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Efficacy and safety of Chinese 
medicine injection combined 
with concurrent 
chemoradiotherapy in the 
treatment of esophageal cancer: 
a Bayesian network meta-analysis
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1 College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 
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Medicine, Tai’an, China

Background: Esophageal cancer (EC) is a significant global health concern. 
Chinese medicine injections (CMIs) are widely utilized as adjunctive therapies 
for EC. This network meta-analysis (NMA) aimed to compare the efficacy and 
safety of various CMIs in combination with concurrent chemoradiotherapy 
(CCRT) for the treatment of EC.
Methods: Relevant randomized controlled trials (RCTs) were comprehensively 
searched in eight electronic databases until August 2024. The quality of eligible 
RCTs was assessed via the Cochrane Risk of Bias tool (RoB 2.0). Bayesian NMA 
was conducted through R 4.2.1 and Stata 15.1, with treatment regimens ranked 
based on the surface under the cumulative ranking curve (SUCRA). The quality 
of evidence was evaluated using CINeMA.
Results: 54 studies encompassing 4,201 patients and 13 types of CMIs were 
included. Astragalus polysaccharide injection (HQDT) combined with CCRT 
(SUCRA: 86.7%) ranked highest for improving clinical effectiveness rate. Kanglaite 
injection (KLT) combined with CCRT (SUCRA: 85.1%; 90.1%) was optimal for 
enhancing performance status and one-year survival rate. Kangai injection (KA) 
combined with CCRT (SUCRA: 97.2%) achieved the greatest improvement in 
CD3+ levels. Aidi injection (AD) combined with CCRT (SUCRA: 99.9, 99.9%) was 
most effective in increasing CD4+ and CD8+ levels, while Fufangkushen injection 
(FFKS) combined with CCRT (SUCRA: 99.9%) yielded the greatest improvement in 
the CD4+/CD8+ ratio. Based on descriptive statistics, all regimens demonstrated 
favorable safety profiles, with no serious adverse events (AEs) reported.
Conclusion: CMIs combined with CCRT appear to provide superior therapeutic 
efficacy over CCRT alone in the treatment of EC. In particular, HQDT, KLT, 
KA, AD, and FFKS exhibited the most pronounced benefits across key clinical 
outcomes. Nevertheless, the findings shall be validated in multicenter, better-
designed RCTs.
Systematic review registration: The PRISMA registration details for this study can 
be found at: https://www.crd.york.ac.uk/PROSPERO/view/CRD42024574242.
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1 Introduction

Esophageal cancer (EC) ranks seventh among cancers in terms of 
mortality and is the eleventh most frequently diagnosed malignancy 
worldwide. In 2022, approximately 511,000 new cases and 445,000 
deaths were reported globally (1). Most cases are diagnosed at 
advanced stages with distant metastasis because there are no early 
clinical symptoms (2, 3). Despite comprehensive treatment, including 
surgery, the five-year survival rate is typically below 20% (4, 5). The 
disease burden is particularly pronounced in Asia, where an estimated 
383,000 new cases and 329,000 deaths were reported in 2022, 
accounting for roughly 75% of the global incidence and mortality (6). 
With population aging and the persistent prevalence of major risk 
factors, including tobacco and alcohol consumption, elevated body 
mass index (BMI), and unhealthy dietary habits, the medical burden 
of EC is expected to escalate further (7). By 2040, it is projected that 
over 900,000 people worldwide will die from EC, which poses a 
significant challenge to public health systems (8).

Currently, concurrent chemoradiotherapy (CCRT) plays an 
important role in patients with advanced EC, not only as adjuvant 
therapy but also as definitive treatment (9). The 2024 National 
Comprehensive Cancer Network (NCCN) guidelines for EC (10) 
recommend paclitaxel plus carboplatin in combination with radiotherapy 
as the preferred regimen. This approach has been shown to improve 
surgical resection rates in advanced EC, as well as overall survival (OS) 
and disease-free survival (DFS) (11, 12). Nonetheless, the therapeutic 
efficacy remains limited, and the prognosis is often poor. In patients 
receiving paclitaxel-carboplatin-based definitive chemoradiotherapy 
(dCRT), the local recurrence rate can reach 47.9%, with 35.2% 
experiencing both local recurrence and distant metastases (13). 
Moreover, the synergistic effects of chemoradiotherapy can lead to 
cumulative toxicity, causing long-term damage and markedly increasing 
the incidence of adverse events (AEs) such as myelosuppression, 
gastrointestinal reactions, and radiation-induced esophagitis, as well as 
raising the risk of late toxicity and postoperative mortality (14–17).

Traditional Chinese medicine (TCM) has emerged as a valuable 
adjunct in oncology, with demonstrated benefits in enhancing antitumor 
efficacy, alleviating clinical symptoms, and mitigating the toxic side 
effects of CCRT (18, 19). Chinese medicine injections (CMIs), an 
important component of TCM, ingeniously integrate TCM theories with 
modern pharmaceutical technology. These injections are refined by 
extracting active components from herbal medicines and natural 
products (20, 21). CMIs offer high concentrations, rapid absorption, and 
improved bioavailability, and have been widely applied in the treatment 
of non-small cell lung, breast, cervical, gastric, and colorectal cancers, 
among others (22–26). In TCM theory, EC falls within the category of 
esophageal obstruction, with a core pathogenesis involving the 
interlocking of phlegm and blood stasis, depletion of body fluids, and 
the accumulation of heat toxins—often precipitated by emotional 
distress and irregular diet. Early-stage EC is characterized by a sensation 
of obstruction on swallowing and a feeling of fullness in the chest and 
diaphragm, consistent with qi stagnation and phlegm accumulation. In 
the intermediate stage, blood stasis predominates, leading to worsening 

dysphagia and stabbing chest or back pain. In the late stage, patients 
often present with severe dysphagia to both solids and liquids, marked 
emaciation, and symptoms indicative of fluid depletion and internal heat 
accumulation. CMIs aim to regulate qi, resolve phlegm, clear heat, 
detoxify, and nourish qi and yin, thereby offering a promising therapeutic 
option for patients with EC (27). Currently, the effectiveness and safety 
of varied single-CMI treatments combined with chemoradiotherapy for 
EC have been validated (28–30). However, given the wide variety of 
available CMIs, comparative evidence across preparations remains 
insufficient, and the optimal CCRT-CMI combination for EC has not 
been established, posing challenges to clinical decision-making (31). 
Bayesian network meta-analysis (NMA) allows for the integration of 
direct and indirect evidence, enabling quantitative comparisons among 
multiple interventions and ranking their relative effectiveness and safety 
across diverse clinical outcomes (32). Therefore, this study aimed to 
employ NMA to comprehensively evaluate the efficacy and safety of 
different CMIs combined with CCRT in EC and offer evidence-based 
recommendations to guide clinical decision-making.

2 Methods

The present study was conducted according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines, as well as the methodological requirements for network 
meta-analyses (NMA) (33). The checklist is presented in 
Supplementary material 1. Our meta-analysis was performed as per the 
guidelines for systematic review and meta-analysis. The protocol has 
been registered in the International Prospective Register of Systematic 
Reviews (CRD42024574242). All CMI components used in this 
study complied with the requirements for the reporting of plant 
materials as outlined in the ConPhyMP guidelines (34), including 
species identification, extraction procedures, and quality control 
(Supplementary material 2). Compliance was verified primarily through 
cross-checking the package inserts of CMIs approved by the National 
Medical Products Administration and the relevant pharmacological data 
reported in the included literature. None of the medicinal resources used 
were derived from genetic materials or endangered species subject to 
protection under the Nagoya Protocol or the Convention on International 
Trade in Endangered Species of Wild Fauna and Flora (CITES).

2.1 Search strategy

PubMed, Embase, Cochrane, Web of Science, China National 
Knowledge Infrastructure Database (CNKI), Wanfang Data, Chinese 
Scientific Journals Full-text Database (VIP), and Chinese Biomedical 
Literature Database (SinoMed) were thoroughly searched from the 
time of database creation through August 1, 2024. Subject headings 
and free text keywords were employed, with the following Medical 
Subject Headings (MeSH): “Esophageal Neoplasms,” “Injection,” and 
“randomized controlled trial (RCT).” Supplementary material 3 details 
the search strategy. Furthermore, a secondary search was conducted 
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by examining references of existing systematic reviews to ensure 
comprehensive coverage.

2.2 Inclusion and exclusion criteria

The eligible studies must meet the following criteria: (1) Patients 
had a histopathologically confirmed diagnosis of EC, without 
restrictions on nationality or sex. (2) The intervention group 
received CMIs in combination with CCRT, including Aidi injection 
(AD), Fufangkushen injection (FFKS), Astragalus polysaccharides 
(HQDT), Kangai injection (KA), Kanglaite injection (KLT), Matrine 
injection (KSS), Elemene injection (LXX), Shenfu injection (SF), 
Shenmai injection (SM), Shenqifuzheng injection (SQFZ), 
Xiaoaiping injection (XAP), Xiyanping injection (XYP), and Brucea 
javanica oil emulsion injection (YDZYR). The control group 
received CCRT alone. (3) The study design was an RCT. (4) 
Outcomes included at least one of the following: clinical 
effectiveness rate, performance status, one-year survival rate, 
T-lymphocyte subsets (CD3+, CD4+, CD8+, CD4+/CD8 + ratio), 
and the incidence of AEs. The clinical effectiveness rate was 
calculated as per the World Health Organization (WHO) Objective 
Response Criteria in Solid Tumors as follows: [number of complete 
response (CR) patients + partial response (PR)] / total number of 
patients × 100%. Performance was assessed using the Karnofsky 
Performance Status Scale (KPS), with three categories based on KPS 
score changes: improvement (increase of over 10 points), stability 
(change of over 10 points), and decline (decrease of over 10 points). 
An increase in the KPS score by more than 10 points was considered 
a significant improvement.

The following studies were excluded: (1) Animal or cell studies, 
case reports, scientific experimental plans, reviews, letters, guidelines, 
and conference proceedings, among others;(2) Those with missing or 
significantly erroneous data; (3) Duplicate publications; (4) Articles 
with no full text.

2.3 Literature screening and data extraction

The retrieved studies were imported into EndNote X9. Two 
researchers (Wang J. C., Chen X. W.) independently screened titles 
and abstracts, and reviewed full texts. Any discrepancies were 
addressed via discussion or consultation with a third researcher (Wei 
F. Q.). The final data were independently extracted by the two 
researchers through Excel 2019, and included the first author, 
publication year, randomization and blinding methods, interventions 
and control measures, sample size, study duration, basic participant 
characteristics (age, tumor stage, cancer type), and outcome measures.

2.4 Quality assessment

The Cochrane Risk of Bias Assessment Tool (RoB 2.0) (35) was 
utilized to examine the quality of studies across five domains: bias 
originating from randomization, resulting from deviations from the 
intended intervention, caused by missing outcome data, in outcome 
measurement, and selective reporting. For every study, two reviewers 
(Xi H. B., Xin Y. Q.) independently assessed each aspect, classifying 

biases as having a “low,” “high,” or “unclear” risk. Any disputes were 
settled by discussing with or consulting a third researcher (Wei F. Q.). 
The results were detailed in the risk of bias plot.

2.5 Statistical analysis

The risk ratio (RR) with 95% confidence interval (CI) was 
utilized to quantify the clinical effectiveness rate, performance 
status, and one-year survival rate. Weighted mean differences (MD) 
with 95% CIs were used to show the rates of CD4+/CD8+, CD3+, 
CD4+, and CD8+. The Bayesian hierarchical random-effects model 
was initially fitted for comparisons of various EC treatment options 
due to the heterogeneity among trials (36, 37). R 4.2.1 and Stata 15.1 
were utilized to generate all computations and graphics. To examine 
the posterior distributions of the questioned nodes, a Markov chain 
Monte Carlo (MCMC) simulation was conducted using Bayesian 
inference via R, with 500,000 iterations and 20,000 annealings, 
based on the theory of the likelihood function and certain 
presumptions (38–40). Overall model consistency was evaluated 
using the Deviance Information Criterion (DIC); a difference of <5 
between the DIC values of the consistency and inconsistency 
models was interpreted as indicating satisfactory overall 
consistency. Convergence was assessed via the potential scale 
reduction factor (PSRF), with values in the range of 1.00 to <1.05 
denoting adequate convergence. For outcomes involving closed 
loops, local inconsistency was examined using the node-splitting 
method. A network diagram was constructed to visualize the 
relationships among treatments, and publication bias was assessed 
using a comparison-adjusted funnel plot combined with Egger’s test 
(41, 42). Therapeutic ranking was determined according to the 
surface under the cumulative ranking curve (SUCRA), with values 
ranging from 0 to 1; higher SUCRA values indicated a superior 
ranking of EC relative to other interventions (43, 44). A league table 
displayed the comparative results of each pair of interventions for 
every outcome.

2.6 Evidence quality evaluation via CINeMA

The quality of evidence was evaluated using the Confidence in 
Network Meta-Analysis (CINeMA) framework (https://cinema.ispm.
unibe.ch/). Six domains were assessed: within-study bias, reporting 
bias, indirectness, imprecision, heterogeneity, and incoherence. Each 
domain was graded as “no concerns,” “some concerns,” or “major 
concerns.” Overall confidence in the evidence was categorized as high, 
moderate, low, or very low. All included RCTs were initially rated as 
providing high-quality evidence. Evidence quality was downgraded if 
concerns were identified in any domain, with the extent of 
downgrading determined by the severity of the issue (45).

3 Results

3.1 Literature search and selection process

4,840 articles were identified initially after a literature search. 
Following the removal of 2,037 duplicates, 2,558 articles were deleted 
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after a review of titles and abstracts. Subsequently, the full texts of the 
remaining publications were assessed for eligibility. Ultimately, 54 
studies (46–99) were eligible. The literature screening process is 
illustrated in Figure 1.

3.2 Basic characteristics of the included 
study

The 54 eligible studies (46–99) were all conducted in China and 
involved 4,201 patients. Among them, 2,113 patients in the experimental 
cohort received CMIs+CCRT, while 2,088 in the control cohort received 
only CCRT. Most patients had squamous cell carcinoma (SCC) or 
adenocarcinoma (AC). Two studies (74, 83) focused on adenosquamous 
carcinoma (ASCC), and another two studies (85, 87) included cases of 

undifferentiated carcinoma (UDC). The TNM staging of patients ranged 
from stage I to IV, and the intervention durations varied from 10 to 
112 days. 13 types of CMIs were involved, including AD (11 RCTs), 
FFKS (11 RCTs), SM (4 RCTs), SF (1 RCT), KLT (3 RCTs), KA (4 RCTs), 
HQDT (1 RCT), SQFZ (1 RCT), XAP (3 RCTs), XYP (1 RCT), KSS (2 
RCTs), LXX (5 RCTs), and YDZYR (7 RCTs). Detailed study 
characteristics are presented in Table 1 and Supplementary material 4.

3.3 Methodological quality assessment of 
the included studies

The risk of bias assessment results are presented in Figure 2. With 
respect to bias arising from the randomization process, 51 studies were 
considered to have a potential risk owing to insufficient information 

FIGURE 1

Study identification and selection flowchart.
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TABLE 1  The characteristics of the included studies.

Study Sample 
(I/C)

Gender 
(M/F)

Age (years) (I/C) TNM 
clinical 
stage

Caner type 
(number of 

cases)

Intervention Control Duration Outcomes

Zhao et al. (46) 34/31 45/20 18–71/40–72 III + IV Unknown KLT 100 mL + CCRT
CCRT (\ + CF 200 mg/m2 + 5-FU 500 mg/

m2 + DDP 20 mg/m2)
21d × 3 ①⑥⑧

Yu et al. (47) 53/53 Unknown 20–71 III + IV
SCC (92)

+ AC (14)
AD 50 mL + CCRT

CCRT (60-70Gy + CF 200 mg/m2 + 5-FU 500 mg/

m2 + DDP 20 mg/m2)
20d × 2 ①⑧

Li et al. (48) 37/37 Unknown 40–75 III + IV
SCC (71)

+ AC (3)
FFKS 30 mL + CCRT CCRT (60-70Gy + 5-FU 500 mg/m2 + DDP 30 mg/m2) 21d ①⑧

Zhao et al. (49) 22/21 Unknown 49–75 III + IV SCC (43) AD 50 ml + CCRT CCRT (60Gy + 5-FU 700 mg/m2 + DDP 52.5 mg/m2) 10d ①⑦⑧

He et al. (50) 38/38 Unknown 45–78 Unknown SCC (76) FFKS 15 mL + CCRT CCRT (66-68Gy + PTX 150 mg/m2 + DDP 80 mg/m2) 25-28d ①⑥⑧

Yue et al. (51) 100/100 134/66 55/56 III + IV Unknown
YDZYR 20-

30 mL + CCRT
CCRT (60-66Gy + 5-FU 500 mg/m2 + DDP 15 mg/m2) 28d × 2 ①⑦⑧

Pu (52) 47/47 48/46 53/55 III + IV
SCC (67)

+ AC (27)
SM 60 mL + CCRT CCRT (60-66Gy + 5-FU 500 mg/m2 + DDP 20 mg/m2) 28d ①⑧

Pu(a) (53) 43/43 Unknown 63 III + IV Unknown FFKS 20 mL + CCRT CCRT (60-70Gy + PTX 135 mg/m2 + DDP 80 mg/m2) 21d ①⑧

Sun (54) 40/40 52/28 42–75/40–75 IV SCC (80) FFKS 20 mL + CCRT CCRT (60Gy + 5-FU 250 mg/m2 + DDP 10 mg/m2) 10d × (3–4) ①⑥

Wang (55) 31/31 Unknown 56 III + IV
SCC (54)

+AC (6)
SF 100 ml + CCRT CCRT (60Gy + 5-FU 500 mg/m2 + DDP 20 mg/m2) 5d × 3 ①⑥

Yang et al. (56) 36/36 Unknown 60 III + IV SCC (72) FFKS 20 mL + CCRT CCRT (64-68Gy + 5-FU 500 mg/m2 + DDP 20 mg/m2) 21d ①⑧

Zhao et al. (57) 31/31 43/19 43–69/40–71 Unknown SCC (62) AD 80 mL + CCRT
CCRT (66-70Gy + CF 150 mg/m2 + 5-FU 350 mg/

m2 + DDP 35 mg/m2)
14d × 2 ①⑦⑧

Zhao et al. (58) 32/30 43/19 Unknown III + IV
SCC (59)

+ AC (3)
KSS 30 mL + CCRT CCRT (60Gy + 5-FU 750 mg/m2 + DDP 75 mg/m2) 20d ①⑧

Lin (59) 31/31 Unknown Unknown III + IV Unknown AD 80 mL + CCRT
CCRT (66-70Gy + CF 150 mg/m2 + 5-FU 350 mg/

m2 + DDP 35 mg/m2)
14d × 2 ①⑧

Lu et al. (60) 29/29 43/15 36–74/38–73 III + IV SCC (58)
YDZYR 

30 mL + CCRT

CCRT (60-64Gy + L-OHP 85 mg/m2 + CF 250 mg/

m2 + 5-FU 400-600 mg/m2)
28d ①⑥⑧

Shang et al. 

(61)
30/30 38/22 53.2 ± 10.1/54.8 ± 9.5 III + IV SCC (60) FFKS 20 mL + CCRT CCRT (60Gy + PTX 100 mg/m2 + DDP 20 mg/m2) 10d ①⑥⑧

Zhong et al. 

(62)
30/30 35/25 52.9 ± 6.1/53.3 ± 5.6 III + IV

SCC (39)

+ AC (21)
LXX 500 mg + CCRT CCRT (60-66Gy + 5-FU 500 mg/m2 + DDP 20 mg/m2) 28d × 2 ①⑦⑧

Zhou et al. (63) 42/42 44/40 51/50 III + IV
SCC (58)

+ AC (26)
LXX 500 mg + CCRT CCRT (60-66Gy + 5-FU 500 mg/m2 + DDP 20 mg/m2) 28d × 2 ①⑦⑧

Chen et al. (64) 25/21 Unknown 55–75 III + IV Unknown SQFZ 250 mL + CCRT CCRT (\ + PTX 135 mg/m2 + DDP 40 mg/m2) 14d ①

(Continued)
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TABLE 1  (Continued)

Study Sample 
(I/C)

Gender 
(M/F)

Age (years) (I/C) TNM 
clinical 
stage

Caner type 
(number of 

cases)

Intervention Control Duration Outcomes

Cheng et al. 

(65)
34/33 51/16 55.7 ± 10.4/56.1 ± 9.8 III + IV SCC (67) KA 40 mL + CCRT CCRT (40-50Gy + 5-FU 500 mg/m2 + DDP 20 mg/m2) 42d ①⑧

Liu et al. (66) 23/23 29/17 41–73/40–68 III SCC (46)
YDZYR 

30 mg + CCRT
CCRT (50.4Gy + PTX 45-60 mg/m2) 5d × 6 ①

Luo (67) 36/36 Unknown 57.4 ± 5.6 III + IV Unknown KSS 30 mL + CCRT CCRT (60Gy + 5-FU 750 mg/m2 + DDP 75 mg/m2) 20d ①

Chen (68) 44/44 Unknown 53.3 ± 4.1 III + IV SCC (88) SM 60 mL + CCRT CCRT (60-66Gy + 5-FU 500 mg/m2 + DDP 20 mg/m2) 28d ①⑧

Liu (69) 38/38 Unknown 40–75 III + IV
SCC (72)

+ AC (4)
FFKS 20 mL + CCRT CCRT (60-64Gy + 5-FU 500 mg/m2 + DDP 30 mg/m2) 50d ①

Liu et al. (70) 25/15 Unknown Unknown III + IV Unknown
YDZYR 20-

30 mL + CCRT

CCRT (60-64Gy + 5-FU 500 mg/m2 + DDP 15 mg/m2) 40d ⑦⑧

Lv et al. (71) 43/43 66/20 54.8 ± 8.2/55.3 ± 7.9 III + IV SCC (86) KA 40 mL + CCRT CCRT (40-50Gy + 5-FU 500 mg/m2 + DDP 20 mg/m2) 42d ①②③④⑤⑧

Wang (72) 25/25 39/11 56 ± 5.4/55 ± 4.2 Unknown Unknown AD 80 ml + CCRT CCRT (60Gy + CF 150 mg/m2 + 5-FU 350 mg/

m2 + DDP 35 mg/m2)

14d × 2 ①

Wu (73) 40/40 52/28 66 ± 8/68 ± 6 II + III SCC (80) XAP 60 mL + CCRT CCRT (60-66Gy + DDP 35-40 mg/m2) 21d ①⑧

Cai et al. (74) 37/37 44/30 52.46 ± 7.25/54.12 ± 7.64 III + IV SCC (58)

+ AC (5)

+ ASCC (11)

LXX 500 mg + CCRT CCRT (60-70Gy + DDP 30 mg/m2) 5d × (8–10) ①⑧

Feng et al. (75) 46/46 61/31 49.53 ± 5.98/52.08 ± 6.23 IV SCC (82)

+ AC (10)

AD 50 mL + CCRT CCRT (50-60Gy + CF 300 mg/m2 + 5-FU 750 mg/

m2 + DDP 40 mg/m2)

14d × 2 ①②③④⑧

Jiang (76) 30/30 Unknown 52.1 ± 10.3 III + IV SCC (60) AD + CCRT CCRT (60Gy + 5-FU 700 mg/m2 + DDP 52.5 mg/m2) 14d × 2 ①⑥⑧

Liu et al. (77) 46/46 53/39 58.29 ± 4.06/59.33 ± 3.97 II + III + IV Unknown AD 50 mL + CCRT CCRT (60-66Gy + CF 200 mg/m2 + 5-FU 500 mg/

m2 + DDP 20 mg/m2)

20d × 3 ①②③④⑥

Pan et al. (78) 41/41 53/29 58.6 ± 5.6/59.1 ± 5.5 III + IV Unknown AD 80 ml + CCRT CCRT (66-70Gy + DOC 75 mg/m2 + DDP 20 mg/m2) 14d × 2 ①②③④⑦⑧

Zhou et al. (79) 40/40 45/35 55.2 ± 15.5/54.8 ± 16.3 IV SCC (71)

+ AC (9)

KA 40 ml + CCRT CCRT (60Gy + 5-FU 500 mg/m2 + DDP 20 mg/m2) 5d × (6–7) ①③④⑤⑧

Huang et al. 

(80)

41/41 60/22 63.41 ± 7.82/62.85 ± 7.65 III + IV SCC (77)

+ AC (5)

HQDT 

250 mg + CCRT

CCRT (40-72Gy + 5-FU 500 mg/m2 + DDP 20 mg/m2) (5–6) d × 12 ①

Cheng et al. 

(81)

38/39 44/33 51–72/49–71 I + II + III

+IV

SCC (77) XAP 60 mL + CCRT CCRT (60Gy + 5-FU 750 mg/m2 + DDP 75 mg/m2) 21d × 2 ①⑧

Cui (82) 42/42 57/27 58.3 ± 4.7/59.6 ± 5.8 III + IV SCC (76)

+ AC (8)

YDZYR 30 ml + CCRT CCRT (60Gy + 5-FU 100 mg/m2 + DDP 20 mg/m2) (18–27) d ①⑦

(Continued)
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TABLE 1  (Continued)

Study Sample 
(I/C)

Gender 
(M/F)

Age (years) (I/C) TNM 
clinical 
stage

Caner type 
(number of 

cases)

Intervention Control Duration Outcomes

Han et al. (83) 59/59 92/26 72.15 ± 5.38/69.84 ± 5.97 Unknown SCC (72)

+ AC (31)

+ ASCC (15)

FFKS 20 ml + CCRT CCRT (40-50Gy + PTX 45 mg/m2 + DDP 75-80 mg/m2) 21d ①③④⑤⑦⑧

Xiu et al. (84) 16/16 17/15 55.98 ± 5.44/55.23 ± 6.32 III + IV Unknown AD 80 ml + CCRT CCRT (66-70Gy + DOC 75 mg/m2 + DDP 20 mg/m2) 14d × 2 ①②③④

Zhai (85) 30/30 37/23 49–79/47–75 III + IV SCC (54)

+ AC (1)

+ UDC (5)

YDZYR 30 ml + CCRT CCRT (60-64Gy + PTX 75 mg/m2 + NDP 25 mg/m2) 21d × 2 ①⑥⑧

Chen (86) 52/52 67/37 64.2 ± 0.9/61.2 ± 0.8 III + IV Unknown AD 10 mL + CCRT CCRT (50-70Gy + 5-FU 500 mg/m2 + DDP 30 mg/m2) 56d ①⑧

Lai et al. (87) 23/22 30/15 53.28 ± 8.26/52.97 ± 7.98 III + IV SCC (3)

+ AC (39)

+ UDC (3)

YDZYR 20 ml + CCRT CCRT (60Gy + DOC 75 mg/m2 + NDP 80 mg/m2) 30d ①③④⑤⑧

Zhang (88) 30/30 35/25 64.17 ± 7.40/64.30 ± 7.51 III + IV SCC (60) LXX 80 ml + CCRT CCRT (59.4Gy + PTX 135 mg/m2 + DDP 20 mg/m2) 21d ①⑧

Dong et al. (89) 43/43 49/37 68.3 ± 6.2/67.7 ± 6.1 II + III SCC (86) KLT 200 mL + CCRT CCRT (50-60Gy + S-1 40-60 mg, bid) 21d ①⑦⑧

Liu et al. (90) 60/60 92/28 72.11 ± 3.57/71.03 ± 4.67 III + IV SCC (120) SM 60 mL + CCRT CCRT (45-56Gy + CAPE 1250 mg/m2) (25–28) d ①⑧

Lu et al. (91) 40/40 52/28 71.35 ± 4.12/71.52 ± 3.69 II + III + IV Unknown FFKS 20 mL + CCRT CCRT (≤60Gy + 5-FU 800 mg/m2 + DDP 20 mg/m2) 28d × (2–4) ①②③⑤⑥⑧

Chen (92) 60/60 81/39 61.26 ± 4.17/60.39 ± 4.26 III + IV SCC (88) + AC (32) XAP 60 mL + CCRT CCRT (60Gy + 5-FU 750 mg/m2 + DDP 75 mg/m2) 28d × 4 ①②③④⑧

Cheng et al. 

(93)

48/48 54/42 70.77 ± 6.86/71.25 ± 7.10 IV SCC (96) KA 60 mL + CCRT CCRT (60Gy + S-1 60 mg, bid) 42d ①③④⑤⑧

Liu et al. (94) 35/35 59/11 66.74 ± 7.14/69.51 ± 9.18 Unknown SCC (70) XYP 500 mg + CCRT CCRT (50-60Gy + PTX 50 mg/m2 + CBP AUC 2) 5d × (5–6) ⑧

Mao et al. (95) 34/34 48/20 51.33 ± 6.03/50.91 ± 5.91 III SCC (68) FFKS 15 mL + CCRT CCRT (60Gy + 5-FU 1000 mg/m2 + DDP 75 mg/m2) 21d × 4 ①⑧

An et al. (96) 48/48 51/45 59.70 ± 4.82/59.60 ± 4.45 III + IV Unknown FFKS 12 mL + CCRT CCRT (60-66Gy + PTX 135-175 mg/m2 + NDP 80 mg/

m2)

14d × 4 ①③④⑧

Tian et al. (97) 30/30 34/26 68.14 ± 1.22/68.42 ± 1.32 II + III Unknown KLT 200 mL + CCRT CCRT (50-60Gy + S-1 40-60 mg, bid) 21d ①⑦⑧

Wang et al. (98) 47/43 78/12 71.85 ± 9.44/73.47 ± 9.40 III + IV SCC (90) SM 100 mL + CCRT CCRT (\ + S-1150 mg, bid) 5d/w ①⑧

Wang et al. (99) 58/58 77/39 55.01 ± 4.79/54.85 ± 4.76 III + IV SCC (96)

+ AC (20)

LXX 400 mg + CCRT CCRT (90Gy + PTX 175 mg/m2 + DDP 20 mg/m2) 21d × 3 ①⑧

I, intervention group; C, control group; M, Male; F, female; SCC, squamous cell carcinoma; AC, adenocarcinoma; ASCC, adenosquamous cell carcinoma; UDC, undifferentiated carcinoma; KLT, kanglaite injection; AD, aidi injection; FFKS, fufangkushen injection; SM, 
shenmai injection; SF, shenfu injection; KA, kangai injection; HQDT, astragalus polysaccharides injection; SQFZ, shenqifuzheng injection; XAP, xiaoaiping injection; XYP, xiyanping injection; KSS, matrine injection; LXX, elemene injection; YDZYR, brucea javanica oil 
emulsion Injection; CCRT, concurrent chemoradiotherapy; CF, calcium folinate; 5-FU, 5-fluorouracil; DDP, cisplatin; PTX, paclitaxel; L-OHP, oxaliplatin; DOC, docetaxel; NDP, nedaplatin; S-1, tegafur, gimeracil, and oteracil potassium capsules; CAPE, capecitabine; 
CBP, carboplatin.
Outcomes: ① Clinical effectiveness rate; ② CD3+; ③CD4+; ④ CD8+; ⑤ CD4+/CD8+; ⑥ Performance status; ⑦ Survival rate (1 year); ⑧ Adverse reactions.

https://doi.org/10.3389/fmed.2025.1643598
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al.� 10.3389/fmed.2025.1643598

Frontiers in Medicine 08 frontiersin.org

regarding random sequence generation or the absence of allocation 
concealment, whereas 3 studies were assessed as being at low risk. In 
terms of outcome measurement, one RCT was identified as having a 
potential risk due to reporting only percentages without providing the 
absolute number of participants. All studies were judged to be at low 
risk of bias concerning deviations from intended interventions, missing 
outcome data, and selective outcome reporting. Overall, the included 
studies were determined to have a generally low risk of bias.

3.4 Network analysis results

3.4.1 Network diagram
The 54 included studies encompassed 13 distinct CMIs: AD, 

FFKS, SM, SF, KLT, KA, HQDT, SQFZ, XAP, XYP, KSS, LXX, and 
YDZYR. The network structure of these CMIs is shown in 
Figures 3A–9A. The line thickness is proportional to the number of 
studies comparing pairs of interventions. The circle diameter is 
proportional to participant number in each intervention.

3.4.2 Clinical effectiveness rate
52 studies involving 4,091 patients reported the clinical effectiveness 

rate. Compared with CCRT alone, AD+CCRT (RR = 1.19, 95% CI: 1.10–
1.29), FFKS+CCRT (RR = 0.77, 95% CI: 0.71–0.84), HQDT+CCRT 
(RR = 0.65, 95% CI: 0.43–0.95), KA + CCRT (RR = 0.76, 95% CI: 0.62–
0.91), KLT + CCRT (RR = 0.78, 95% CI: 0.65–0.91), KSS + CCRT 
(RR = 0.78, 95% CI: 0.63–0.93), LXX + CCRT (RR = 0.89, 95% CI: 0.79–
0.98), SM + CCRT (RR = 0.89, 95% CI: 0.79–0.99), XAP + CCRT 
(RR = 0.75, 95% CI: 0.66–0.85), and YDZYR+CCRT (RR = 0.90, 95% CI: 
0.82–0.97) were all associated with significantly higher clinical 

effectiveness. Furthermore, FFKS+CCRT (RR = 1.16, 95% CI: 1.03–1.30) 
and XAP + CCRT (RR = 1.19, 95% CI: 1.03–1.40) showed significantly 
higher effectiveness than YDZYR+CCRT. No other pairwise comparisons 
demonstrated significant differences (Figures  3B,C). According to 
cumulative probability rankings, HQDT+CCRT (SUCRA = 86.7%), 
XAP + CCRT (SUCRA = 77.0%), and KA + CCRT (SUCRA = 73.0%) 
ranked highest for clinical effectiveness (Figure 3D and Table 2).

3.4.3 Performance status
10 studies involving 693 patients reported performance status. 

Compared with CCRT alone, AD+CCRT (RR = 1.77, 95% CI: 1.18–
2.81), YDZYR+CCRT (RR = 1.58, 95% CI: 1.10–2.37), FFKS+CCRT 
(RR = 0.63, 95% CI: 0.50–0.78), KLT + CCRT (RR = 0.39, 95% CI: 
0.17–0.77), and SF + CCRT (RR = 0.50, 95% CI: 0.26–0.85) 
significantly improved KPS. No significant differences were 
observed for other pairwise comparisons (Figures 4B,C). Based on 
cumulative probability results, KLT + CCRT (SUCRA = 85.1%), 
SF + CCRT (SUCRA = 69.9%), and AD+CCRT (SUCRA = 57.6%) 
were ranked as the top three regimens for improving performance 
status (Figure 4D and Table 2).

3.4.4 Survival rate
11 studies involving 919 patients reported the one-year survival 

rate. The one-year survival rates for FFKS+CCRT (RR = 0.79, 95% CI: 
0.63–0.96), LXX + CCRT (RR = 0.77, 95% CI: 0.61–0.96), and 
KLT + CCRT (RR = 0.70, 95% CI: 0.56–0.84) were notably higher in 
comparison to CCRT alone, with statistical significance. Furthermore, 
the one-year survival rate for KLT + CCRT was significantly higher 
than that for AD+CCRT (RR = 0.75, 95% CI: 0.58–0.95) and 
YDZYR+CCRT (RR = 0.76, 95% CI: 0.59–0.96). No significant 

FIGURE 2

Risk of bias assessment. (A) Detailed assessment of risk of bias in included studies. (B) Summary of risk of bias in included studies.
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differences were observed for other pairwise interventions 
(Figures 5B,C). Based on cumulative probability results, KLT + CCRT 
(SUCRA = 90.1%), LXX + CCRT (SUCRA = 72.8%), and 
FFKS+CCRT (SUCRA = 69.2%) were the top three effective schemes 
for increasing the one-year survival rate (Figure 5D and Table 2).

3.4.5 CD3+
Seven studies involving 584 patients reported CD3 + levels. 

Compared with CCRT alone, AD+CCRT (MD = 19.27, 95% CI: 
17.96–20.59), FFKS+CCRT (MD = −10.10, 95% CI: −11.40 to −8.80), 

KA + CCRT (MD = −22.11, 95% CI: −26.44 to −17.70), and 
XAP + CCRT (MD = −2.84, 95% CI: −4.84 to −0.87) significantly 
increased CD3 + levels. AD+CCRT outperformed FFKS+CCRT 
(MD = 9.17, 95% CI: 7.32–11.02) and XAP + CCRT (MD = 16.43, 
95% CI: 14.05–18.80), while KA + CCRT showed higher levels than 
FFKS+CCRT (MD = −12.01, 95% CI: −16.53 to −7.48) and 
XAP + CCRT (MD = 19.26, 95% CI: 14.50–24.01). FFKS+CCRT also 
exceeded XAP + CCRT (MD = 7.25, 95% CI: 4.89–9.63). Statistically 
significant differences did not exist across other paired interventions 
(Figures  6B,C). Cumulative probability results revealed that 

FIGURE 3

(A) Network graphs of clinical effectiveness rate. (B) Forest plot of clinical effectiveness rate. (C) League table of clinical effectiveness rate. 
(D) Cumulative probability line chart of clinical effectiveness rate. (E) Funnel plot of clinical effectiveness rate: A: AD+CCRT; B: CCRT; C: FFKS+CCRT; 
D: HQDT+CCRT; E: KA + CCRT; F: KLT + CCRT; G: KKS + CCRT; H: LXX + CCRT; I: SF + CCRT; J: SM + CCRT; K: SQFZ+CCRT; L: XAP + CCRT; 
M: YDZYR+CCRT.
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KA + CCRT (SUCRA = 97.2%), AD+CCRT (SUCRA = 77.8%), and 
FFKS+CCRT (SUCRA = 50.0%) were the top three effective strategies 
for enhancing CD3 + levels (Figure 6D and Table 2).

3.4.6 CD4+
12 studies involving 1,019 patients reported on CD4 + levels. The 

results showed that AD+CCRT (MD = 14.36, 95% CI: 13.19–15.53), 
YDZYR+CCRT (MD = 6.82, 95% CI: 4.27–9.38), FFKS+CCRT 
(MD = −9.29, 95% CI: −10.15 to −8.44), KA + CCRT (MD = −8.89, 
95% CI: −10.26 to −7.54), and XAP + CCRT (MD = −2.89, 95% CI: 
−4.52 to −1.26) significantly elevated CD4 + levels compared to 

CCRT alone, with statistical significance. Additionally, AD+CCRT 
was significantly more effective than YDZYR+CCRT (MD = 7.54, 
95% CI: 4.71–10.35), FFKS+CCRT (MD = 5.07, 95% CI: 3.61–6.52), 
KA + CCRT (MD = 5.47, 95% CI: 3.67–7.26), and XAP + CCRT 
(MD = 11.47, 95% CI: 9.46–13.49). CD4 + levels with YDZYR+CCRT 
(MD = 3.93, 95% CI: 0.9–6.97), FFKS+CCRT (MD = 6.40, 95% CI: 
4.56–8.24), and KA + CCRT (MD = 6.00, 95% CI: 3.88–8.13) were all 
significantly higher than those with XAP + CCRT. Statistically 
significant differences were not noted between other pairwise 
treatments(Figures  7B,C). Cumulative probability results 
demonstrated that AD+CCRT (SUCRA = 99.9%), FFKS+CCRT 

FIGURE 4

(A) Network graphs of performance status. (B) Forest plot of performance status. (C) League table of performance status. (D) Cumulative probability 
line chart of performance status. (E) Funnel plot of performance status: A: AD+CCRT; B: CCRT; C: FFKS+CCRT; D: KLT + CCRT; E: SF + CCRT; 
F: YDZYR+CCRT.
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(SUCRA = 73.0%), and KA + CCRT (SUCRA = 64.7%) were the 
three most effective measures for enhancing CD4 + levels (Figure 7D 
and Table 2).

3.4.7 CD8+
11 studies (939 patients) reported CD8 + levels. AD+CCRT 

(MD = −8.80, 95% CI: −10.51 to −7.09) and FFKS+CCRT 
(MD = 4.48, 95% CI: 3.42–5.54) showed significant increases versus 
CCRT alone. AD+CCRT outperformed YDZYR+CCRT (MD = −7.52, 
95% CI: −10.33 to −4.70), FFKS+CCRT (MD = −4.32, 95% CI: −6.33 
to −2.31), KA + CCRT (MD = −8.23, 95% CI: −10.27 to −6.19), and 
XAP + CCRT (MD = −7.39, 95% CI: −9.66 to −5.14). FFKS+CCRT 

surpassed YDZYR+CCRT (MD = 3.20, 95% CI: 0.72–5.68), 
KA + CCRT (MD = −3.92, 95% CI: −5.46 to −2.39), and 
XAP + CCRT (MD = −3.08, 95% CI: −4.89 to −1.26). No other 
significant differences were noted (Figures 8B,C). SUCRA rankings 
were AD+CCRT (SUCRA = 99.9%), FFKS+CCRT (SUCRA = 79.9%), 
XAP + CCRT (SUCRA = 46.4%) (Figure 8D and Table 2).

3.4.8 CD4+/CD8+
Six studies (505 patients) reported the CD4+/CD8 + ratio. 

FFKS+CCRT (MD = −0.64, 95% CI: −0.72 to −0.56) and KA + CCRT 
(MD = −0.32, 95% CI: −0.38 to −0.26) significantly increased the 
ratio versus CCRT alone. FFKS+CCRT was superior to 

FIGURE 5

(A) Network graphs of survival rate. (B) Forest plot of survival rate. (C) League table of survival rate. (D) Cumulative probability line chart of survival rate. 
(E) Funnel plot of survival rate: A: AD+CCRT; B: CCRT; C: FFKS+CCRT; D: KLT + CCRT; E: LXX + CCRT; F: YDZYR+CCRT.
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YDZYR+CCRT (MD = −0.48, 95% CI: −0.69 to −0.28) and 
KA + CCRT (MD = 0.32, 95% CI: 0.22–0.42). Other comparisons 
were nonsignificant (Figures  9B,C). SUCRA rankings were 
FFKS+CCRT (SUCRA = 99.9%), KA + CCRT (SUCRA = 64.7%), 
YDZYR+CCRT (SUCRA = 33.6%) (Figure 9D and Table 2).

3.5 Cluster analysis

To determine the best treatment for EC based on key outcome 
markers, cluster analysis was performed. Two-dimensional results 
indicated AD+CCRT as the preferred treatment for improving CD4 + and 

CD8 + cell counts. For enhancing performance status and improving 
one-year survival rates, KLT + CCRT was identified as the most optimal 
approach. KA + CCRT, positioned furthest from the origin, demonstrated 
the greatest effect for improving CD3+. The combination of FFKS and 
radiochemotherapy was the most effective in enhancing CD4+/CD8 + 
(Figure 10).

3.6 AEs

43 studies reported AEs. It should be noted that all AEs in this 
study were descriptively summarized, without statistical 

FIGURE 6

(A) Network graphs of CD3+. (B) Forest plot of CD3+. (C) League table of CD3+. (D) Cumulative probability line chart of CD3+. (E) Funnel plot of 
CD3+: A: AD+CCRT; B: CCRT; C: FFKS+CCRT; D: KA + CCRT; E: XAP + CCRT.
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comparisons between groups; therefore, the results are intended for 
clinical reference only and should be  interpreted with caution. 
Reported AEs included hematotoxicity and bone marrow 
suppression, leukopenia, thrombocytopenia, anemia, neutropenia, 
gastrointestinal reactions, nausea and vomiting, anorexia, fatigue, 
radiation esophagitis, radiation pneumonia, abnormal liver and 
kidney function, renal impairment, hepatotoxicity, peripheral 
neuropathy, alopecia, fever, infection, esophageal or oral mucosal 
reactions, cutaneous allergic reactions, radiation enteritis, radiation 
cystitis, hypoproteinemia, and aspiration pneumonia. Specifically, 
hematotoxicity and bone marrow suppression were more frequently 
observed in the YDZYR+CCRT group (77.29%); leukopenia and 

thrombocytopenia were more common in the SM + CCRT group, 
with incidences of 31.82 and 30.81%, respectively; gastrointestinal 
reactions occurred at a relatively high frequency in the 
YDZYR+CCRT group (49.28%); nausea and vomiting were more 
frequent in the XAP + CCRT group (15.33%); anorexia, fatigue, and 
radiation pneumonia were more common in the KSS + CCRT 
group, with incidences of 15.63, 12.50, and 28.13%, respectively; 
radiation esophagitis occurred most frequently in the XYP + CCRT 
group (82.86%); abnormal liver and kidney function was more 
frequent in the LXX + CCRT group (9.64%); alopecia and 
peripheral neuropathy were also observed in the YDZYR+CCRT 
group, with incidences of 4.35 and 3.38%, respectively; fever and 

FIGURE 7

(A) Network graphs of CD4+. (B) Forest plot of CD4+. (C) League table of CD4+. (D) Cumulative probability line chart of CD4+. (E) Funnel plot of 
CD4+: A: AD+CCRT; B: CCRT; C: FFKS+CCRT; D: KA + CCRT; E: XAP + CCRT; F: YDZYR+CCRT.
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esophageal or oral mucosal reactions were more common in the 
AD+CCRT group, with incidences of 2.86 and 11.79%, respectively. 
Additionally, anemia (15.33%), neutropenia (5.00%), infection 
(1.07%), renal impairment (2.83%), cutaneous allergic reactions 
(12.26%), radiation enteritis (8.03%), radiation cystitis (9.49%), 
hypoproteinemia (14.65%), and aspiration pneumonia (1.21%) 
were each reported in a single study of CMIs. The results are 
summarized in Table 3. Overall, descriptive data indicate variation 
in the incidence of AEs across treatment groups. Notably, 
AD+CCRT and FFKS+CCRT demonstrated comparatively lower 
incidences of the most common AEs, hematotoxicity and bone 
marrow suppression, nausea and vomiting, and radiation 

esophagitis, suggesting a potentially more favorable safety profile. 
Importantly, none of the CMIs were associated with severe AEs. 
Future research employing well-designed prospective studies is 
warranted to further validate safety differences among CMIs and 
elucidate the underlying mechanisms (Table 3).

3.7 Consistency analysis, convergence 
diagnostics, and heterogeneity assessment

The consistency of the results was assessed by comparing the DIC 
values between the consistency and inconsistency models. For all 

FIGURE 8

(A) Network graphs of CD8+. (B). Forest plot of CD8+. (C) League table of CD8+. (D) Cumulative probability line chart of CD8+. (E) Funnel plot of 
CD8+: A: AD+CCRT; B: CCRT; C: FFKS+CCRT; D: KA + CCRT; E: XAP + CCRT; F: YDZYR+CCRT.
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outcome measures, the DIC differences were less than 5, indicating a 
high degree of concordance between the models; detailed results are 
provided in Supplementary material 5. Convergence diagnostics 
demonstrated that, following iterative computation, all outcome 
parameters steadily approached a PSRF of 1, suggesting that the 
results are robust and reliable (Supplementary material 6). 
Heterogeneity analysis revealed low heterogeneity for clinical 
effectiveness rate, performance status, and survival rate, whereas 
CD3+ exhibited moderate heterogeneity. In contrast, high 
heterogeneity was observed for CD4+, CD8+, and CD4+/CD8+. 
Clinically, this heterogeneity may be  attributable to variations in 
patients’ baseline immune status, differences in treatment protocols, 

or inconsistencies in assay methodologies. Detailed findings are 
presented in Supplementary material 7.

3.8 Publication bias

Funnel plots and Egger’s test were employed to evaluate publication 
bias for all outcome indicators. The results of Egger’s test are detailed in 
Supplementary material 8. As illustrated in Figures 3E–7E, the funnel 
plots for clinical effectiveness rate, performance status, one-year survival 
rate, CD3+, and CD4 + appeared visually symmetrical, and Egger’s test 
revealed no significant differences (p > 0.05), indicating the absence of 

FIGURE 9

(A) Network graphs of CD4+/CD8+, (B) Forest plot of CD4+/CD8+. (C) League table of CD4+/CD8+. (D) Cumulative probability line chart of CD4+/
CD8+. (E) Funnel plot of CD4+/CD8+: A: CCRT; B: FFKS+CCRT; C: KA + CCRT; D: YDZYR+CCRT.
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publication bias among these studies. In contrast, although Egger’s test 
for CD8 + and CD4+/CD8 + did not demonstrate significant differences 
(p > 0.05), the funnel plots were not fully symmetrical, suggesting the 
potential presence of some publication bias (Figures 8E, 9E).

3.9 CINeMA evidence evaluation

The quality of evidence for seven outcome indicators was 
assessed using the CINeMA framework. All evidence was classified 
as either “low” or “moderate.” For clinical effectiveness rate, most 
comparisons were rated “moderate,” with only CCRT versus 
SF + CCRT and CCRT versus SQFZ+CCRT downgraded to “low” 
due to severe imprecision. Evidence for performance status was 
primarily rated “low” due to substantial heterogeneity. Survival rate 
was mainly rated “low” for most comparisons, attributable to both 
imprecision and heterogeneity. Most comparisons for CD3 + and 
CD4 + were rated “moderate,” although CCRT versus XAP + CCRT 
and CCRT versus YDZYR+CCRT were downgraded to “low” owing 
to imprecision and heterogeneity, respectively. All evidence for 
CD8 + and CD4+/CD8 + was rated “low,” reflecting imprecision or 
heterogeneity. Detailed CINeMA assessment results are provided in 
Supplementary material 9.

4 Discussion

This is the first NMA comparing the efficacy and safety of various 
CMIs combined with CCRT in the treatment of EC. A total of 54 eligible 
RCTs were included in the meta-analysis. Our results indicate that 
HQDT+CCRT is the most effective regimen for enhancing the clinical 
effectiveness rate; KLT + CCRT is most effective for improving 
performance status and the one-year survival rate; KA + CCRT 
demonstrates the greatest efficacy in increasing CD3 + levels; AD+CCRT 
is most effective in raising CD4 + and CD8 + levels; and FFKS+CCRT is 
the optimal regimen for enhancing the CD4+/CD8 + ratio. All treatment 
regimens showed favorable safety profiles, with no serious AEs reported. 
Regarding clinical effectiveness, APS exhibits a notable advantage. APS, 
the active component of Astragalus membranaceus, primarily exerts 
anticancer effects via immune activation, promotion of tumor cell 
apoptosis, and inhibition of lipid metabolism (100). APS can upregulate 
expression of TP73 and FBXW7 proteins, while downregulating Ki67 
expression, thereby effectively inhibiting EC cell proliferation, with this 
inhibitory effect being dose-dependent (101). Additionally, APS 
promotes autophagy in EC109 cells by increasing Beclin1 and LC3 
expression and decreasing the protein levels of P62 (102). Regulation of 
cytokine and chemokine expression is critical for alleviating the 
inflammatory state of tumors (103, 104). Sun et al. (105) demonstrated 

TABLE 2  Summary of SUCRA.

SUCRA Clinical 
effectiveness 

rate

Performance 
status

Survival 
rate

CD3+ CD4+ CD8+ CD4+/
CD8+

AD + CCRT 0.46679792 0.575698 0.29047 0.7775637 0.996998 0.998985 —

CCRT 0.04460542 0.003406 0.047849 0.0006525 0.000054 0.064263 0.01615667

FFKS + CCRT 0.70849208 0.43173 0.692006 0.50001 0.729628 0.798763 0.99999667

HQDT + CCRT 0.86669292 — — — — — —

KA + CCRT 0.72962542 — — 0.9724162 0.64698 0.263232 0.64748833

KLT + CCRT 0.68458 0.851393 0.900915 — — — —

KSS + CCRT 0.67220917 — — — — — —

LXX + CCRT 0.31749208 — 0.727619 — — — —

SF + CCRT 0.32967625 0.699153 — — — — —

SM + CCRT 0.31427458 — — — — — —

SQFZ+CCRT 0.32368333 — — — — — —

XAP + CCRT 0.76954917 — — 0.2493575 0.201022 0.46413 —

YDZYR+CCRT 0.27232167 0.43862 0.341141 — 0.422348 0.409623 0.33635833

FIGURE 10

cluster plot. (A) Survival rate and Performance status; (B) CD8 + and CD4+; (C) CD4+/CD8 + and CD3+.
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TABLE 3  Summary of adverse reactions.

Intervention AD +  
CCRT

FFKS + 
 CCRT

KA +  
CCRT

KLT + 
 CCRT

KSS +  
CCRT

LXX +  
CCRT

SM +  
CCRT

XAP +  
CCRT

XYP +  
CCRT

YDZYR +  
CCRT

SQFZ +  
CCRT

Samplesize 280 365 165 106 32 197 198 137 35 207 46

Hematotoxicity and bone marrow 

suppression
37(13.21%) 38(10.41%) 32(19.39%) 44(41.51%) 3(9.38%) 38(19.29%) 28(14.14%) 12(8.76%) — 160(77.29%) 25(54.35%)

Leukopenia 34(12.14%) 70(19.18%) 8(4.85%) — — 42(21.32%) 63(31.82%) 10(7.30%) — — —

Thrombocytopenia 4(1.43%) 20(5.48%) — — — 37(18.78%) 61(30.81%) 19(13.87%) — — —

Anemia — — — — — — — 21(15.33%) — — —

Neutropenia 14(5.00%) — — — — — — — — — —

Gastrointestinal reactions 73(26.07%) 88(24.11%) 32(19.39%) 10(9.43%) — 55(27.92%) 63(31.82%) — — 102(49.28%) 25(54.35%)

Nausea and vomiting 34(12.14%) 5(1.37%) 4(2.42%) — 2(6.25%) 12(6.09%) — 21(15.33%) — 1(0.48%) —

Anorexia 4(1.43%) 14(3.84%) — — 5(15.63%) — — — — — —

Fatigue 14(5.00%) — — — 4(12.50%) — — — — — —

Radiation esophagitis 74(26.43%) 26(7.12%) 44(26.67%) — 22(68.75%) 105(53.30%) 90(45.45%) 33(24.09%) 29(82.86%) 89(43.00%) 25(54.35%)

Radiation pneumonia 7(2.50%) 22(6.03%) — 5(4.72%) 9(28.13%) 41(20.81%) 28(14.14%) 4(2.92%) 8(22.86%) — 25(54.35%)

Abnormal liver and kidney 

function
5(1.79%) 3(0.82) — — — 19(9.64%) — — — — —

Renal impairment — — — 3(2.83%) — — — — — — —

Liver toxicity — — — 7(6.60%) — 13(6.60%) — — — — —

Peripheral neuropathy 2(0.71%) — — — — — — — — 7(3.38%) —

Alopecia — — 1(0.61%) — — — — — — 9(4.35%) —

Fever 8(2.86%) — — — — — — — — 2(0.97%) —

Infection 3(1.07%) — — — — — — — — — —

Esophageal or oral mucosal 

reactions
33(11.79%) — — — — — — — — 7(3.38%) —

Skin allergy — — — 13(12.26%) — — — — — — —

Radiation enteritis — — — — — — — 11(8.03%) — — —

Radiation cystitis — — — — — — — 13(9.49%) — — —

Hypoproteinemia — — — — — — 29(14.65%) — — — —

Aspiration pneumonia — — 2(1.21%) — — — — — — — —
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that a 7-day preoperative injection of APS (1 mg/kg, once daily) 
significantly reduced serum levels of IL-6, IL-12, and VEGF in EC 
patients, potentially mediated via the p-AKT signaling pathway. Chen 
et al. (106) further reported that APS significantly decreased PI3K and 
Akt expression in EC rats, with tumor inhibition rates of 45.59% 
(400 mg/kg), 32.35% (200 mg/kg), and 17.65% (100 mg/kg) under 
different dosing regimens. A randomized open-label clinical trial 
evaluating the combination of APS with CCRT for locally advanced EC 
is currently underway (107). Notably, although APS ranked highest for 
improving clinical effectiveness, only one study is available; thus, its 
ranking should be interpreted cautiously, and clinical use should consider 
multiple factors to maximize therapeutic benefit.

Approximately 60 to 80% of patients with EC experience 
malnutrition, weight loss, and cachexia, which significantly impair their 
quality of life and survival rates (108). KLT has demonstrated significant 
benefits in improving performance status and the one-year survival rate. 
Its main component, Coix seed oil, derived from Coix lacryma-jobi L 
(Poaceae), exhibits spleen-strengthening, dampness-resolving, and 
detoxifying effects, enhancing immune function and significantly 
improving patient quality of life (109, 110). Liu et al. (111) observed that 
oral administration of Coix seed oil (2.5 mL·kg−1·d−1) in cachectic mice 
markedly reduced weight loss, ameliorated muscle and fat atrophy, and 
did not affect food intake or tumor burden. Coix seed oil reduced muscle 
protein degradation and excessive lipolysis by lowering HSL 
phosphorylation in the AMPK signaling pathway and suppressing 
MuRF1 expression in the NF-κB pathway. These findings suggest 
potential long-term benefits in improving quality of life, warranting 
further investigation. In triple-negative breast cancer models, KLT 
effectively blocked cell cycle progression at the G2/M phase by 
downregulating CDK1, CDK2, and CHEK1, inhibiting CDC25A, 
CDC25B, MELK, and AURKA activity, suppressing mitosis, and 
inducing apoptosis (112). In terms of adjuvant therapy, KLT increases 
cancer cell sensitivity to chemotherapeutics via JAK2/STAT3 and NF-κB 
pathway modulation, downregulating MDR1, MRP1, and PVT1, while 
mitigating chemotherapy-related adverse effects. It has been widely 
applied in liver, gastric, NSCLC, and colorectal cancers (113–116).

KA shows significant efficacy in enhancing CD3 + T lymphocyte 
levels. Composed of extracts from Ginseng Radix et Rhizoma, Sophorae 
Flavescentis Radix, and Astragali Radix, it contains 11 alkaloids, 8 
astragalosides, and 28 ginsenosides (117). Pharmacological studies have 
shown that Astragalus enhances immune function, mitigates myocardial 
ischemia–reperfusion injury, and possesses multiple pharmacological 
actions, including anti-inflammatory, antioxidant, and anti-tumor effects 
(118, 119). Ginsenosides from Ginseng modulate T lymphocyte subsets, 
improving cellular immunity and conferring anti-fatigue, anti-aging, and 
neuroprotective effects (120–122). Sophora has demonstrated excellent 
antiviral activity and liver-protective effects (123). The synergistic effects 
of KA combined with radiotherapy or chemotherapy for EC have been 
validated clinically, with underlying mechanisms under investigation 
(124–127). Li et al. (128) used network pharmacology to identify 87 
active ingredients, 172 potential therapeutic targets for EC, and the major 
implicated PI3K/AKT pathway in KA. Cell experiments further 
confirmed that the primary components, Astragaloside IV and 
Ginsenoside Rk3, demonstrate anti-EC effects through the suppression 
of the PI3K-AKT signaling pathway (129, 130). Pharmacokinetic studies 
revealed that the terminal elimination half-life (t1/2) of Oxymatrine, the 
index component of KA, in rat plasma was 2.73 ± 1.16 h, with a 
cumulative maximum concentration (Cmax) of 422.70 ± 55.50 nmol·L−1, 

total plasma clearance (CLtot) of 111.34 ± 18.49 mL·h−1·kg−1, area under 
the concentration-time curve (AUC0-t) of 502.71 ± 93.02 nmol·L−1·h−1, 
and steady-state volume of distribution (Vss) of 220.11 ± 53.82 mL·kg−1. 
Additionally, studies have shown that KA exhibits weak inhibition of 
major drug-metabolizing enzymes, CYP and UGT isoenzymes, and is 
unlikely to cause significant drug–drug interactions (DDIs), which 
enhances its clinical safety and convenience (131).

AD demonstrates significant efficacy in enhancing CD4 + and 
CD8 + T cell counts in EC patients. Primarily composed of 
ginseng, eleutherococcus, astragalus, and cantharidin, AD exerts 
dual effects of tonifying qi and augmenting vital energy while 
simultaneously expelling pathogenic factors and detoxifying, 
particularly suitable for EC patients with qi-deficiency and toxin-
stasis patterns presenting with fatigue, dysphagia, and dark 
purple tongue (132). As a classical TCM formulation, AD exhibits 
notable anticancer activity in  vitro and in  vivo against 
gastrointestinal tumors. Lu et al. (133) reported that AD targets 
BIRC5 and FEN1, genes closely linked to immune modulation, 
producing substantial anticancer effects in HCC patients via the 
combined action of cantharidin, formononetin, and isofraxidin. 
Furthermore, AD regulates the Th1/Th2 immune balance in 
advanced colorectal cancer sufferers, increasing serum levels of 
prealbumin, IgA, and IgG, thereby effectively improving the 
patient’s immune status (134, 135). The meta-analysis by Huang 
et al. (28) proved that AD in combination with radiochemotherapy 
significantly improves objective response rate and functional 
status, and reduces bone marrow suppression (BMS), 
chemotherapy-induced nausea and vomiting (CINV), and 
radiation esophagitis (RE) in patients with unresectable EC.

Interestingly, reductions in CD8 + T cell counts following AD 
treatment were associated with improved prognosis, which may reflect 
its immune-regulatory effects. Prolonged antitumor immune responses 
can drive CD8 + T cells toward functional exhaustion, impairing 
cytotoxic efficacy, potentially influenced by tumor microenvironment 
(TME) alterations, immunosuppressive mechanisms, and tumor 
immune evasion (136, 137). Post-treatment reduction of dysfunctional 
CD8 + T cells may facilitate the activation of other functionally 
competent immune cells, thereby improving overall immune status. 
Shi et al. (138) demonstrated that AD suppresses EC cell invasiveness 
and migration by inhibiting EMT signaling and VEGF expression. 
Notably, modulating EMT signaling may impact cancer-associated 
fibroblasts (CAFs) in the TME, improve T cell function, and enhance 
immune surveillance (139). The underlying mechanisms may involve 
inhibition of CAF activation, reduction of TGF-β secretion, and 
decreased aggregation of regulatory T cells (Tregs) and myeloid-
derived suppressor cells (MDSCs), thereby diminishing recruitment 
and infiltration of immunosuppressive cells, and creating a more 
favorable TME for CD8 + T cells (140, 141). Additionally, modulation 
of the EMT signaling pathway may alter intercellular communication 
and cytokine networks in the TME, promoting anti-tumor immune 
responses and enhancing the anti-tumor activity of T cells (140). Anti-
PD-L1 therapy, which enhances T cell antitumor function by 
alleviating PD-1/PD-L1-mediated suppression, acts via a similar 
mechanism, highlighting that functional restoration of CD8 + T cells 
may be more critical than mere increases in cell number (142, 143). 
Additional quality research is required to validate these results.

FFKS demonstrates significant benefits in improving the CD4+/
CD8 + ratio. FFKS comprises Sophora flavescens Aiton (Fabaceae) and 
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Smilax glabra Roxb (Smilacaceae) (144). Research indicates that these 
two herbal components exhibit a notable synergistic effect in their 
anticancer properties (145). The primary component, Sophora flavescens 
Aiton, acts on various stages of the cell cycle, effectively inducing 
apoptosis and inhibiting tumor cells in the G0, G1, S, G2, and M phases, 
while further blocking cancer cell growth by suppressing energy 
metabolism and DNA repair pathways (146–148). Its primary alkaloid, 
matrine, modulates dendritic cell (DC) maturation by reducing ROS, 
activating ERK1/2 signaling, and inhibiting NF-κB, thereby regulating 
CD4 + and CD8 + T cell proliferation, increasing Treg proportions, and 
significantly affecting the CD4+/CD8 + ratio (149). Although Smilax 
glabra Roxb contains relatively fewer chemical components, its 
combination with Sophora flavescens Aiton not only enhances the 
cytotoxic effects against cancer cells but also strengthens the body’s 
immune response to tumors by upregulating Interleukin-1β expression 
(145). Zhu et al. (150) reported that nude mice inoculated with EC9706 
cells and administered 200 μL/d of FFKS intraperitoneally for 4 weeks 
exhibited reduced PCNA and Bcl-2 expression and a tumor inhibition 
rate of 49%, likely mediated by caspase-3 activation and Fas upregulation. 
Moreover, Zhou et al. (151), through WGCNA analysis combined with 
network pharmacology methods, identified ErbB2, CCND1, and IGF1R 
as potential targets of FFKS for EC therapy. Pharmacokinetic studies in 
rats demonstrated the t1/2 of FFKS of 1.449 ± 0.496 h, Cmax of 
2.032 ± 7.151 μg/mL, AUC0-t of 7,397 ± 2,082 ng·mL−1·h−1, volume of 
distribution during elimination (Vz) of 1.171 ± 0.422 L·kg−1, and terminal 
clearance (CLz) of 0.579 ± 0.179 L·h−1·kg−1. These results suggest that 
FFKS exhibits favorable pharmacokinetic properties in nude mice (152).

4.1 Limitations

Firstly, there existed geographical limitations. Although an 
extensive search was performed across eight databases, the included 
RCTs primarily involved Chinese populations. Consequently, the 
generalizability of our findings to other regions or populations 
remains uncertain. Clinical applications should carefully consider 
population characteristics and regional variations in medical practice. 
Secondly, the number of studies for certain CMIs was limited, 
particularly HQDT, SQFZ, SF, and XAP, for which only one RCT was 
available, reducing the reliability of these results. Further 
pharmacological studies and high-quality RCTs are therefore 
required to substantiate these findings. Thirdly, long-term data were 
lacking. This study mainly focused on short-term outcomes, 
including survival rates and quality of life, without fully addressing 
the long-term prognosis of patients with EC. Future research should 
place greater emphasis on long-term efficacy and clinically 
meaningful outcomes. Fourthly, limitations in study design were 
evident. Some RCTs lacked effective blinding, potentially introducing 
bias. Additionally, subgroup analyses were not feasible due to 
insufficient data, further affecting the robustness of the results. It 
should be noted that, although our study suggests potential efficacy 
advantages of specific CMIs combined with CCRT, CINeMA 
assessment indicated that the quality of evidence for all outcomes was 
only low to moderate. Therefore, current findings are insufficient to 
form strong clinical recommendations, and practical application 
should integrate individual patient characteristics. Further 
verification through rigorously designed, multicenter RCTs is needed.

5 Conclusion

Our Bayesian NMA demonstrated that CMIs combined with 
CCRT significantly improve the health status of patients with EC, 
reduce toxic side effects, and enhance quality of life. Among the CMIs, 
HQDT, KLT, KA, AD, and FFKS, when combined with CCRT, showed 
potential as preferred treatment options for EC. Notably, although 
HQDT ranked highest in clinical effectiveness, this finding is based on 
a single RCT and requires further validation. Given that CINeMA rated 
the overall evidence quality as low to moderate, future high-quality, 
large-scale, double-blind RCTs are needed to confirm these conclusions.
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