoter region probes (TSS200, TSS1500, 1stExon) and 
body region probes based on their location in the genome. Among 
them, there are 5,152 differentially methylated promoter region probes 
distributed on 2,489 genes and 4,814 differentially methylated body 
region probes, which fell on 2,784 genes (Figure 2A). Subsequently, 
we performed enrichment analysis of these differentially methylated 
genes. The results showed that the differentially methylated genes in 
the body region were mainly enriched in the Calcium signaling 
pathway, Wnt signaling pathway and other inflammation-related 
pathways (Figure 2B), while the differentially methylated genes in the 
promoter region were mainly enriched in the cMAP signaling 
pathway, the PI3K-Akt signaling pathway, and the Cytokine-cytokine 
receptor interaction. Receptor interaction and other immune-related 
pathways (Figure 2C).

To further elucidate the functional impact of these epigenetic 
modifications, we  next examined the gene expression profiles in 
periodontitis patients. We  analyzed the gene expression data of 
periodontitis patients to screen for genes abnormally expressed in 

periodontitis (|log2FC| > 0.263, p < 0.05). We screened a total of 1,641 
differential expressed genes, of which 398 were abnormally down-
regulated and 1,243 were abnormally up-regulated (Figure  2D). 
Enrichment analysis of these differential genes showed that 
periodontitis-associated aberrantly expressed genes were mainly 
enriched in pathways such as Cytokine-cytokine receptor interaction, 
NF-kappa B signaling pathway and HIF-1 signaling pathway 
(Figure 2E). The NF-kappa B signaling pathway, in particular, plays a 
pivotal role in orchestrating inflammatory responses. Activation of 
NF-kappa B leads to the transcription of a variety of cytokines and 
chemokines that mediate inflammation, which is critical in the 
progression of periodontitis. This pathway can contribute to the 
persistence of inflammation, thereby exacerbating tissue destruction 
and bone resorption observed in periodontitis.

In our integrated analysis, we identified 349 genes that were both 
differentially methylated and differentially expressed. Notably, several 
key genes involved in inflammation and immune regulation were 
among these 349 genes. For example, MMP9, a matrix 
metalloproteinase known for its role in tissue remodeling and 
inflammatory processes, has been implicated in periodontal tissue 
degradation. Similarly, CD86, a critical co-stimulatory molecule 
involved in T-cell activation, and PTPRC (CD45), a regulator of 
immune cell signaling, underscore the immune involvement in 
periodontitis. Other genes such as IL2RA and IL21R are central to 
immune cell differentiation and activation, while FAM43B and 
FOXA3 have emerged as potential diagnostic markers in our analysis. 
These gene-specific findings reinforce the biological relevance of our 
integrated analysis and suggest that the dysregulation of these key 
genes may contribute significantly to the pathogenesis of periodontitis 
(Figure 2F).

Altered immune cells in periodontitis linked 
to differentially expressed gene modules 
regulated by aberrant methylation

We evaluated the immune microenvironment of periodontitis 
patients based on the xcell algorithm. The results showed that the 
abundance of immune cells such as Astrocytes, Granulocyte-
Macrophage Progenitor (GMP), Hepatocyte, Monocyte, Neutrophil, 
Plasma cells, and Prevacidocytes was significantly increased while 
Platelets were significantly decreased in periodontitis patients 
(Figure 3A; Supplementary Figure 1). It is important to note that the 
detection of hepatocyte signatures in gingival tissue is unexpected. 
This may be due to the inherent limitations of the xCell algorithm, 
which relies on gene expression profiles that can sometimes overlap 
among different cell types. The “Hepatocyte” signal observed might 
represent a similar cell population with a related expression profile 
rather than true hepatocytes. Further experimental validation is 
needed to clarify this observation. It should be noted that the detection 
of “hepatocyte” and “platelet” signatures likely reflects algorithmic 
limitations of bulk transcriptomic deconvolution rather than the true 
presence of these cell types in gingival tissue.

These alterations in immune cell composition suggest an 
imbalance in immune regulation, potentially driven by underlying 
epigenetic changes. Subsequently, we further screened the aberrant 
genes regulated by methylation, and the screening criteria were, body 
region differentially methylated genes, whose methylation level was 
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positively correlated with the expression level (R > 0.4, p < 0.05), and 
promoter region differentially methylated genes, whose methylation 
level was negatively correlated with the expression level (R < −0.4, 
p < 0.05). These correlation thresholds were chosen to ensure a 
moderate to strong association between methylation changes and gene 
expression regulation while minimizing false positives. Previous 

studies have used similar cutoffs to establish meaningful methylation-
expression relationships in disease contexts (23, 24). Finally, 
we screened 132 eligible candidate genes (Figure 3B).

To connect these findings with the observed immune cell 
alterations, we investigated whether the aberrantly methylated genes 
might drive changes in immune cell profiles. We performed WGCNA 

FIGURE 2

Transcriptome- and DNA mathylation-based screening of periodontitis. (A) Volcano plot of differentially methylated probes (periodontitis vs. control). 
(B) Enrichment analysis of differentially methylated probes which located at gene body region. (C) Enrichment analysis of differentially methylated 
probes which located at gene promoter region. (D) Volcano plot of differentially expressed genes (periodontitis vs. control). (E) Enrichment analysis of 
differentially expressed genes. (F) Venn plot showed the overlap of differentially methylated probes and differentially expressed genes.
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FIGURE 3

Assessment of the immune microenvironment for periodontitis and screening of relevant gene modules. (A) Violin plot showed the altered immune 
cells of periodontitis. GMP, Granulocyte-Macrophage Progenitor. (B) Correlation ship between differentially methylated probes and differentially 
expressed genes. (C) Power of WGCNA co-expression network. (D) Cluster dendrogram of candidate genes which were correlated in DNA methylation 
and gene expression in periodontitis. (E) Immune cells associated co-expression modules in periodontitis.

https://doi.org/10.3389/fmed.2025.1640961
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jin et al.� 10.3389/fmed.2025.1640961

Frontiers in Medicine 07 frontiersin.org

analysis to screen the co-expression modules of altered immune cells 
based on the expression levels of these 132 candidate genes with the 
abundance of the above mentioned 8 altered immune cells associated 
with periodontitis. The results showed that there were three expression 
patterns of these candidate genes (Figures 3C,D), among which, the 
MEturquoise module (contains 100 candidate genes) was significantly 
associated with abnormally elevated immune cells such as Astrocytes, 
GMP, Hepatocyte, Monocyte, Neutrophil, Plasma cells, and 
Previpocytes. correlated, while MEblue (contains 25 candidate genes) 
significantly correlated with Astrocytes, Hepatocyte, Monocyte, 
Neutrophil, Plasma cells, Previpocytes and Platelets (Figure  3E; 
Supplementary Table S1). These findings indicate that epigenetic 
regulation, as reflected by aberrant methylation, may influence 
immune cell composition by modulating the expression of gene 
modules relevant to immune functions.

Machine learning-based screening for 
multi-omics diagnostic biomarkers in 
periodontitis patients

Through WGCNA analysis, we  found that MEblue and 
MEturquoise are associated with altered immune cells in periodontitis 
patients. Among them, MEblue contains 25 candidate genes while 
MEturquoise contains 100 candidate genes. These gene modules 
exhibited significant correlations with immune cell types that are 
dysregulated in periodontitis, including monocytes, neutrophils, and 
plasma cells (Figure  3E). The enrichment analysis of these genes 
revealed their involvement in immune-related pathways (such as 
leukocyte activation, toll-like receptor 2 signaling pathway), further 
underscoring their biological relevance (Supplementary Figure 2). The 
strong correlation between these genes and immune cell alterations 
suggests their potential role in immune dysregulation and 
inflammation in periodontitis. Thus, we  selected these genes for 
machine learning analysis to identify the most informative biomarkers 
for disease classification. We first performed random forest modeling 
for the 25 genes in the MEblue module. The results show that the 
random forest model has the optimal classification efficacy when the 
number of genes in the model reaches 3 (Figure 4A). Subsequently, 
we show the gene scores for each node in the random forest and select 
the top3 genes (HSPA12A, ATP2C2, and NCS1) (Figure 4B). These 
three genes have been previously implicated in periodontitis-related 
processes. For instance, HSPA12A is known to regulate inflammatory 
responses (25), ATP2C2 plays a critical role in immune 
microenvironment (26), and NCS1 is associated with immunotherapy 
and prognosis of cancer (27). Next, we construct a classification model 
based on SVM for these top3 genes. The results show that in the 
training set, the classification efficiency of this 3-gene model reaches 
0.826 (AUC = 0.826, Figure 4C), while in the testing dataset1, the 
AUC of this model is also as high as 0.775 (Figure 4D), and in the 
testing dataset2, the AUC value is 0.752 (Figure 4E). This suggests that 
this 3-gene model has a better diagnostic efficacy for periodontitis 
patients. In the MEturquoise module, we  found that the 6-gene 
random forest model had the best classification efficacy (Figure 5A). 
We then ranked the genes in the model based on importance and 
selected the top6 genes (PGM1, RASSF6, KIF1C, SH2B2, FOXA3, and 
FAM43B) (Figure 5B). The six genes selected from the MEturquoise 
module are also intricately linked to immune and inflammatory 

pathways. For example, PGM1 and RASSF6 are associated with 
macrophage (28). KIF1C could regulate the podosome dynamics in 
macrophages (29). The immunologic significance of SH2B2 is related 
to the invasion of colon adenocarcinoma (30). FOXA3 is a 
transcriptional activator that is associated with signal transduction in 
tumors (31). Additionally, FAM43B could repress the cell proliferation 
and is regulated by DNA methylation (32). Similarly, we construct 
SVM classifiers based on these 6 candidate genes. The results show 
that this model has AUC = 0.819 (Figure 5C) in the training set, while 
in testing dataset1 and testing dataset2, the AUC is 0.860 (Figure 5D) 
and 0.816 (Figure 5E), respectively. Detailed performance metrics are 
also summarized in Supplementary Table S2. These results suggesting 
that these models have effective efficacy for periodontitis diagnosis.

Identification of target drugs for 
periodontitis patients based multi-omics 
diagnostic biomarkers

Based on epigenome and transcriptomics, we  screened 9 
periodontitis diagnostic genes in the periodontitis immune 
microenvironment. Subsequently, we further explored potential target 
drugs for these 9 genes. We constructed a drug-targeting network for 
these genes based on the CTD database and identified 345 drugs/
compounds targeting these 9 genes (Figure  6). Through further 
network analysis, we screened out 3 drugs/compounds targeting all 9 
genes simultaneously: bisphenol A, Acetaminophen and Valproic Acid 
(Supplementary Table S3). Bisphenol A, though primarily considered 
an environmental contaminant, has been implicated in immune 
modulation and inflammatory responses (33). Acetaminophen is 
widely used as an analgesic and has been shown to modulate oxidative 
stress pathways, which are relevant in periodontitis pathology (34). 
Valproic acid, a histone deacetylase inhibitor, has demonstrated anti-
inflammatory effects and potential benefits in immune-related 
conditions (35). These insights support the relevance of these drugs in 
the context of periodontitis and highlight their possible regulatory 
roles in disease-associated pathways. Among them, Acetaminophen 
and Valproic Acid are FDA-approved drugs with better results in 
analgesia. In this study, we  found for the first time that they are 
associated with periodontitis-related targets, which provides a new 
idea for the subsequent screening of potential periodontitis-related 
drugs. Their repurposing for periodontitis could offer advantages such 
as well-characterized pharmacokinetics and widespread clinical 
availability. However, the potential off-target effects and adverse 
reactions-such as hepatotoxicity for Acetaminophen and the broad 
systemic effects associated with Valproic Acid-necessitate further 
investigation in the context of periodontitis. Additional preclinical 
studies and clinical trials are warranted to optimize dosing, evaluate 
long-term safety, and establish their efficacy as adjuncts in 
periodontitis management.

Discussion

While numerous studies have highlighted the immune 
microenvironment’s involvement in the development of periodontitis, 
the exact mechanisms through which it affects the onset and 
progression of the disease are still not fully understood (21–23). It has 
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been found that periodontitis is not only affected by the transcriptional 
level but also involves epigenetic alterations. Nevertheless, there are 
limited studies that have identified immune-related genes linked to 
periodontitis across various histological layers, which could potentially 
serve as important clinical biomarkers for the disease. In this study, 
we first investigated the immune microenvironment of periodontitis 
and identified candidate genes that showed both abnormal 
methylation and expression patterns in periodontitis samples, utilizing 
epigenomic and transcriptomic approaches. Subsequently, through a 
multi-dataset machine learning algorithm, we further narrowed down 
these candidate genes to nine key genes with diagnostic efficacy for 
periodontitis, namely, ATP2C2, FAM43B, FOXA3, HSPA12A, KIF1C, 

NCS1, PGM1, RASSF6, and SH2B2. We then further analyzed these 
genes by network pharmacology to screen for their potential drug 
targets. This study revealed the association of key genes related to the 
immune microenvironment with periodontitis at the epigenetic and 
transcriptional levels, and screened for drug targets that could regulate 
these key genes through the drug target network. Our research offers 
significant insights into the potential use of these key genes as 
diagnostic and therapeutic markers for improving the clinical 
management of periodontitis.

ATP2C2 is involved in calcium transmembrane transport, 
intracellular calcium ion homeostasis, and manganese ion transport 
(36). FAM43B has been found to control innate immunity through 

FIGURE 4

Random forest analysis in MEblue. (A) error.cv. plot of random forest analysis. Here, the random forest model has the optimal classification efficacy 
when the number of genes in the model reaches 3. (B) Mean decrease accuracy of random forest model. (C) SVM performance in training datasets. 
(D) SVM performance in testing datasets 1. (E) SVM performance in testing datasets 2.
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Epigenetic Regulation (37). FOXA3 encodes a forkhead-like 
DNA-binding protein that interacts with chromatin. It also plays a role 
in the regulation of metabolism as well as organ differentiation. 
FOXA3 methylation has been found to cause dedifferentiation and 
sorafenib resistance in hepatocellular carcinoma (38). HSPA12A, 
which is predicted to have ATP-binding activity and is located in 
extracellular exosomes, was found to promote nuclear PKM2-
mediated polarization of M1 macrophages (39). The protein encoded 
by KIF1C belongs to a family of kinesin-like proteins that transport 
APC-dependent mRNAs to cellular protrusions (40) and can 
re-localize GLUT4 to immune-modification-positive cell sites (41). 
NCS1, a member of the neuronal calcium sensor gene family, is a key 
Ca2 + −binding protein thought to play a role in cell proliferation and 
immune infiltration (27). The protein encoded by this gene is an 

isoform of phosphoglucomutase (PGM) and is associated with M2 
macrophages and TFH cells and their surface markers CD163 and 
CXCR5 (42). RASSF6 encodes a member of the Ras-associated 
structural domain family (RASSF), and the protein encoded by this 
gene is a Ras effector protein that induces apoptosis. In acute 
lymphoblastic leukemia (ALL), there is a high prevalence of aberrant 
RASSF6 promoter methylation, and its DNA methylation status has 
the potential to serve as a biomarker for assessing MRD levels in ALL 
patients (43). SH2B2 encodes a protein expressed in B lymphocytes 
that undergoes tyrosine phosphorylation in response to B cell receptor 
stimulation and plays a role in signaling in the Shc/Grb2 pathway (44).

In conclusion, through our integration of DNA methylation profiles 
and transcriptomes of periodontitis patients, we assessed the immune 
microenvironment of periodontitis patients and screened nine diagnostic 

FIGURE 5

Random forest analysis in MEturquoise. (A) error.cv. plot of random forest analysis. Here, the random forest model has the optimal classification 
efficacy when the number of genes in the model reaches 6. (B) Mean decrease accuracy of random forest model. (C) SVM performance in training 
datasets. (D) SVM performance in testing datasets 1. (E) SVM performance in testing datasets 2.
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markers related to periodontitis patients based on machine-learning 
algorithms, and screened for relevant targeted drugs. This finding will 
provide new insights for subsequent diagnosis and treatment of 
periodontitis. Furthermore, our study builds on previous research using 
machine learning to identify biomarkers in immune-related diseases. For 
instance, studies on interactomic hub gene prediction in PBMCs for type 
2 diabetes mellitus, dyslipidemia, and periodontitis have demonstrated 
the potential of network-based approaches in identifying key regulatory 

genes (45). Additionally, machine learning models for predicting 
rheumatoid arthritis based on ACPA autoantibody development in the 
presence of non-HLA gene polymorphisms highlight the utility of such 
methods in complex diseases (46). Similarly, the prediction of 
interactomic hub genes in rheumatoid arthritis using peripheral 
mononuclear cells underscores the importance of transcriptomic and 
network-based analyses in understanding immune-related pathologies 
(47). Our study contributes to this growing body of research by 

FIGURE 6

Drug network of nine crucial genes. Red nodes represent nine crucial gene while blue is potential target drugs. The node size indicates the degree of 
the network.
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identifying key diagnostic genes and their potential drug interactions in 
periodontitis. Meanwhile, our diagnostic models, with AUC values 
ranging from 0.75 to 0.86, compare favorably with existing periodontitis 
biomarkers, which often rely on single-parameter assessments such as 
probing depth, clinical attachment loss, or inflammatory mediators in 
gingival crevicular fluid (48). The integration of epigenetic and 
transcriptomic data in our models not only improves diagnostic accuracy 
but also captures the complexity of the disease’s molecular basis. This 
multi-omics approach allows for a more comprehensive evaluation of the 
disease state and may facilitate the development of personalized 
treatment strategies. The identification of these drugs through a multi-
omics approach presents a novel strategy for periodontitis therapy. In 
terms of efficacy, the FDA-approved drugs Acetaminophen and Valproic 
Acid have well-documented pharmacological profiles that may enhance 
their potential as adjunct therapies. They offer the possibility of 
modulating key molecular mechanisms underlying periodontitis, such 
as oxidative stress and immune regulation. However, while conventional 
therapies focus on bacterial control and symptomatic relief, these drugs 
may provide benefits by directly impacting the disease’s molecular 
drivers. Regarding safety, current standard therapies generally have 
minimal systemic side effects but may not fully address the inflammatory 
and tissue-degradative components of periodontitis. In contrast, the 
off-target effects of Acetaminophen (e.g., hepatotoxicity) and Valproic 
Acid (e.g., gastrointestinal and metabolic disturbances) require careful 
dosing and monitoring.

Overall, these findings underscore the clinical and biological 
significance of integrating multi-omics data to identify potential 
therapeutic agents. The approach not only enhances our understanding 
of periodontitis pathogenesis but also opens new avenues for 
developing targeted interventions that may complement existing 
treatment modalities.

Despite the promising findings of our study, several limitations 
should be acknowledged. First, our analyses relied on publicly available 
datasets with relatively small sample sizes, which may limit the 
generalizability of the results. The lack of detailed demographic 
information, such as age and gender, may also introduce selection bias 
and restrict applicability across broader populations. Future large-scale 
studies with demographically matched cohorts are warranted to address 
these concerns. Second, while the use of multi-dataset machine learning 
improved robustness, potential confounders (including patient 
demographics, disease severity, and sample processing) could still 
influence the outcomes. Integrating additional omics layers, such as 
proteomics and metabolomics, may provide a more comprehensive 
understanding of periodontitis pathogenesis.

Moreover, the current study provides predictive insights into 
immune alterations in periodontitis based on bulk transcriptomic 
deconvolution. However, bulk analyses cannot fully capture the 
complexity of the immune microenvironment, which ideally requires 
single-cell transcriptomic and spatially resolved approaches. Importantly, 
all conclusions are computationally derived without protein-level or 
in vivo validation. Future research should therefore include experimental 
confirmation, such as immunohistochemistry, flow cytometry, and 
animal models, to validate the biological and therapeutic relevance of the 
identified biomarkers and drug candidates. Specifically, preclinical 
testing of acetaminophen and valproic acid will be crucial to determine 
their mechanistic roles and feasibility as adjunctive therapies 
for periodontitis.

Conclusion

In conclusion, through our integration of DNA methylation 
profiles and transcriptomes of periodontitis patients, we assessed the 
immune microenvironment of periodontitis patients and screened 
nine diagnostic markers related to periodontitis patients based on 
machine-learning algorithms, and screened for relevant targeted 
drugs. This finding will provide new insights for subsequent diagnosis 
and treatment of periodontitis.
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SUPPLEMENTARY FIGURE 1

Assessment of the immune microenvironment for periodontitis. Violin plot 
showed the abundance of immune cells in periodontitis. DC, Dendritic Cell; 
CLP, Common Lymphoid Progenitor; CMP, Common Myeloid Progenitor; 
GMP, Granulocyte-Macrophage Progenitor; HSC, Hematopoietic Stem Cell; 
MEP, Megakaryocyte-Erythroid Progenitor; MPP, Multipotent Progenitor; 
MSC, Mesenchymal Stem Cell; NKT, Natural Killer T Cell.

SUPPLEMENTARY FIGURE 2

Enrichment analysis of genes in MEturquoise and MEblue. (A) Enrichment 
analysis of 100 module genes in MEturquoise. (B) Enrichment analysis of 25 
module genes in MEblue.
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Glossary

WGCNA - Weighted correlation network analysis

SVM - Support Vector Machine

AUC - Area Under the Curve

PGE2 - prostaglandin E2

IL-1β - interleukin-1β

TNF-α - tumor necrosis factor-α; IL-8

IFN-γ - interferon-γ

FPKM - Fragments Per Kilobase per Million

DEGs - differentially expressed genes

DMGs - differentially methylated genes

FC - Fold-Change value

DC - Dendritic Cell

CLP - Common Lymphoid Progenitor

CMP - Common Myeloid Progenitor

GMP - Granulocyte-Macrophage Progenitor

HSC - Hematopoietic Stem Cell

MEP - Megakaryocyte-Erythroid Progenitor

MPP - Multipotent Progenitor

MSC - Mesenchymal Stem Cell

NKT - Natural Killer T Cell

CTD - Comparative Toxicogenomics Database

PGM - phosphoglucomutase

RF - random forest

RASSF - Ras-associated structural domain family

GEO - Gene Expression Omnibus database
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