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As artificial intelligence (AI) continues to evolve, its integration into medical
practice is becoming increasingly prominent, particularly in the field of
neuro-oncology. This review examines the application of AI—specifically
machine learning (ML) and deep learning (DL)—in the imaging evaluation of
brain metastases (BM). A systematic search of PubMed was conducted to identify
relevant studies published within the past 5 years. The retrieved literature was
categorized and analyzed according to three key clinical tasks: segmentation,
differential diagnosis, and prognostic prediction. We first outline the capabilities
of AI in the automatic detection and segmentation of BM using advanced
imaging techniques. Subsequently, we synthesize evidence on how AI aids
in distinguishing BM from other intracranial structures and lesions. Finally,
we discuss the emerging role of AI in predicting disease prognosis and the
development of new metastatic abnormalities. Current evidence suggests that
AI not only enhances diagnostic efficiency and reproducibility but also provides
clinically meaningful insights that support personalized treatment planning.
Importantly, the integration of AI into neuro-oncological imaging remains at a
nascent stage, indicating substantial potential for future growth and refinement
in both technical performance and clinical applicability.
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1 Introduction

BM represent secondary malignant lesions that disseminate to the brain from
primary extracranial tumors via hematogenous or lymphatic pathways. With continued
improvements in cancer patient survival, the incidence of BM has risen significantly,
currently affecting between 10% and 40% of all cancer patients (1). The most frequent
primary malignancies leading to BM include lung cancer, breast cancer, melanoma, renal
cell carcinoma, and colorectal cancer. Notably, non-small cell lung cancer (NSCLC) alone
accounts for BM in approximately 28.6% of cases (2).

Artificial intelligence (AI), a rapidly advancing discipline within computer science,
aims to emulate human cognitive functions to address complex problems. A core goal
of AI is to develop systems capable of autonomous reasoning and decision-making, with
performance levels that can meet or exceed human expertise in specific domains. In
healthcare, AI algorithms are increasingly being deployed to improve diagnostic precision,
prognosticate clinical outcomes, accelerate drug development, and enhance the efficiency
of large-scale data analysis in biomedical research.

Through a comprehensive review and synthesis of current literature, we have identified
and summarized key advancements in AI applications for BM management. An overview
of this process is illustrated in Figure 1.
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FIGURE 1

Specific steps for filtering articles. A total of 3,653 articles on AI were collected. Eight hundred and twenty-three articles were excluded based on age,
but 1 prospective article was retained. One thousand three hundred and twenty-five articles were excluded based on article type, and 1,298 articles
were excluded based on content relevance. Finally, 32 articles were retained through intensive reading.

2 Application of AI in BM detection
and segmentation

The integration of AI into the detection and segmentation
of BM reflects a critical alignment between unmet clinical
demands and technological feasibility. Current evidence indicates
that AI holds considerable promise for improving diagnostic
accuracy, reducing missed diagnoses, and supporting more precise
treatment planning. Research efforts are primarily concentrated
on high-resolution MRI, while exploration of emerging imaging

techniques—as well as the fusion of multimodal imaging
data—represents a major direction for future innovation. Key
developments in this domain are summarized in Table 1.

2.1 Detection and segmentation in single
sequence MRI

BM represent a frequent and serious complication of systemic
cancer, profoundly affecting patient survival and quality of life.
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TABLE 1 Summary of diagnostic models for brain metastases.

Models DeepMedic-
based
CAD

3D V-Net CNN nnU-Net DLS Deep learning
ensemble
ModelnnDetection
nnU-Net
DeepMedic+

CE + NECT
modle vs.
CECT model

Expand nnU-Net
(ADS/ADL)

2.5D DeepLabv3
Network +
Input level
dropout layer

SimU-Net

Authors Fairchild et al. Hsu et al. Park et al. Bartosz Machura et al. Hidemasa Takao
et al.

Youngjin Yoo et al. Darvin Yi et al. Yonny Hammer et al.

Number of
patients

135 511 101+243 275 116 2092 100+57 169+57

Exclusion
criteria

After brain treatment
and small cell
carcinoma

No brain metastases
or other brain tumors

No follow-up MRI
patient, non-primary
lung cancer source

Lack of required sequence
images; presence of motion
artifacts

Lesions that have
not been confirmed
by radiologists;
Missing image

Only those with brain
parenchymal metastases
measuring ≥ 2 mm;
Lesions adjacent to the
surgical bed

History of surgery or
radiation therapy;
missing image

Non metastatic cancer;
Recently underwent
craniotomy surgery; Lack
of continuous scanning
data

Conclusion Sensitive to small,
difficult-to-detect
metastases (<3 mm
sensitivity, 79%), with a
low false-positive rate (2
per patient).

Segmentation
performance (DSC
0.76), false positive
rate of 2.4 per patient

DLS enhances
repeatability (CCC
0.918), decreases
reading time (9.6
seconds), and has a
sensitivity of 90.2%

Recall rate: 0.664; Supports
automatic tracking of
disease progression

PPV increased to
44.0%; significantly
reducing false
positives.

Sensitivity for detecting
small lesions (<0.1 cm 3)
is 0.824; Average DSC
0.758; HD95 1.45 mm

The best performance is
achieved with small
datasets; robustness to
missing pulse
sequences.

Superior to single scan
models in longitudinal
detection, the accuracy of
automatically matching
lesion changes is 100%

Limitations Single-center data,
utilizing solely
T1-weighted MRI

Iodine contrast agent,
overestimation of
lesion volume, and
the false positive
impact on fully
automated
applications.

Applicable only to
lung cancer patients;
not applicable to
other conditions.

The number of patients is
limited; the performance of
large lesions is unknown.

Not compared with
radiologists; a small
amount of data

There are observer
differences in the true
contour; the quality of
lesion annotation is
limited.

Data may exhibit
protocol differences; the
introduction of bias;
small sample size may
limit generalizability

Single-center data; low
performance in
identifying small lesions;
limiting clinical
applicability

This table provides a comparative summary of segmentation models for brain metastases. It is noteworthy that nnU-Net demonstrates superior stability and robustness compared to alternative models. Future developments are expected to prioritize multimodal data
fusion, reduction of false positives, enhancement of interpretability, and validation of clinical utility. These advancements are anticipated to facilitate its translation from a research tool into routine clinical practice.
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FIGURE 2

Schematic diagram of the CNN model architecture. The process begins with inputting the target image. The second step involves extracting features
from the target using convolutional kernels. Once extracted, these features undergo pixel-level processing. The third step further compresses the
features through max pooling, which helps retain the most salient characteristics and organizing the pooled features into a 3 × 3 grid. In step four,
the feature map is flattened, converting the 3 × 3 patches into a one-dimensional array. Step five consists of feeding this flattened data into a
fully-connected layer. Finally, the output result is generated.

Early and accurate detection of BM is essential for formulating
effective radiation therapy strategies. However, manual detection
and segmentation remain substantially challenging due to the
characteristically small size, high multiplicity, and ill-defined
borders of metastatic lesions.

DL-based approaches offer promising solutions to these
limitations. The integration of architectures such as the Single Shot
MultiBox Detector (SSD) has been shown to markedly enhance
detection performance in DL systems (3).

The U-Net architecture, a widely adopted convolutional neural
network (CNN) for biomedical image segmentation (illustrated
in Figure 2), excels at combining high-resolution contextual
details with semantically rich features, leading to significant gains
in segmentation accuracy. Further refinements through novel
algorithmic integrations can augment the model’s precision (4).
The incorporation of longitudinal timeline analysis, in addition to
cross-sectional evaluation, has also been demonstrated to improve
BM detection rates (5).

Moreover, the nnU-Net (Extended U-Net Model)—an adaptive
framework designed for medical image segmentation—can be
optimized through the incorporation of two specialized modules:
Adaptive Data Sampling (ADS) and Adaptive Dice Loss (ADL).
These enhancements have proven effective in substantially
elevating detection performance (6).

2.2 Combining multi-sequence MRI for
brain metastasis detection and
segmentation

BM exhibit distinct and often complementary imaging features
across different MRI sequences, a characteristic that has prompted
most current DL models—including those discussed earlier—
to rely predominantly on single-sequence data during training.
However, emerging evidence indicates that the integration of
multi-sequence MRI, particularly when combined with subtraction
imaging techniques, can substantially enhance model performance
in BM detection (7).

Although multi-sequence strategies improve diagnostic
sensitivity, their clinical applicability is often limited by incomplete
imaging protocols in real-world settings (8). To address this issue,
the research group led by Darvin Yi introduced a Dropout-based
training regimen that randomly masks pulse sequences during
model training. This method not only enhances robustness to
missing sequences but also preserves high detection accuracy when
all sequences are available (9).

For achieving optimal detection performance, deep learning
ensemble models have shown considerable promise in effectively
integrating multimodal MRI data, demonstrating superior
capability in the accurate identification of BM across diverse
clinical scenarios (10).

2.3 Research on emerging MRI image
sequences

The integration of artificial intelligence with novel MRI
sequences for model training and validation—building upon
established technological foundations—has attracted significant
attention within the neuro-oncology and radiology research
communities. A notable example is black blood (BB) imaging,
an advanced sequence that enhances lesion conspicuity by
suppressing intravascular signal, thereby improving contrast
between metastases and adjacent vascular structures (11). When
coupled with widely adopted architectures such as the 3D U-
Net, BB imaging has been shown to deliver superior detection
performance and robust generalizability across diverse clinical
datasets (12).

2.4 Research on small brain metastases

The detection of small BM presents notable imaging challenges
attributable to their limited spatial extent and subtle presentation.
Key among these are partial volume effects in high-resolution MRI,
which can induce signal blurring and reduce overall image clarity.
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Additionally, smaller BM lesions often exhibit less pronounced
contrast enhancement compared to their larger counterparts,
complicating differentiation from adjacent vascular structures.
Further reducing detectability, lesions situated near blood vessels
or dural sinuses are frequently obscured by flow-related artifacts.

Current advances in computer-aided detection (CAD) systems,
augmented with DL, demonstrate the potential to overcome these
limitations. DL-enhanced CAD can delineate lesion boundaries
with high precision, outperforming conventional clinical detection
methods in accuracy and reproducibility (13).

2.5 Application in CT imaging

Owing to the prolonged acquisition times and limited
accessibility of MRI, CT remains widely utilized for the screening
of BM. Conventional CT evaluation depends on radiologists
performing side-by-side visual assessment of contrast-enhanced
(CE) and non-contrast (NECT) scans—a process that is not only
labor-intensive but also prone to diagnostic oversights.

Recent advances demonstrate that leveraging both CE and
NECT images as model inputs, while minimizing inter-sequence
discrepancies, can significantly enhance detection performance
while fulfilling the real-time requirements of clinical workflows
(14). In a study by Dylan G. Hsu et al., a model trained on paired
T1ce and CECT images achieved an overall detection sensitivity

of 90%, with sensitivities of 63%−68% for metastases smaller than
3 mm. This represents a marked improvement over models trained
on T1ce images alone (15).

3 AI differential diagnosis of BM

AI enables high-sensitivity analysis of MRI, CT, and other
imaging modalities. It can accurately detect millimeter-scale lesions
and extract subtle imaging features—such as ill-defined lesion
margins, heterogeneity in enhancement patterns, and perilesional
edema distribution—that are challenging to discern with the
human eye. These capabilities significantly enhance the ability
of radiologists to differentiate between primary gliomas, brain
metastases, and other intracranial pathologies. A summary of the
relevant research is provided in Table 2.

3.1 Distinguishing between BM and GBM

As a common malignant brain tumor, BM exhibits numerous
imaging features overlapping with glioblastoma (GBM), posing
considerable diagnostic challenges for physicians (16). While
conventional radiological characteristics can aid in distinguishing
BM from GBM, the use of contrast-enhanced imaging further
improves lesion detectability (17). Studies have demonstrated that
DL models applied to conventional MRI can support preoperative

TABLE 2 Summary of the differentiating model for brain metastases.

Models ResNet101 MFFC-Net ResNet-50 CNN IsoSVM MPRM

Authors Tariciotti et al. Liu et al. Shini et al. Zahra Riahi Samanii
et al.

Luke Pengi et al. Anthony Lausch et al.

Number of
patients

121 1,225 598 + 143 106 + 30 66 19

Exclusion
criteria

Image is missing or
incomplete;
Previous history of
intracranial
interventions;
Multiple lesions

Poor image quality;
atypical case

Multiple lesions;
Image missing or
incomplete; Previous
history of intracranial
interventions

No specific exclusion
criteria were explicitly
mentioned

Exclude cases with
severe motion artifacts
or missing T1
enhancement and T2
FLAIR sequences on
MRI

No specific exclusion
criteria were explicitly
mentioned

Conclusion Excellent
performance in
distinguishing
PCNSL (AUC: 0.98)
from GBM (AUC:
0.90), moderate
ability in
distinguishing BM
(AUC: 0.81)

The model accuracy is
0.920, which is better
than that of the
radiomics model
(0.829) and
comparable to that of
expert radiologists
(0.924).

Performed well in the
internal test set (AUC:
0.889) and the
external test set
(AUC: 0.835),
comparable to
experienced
radiologists.

The CNN model with
free water volume
fraction (FW-VF)
performs excellently
(with an accuracy of
93%), outperforming
traditional DTI metrics
(such as FA and MD)
and texture features

In the cross-validation
of the retention method,
the AUC was 0.81, and
the specificity (86.67%)
was significantly higher
than that of the
neuroradiologist’s
interpretation (19%).

MPRM can predict
OS in peritumoral
area analysis
(sensitivity of 80%,
specificity of 100%,
and accuracy of 89%,
p = 0.001)

Limitations The sample size is
relatively small;
data from a single
center; only the
T1Gd sequence was
used.

Only use T2 Flair and
CE-T1WI; no
independent testing
group validation has
been conducted; the
number of doctors
participating is
limited.

Utilize only 2D
analysis; Exclude
other types of brain
tumors (such as
lymphoma); Employ
only T2WI and
CE-T1WI.

The dataset comes from
a single institution;
Uneven number of
cases; Subdivision
analysis not covering
different molecular
subtypes or primary
cancer types

The sample size is
relatively small; The
processing of mixed
pathological specimens
may affect the accuracy
of the model; The image
acquisition parameters
and treatment machine
have not undergone
intensity normalization
processing

Small sample size
(n=19); Dependent
on imaging
endpoints; ROI
definition may
introduce noise; Multi
center verification is
required

This table provides an overview of current models for discriminating brain metastases from other intracranial lesions. While the development of such diagnostic models has progressed rapidly,
future efforts should prioritize multimodal data fusion and the integration of histopathological and genomic information to enhance diagnostic accuracy and clinical applicability.
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differentiation between GBM and solitary BM, achieving superior
diagnostic accuracy compared to neuroradiologists (18). Moreover,
integrating multiparametric MRI to capture spatial tumor
heterogeneity has been shown to significantly enhance model
performance, with reported sensitivity, specificity, and accuracy
reaching 80%, 100%, and 89%, respectively—outperforming
traditional single-parameter parametric response mapping
(PRM) and tumor volume–based metrics (19). Notably, this
approach holds promise for extension to other cancer types
and biomarker discovery studies, offering a novel technological
pathway for personalized treatment evaluation. Traditionally,
tumor classification relies on histopathological biopsy and
multiparametric MRI assessment. By exploiting differences
in extracellular water content between vasogenic edema and
infiltrating tumor tissue—combined with innovative DL techniques
designed to characterize the peritumoral microenvironment of
GBM and BM—distinctive tumor signatures can be identified to
improve diagnostic precision (20).

3.2 Distinguish between BM and radiation
necrosis

Distinguishing BM from radiation necrosis (RN)—a
delayed complication of radiotherapy—remains a significant
diagnostic challenge. RN results from necrosis, inflammatory
responses, and vascular injury in irradiated brain tissue, typically
manifesting months to years after treatment (21). For existing
analytical models, the implementation of novel algorithms offers
substantial improvements in performance, moving beyond the
sole development of new network architectures to enhance
differentiation accuracy and clinical utility (22).

3.3 Simultaneously distinguish BM from
various other brain tumors

The imaging features of GBM subtypes often overlap with
those of primary central nervous system lymphoma (PCNSL) and
BM, posing considerable challenges in preoperative differential
diagnosis. A ResNet101-based model developed by Leonardo
Tariciotti et al. demonstrated that incorporating gadolinium-
enhanced MRI significantly improves diagnostic accuracy in
distinguishing these entities (23). Although these three tumor types
share certain conventional MRI characteristics across multiple
sequences, they also exhibit distinct radiomic profiles. The
extraction and integration of multi-sequence radiomic features
through AI can substantially enhance lesion classification and
diagnostic precision (24).

4 AI-assisted treatment for BM

AI enables the prediction of progression-free survival (PFS)
and overall survival (OS) in patients with brain metastases by
integrating quantitative imaging features with clinical data. This
integrated approach provides a robust foundation for developing

personalized treatment strategies and improving prognostic
assessment. A summary of the supporting research is presented in
Table 3.

4.1 Optimization of treatment plan

Among brain tumors, brain metastases (BM) are recognized
as one of the most aggressive entities. Their pronounced
morphological heterogeneity, however, complicates clinical efforts
to optimize treatment dosing and intensity. Early subtype
differentiation of BM can facilitate more tailored therapeutic
strategies, thereby improving disease control and helping preserve
functional brain tissue (25). Rapid advances in AI-driven
BM segmentation have enabled classification algorithms based
on segmentation network architectures to enhance patient
stratification and significantly reduce diagnostic and therapeutic
timelines (26).

Owing to their distinct imaging principles, CT and MRI
capture complementary characteristics of BM, offering a more
comprehensive diagnostic basis and supporting more precise
radiation planning with reduced marginal failures. Nevertheless,
the extended acquisition times associated with combined CT
and MRI protocols may delay treatment initiation, potentially
compromising clinical outcomes. There is growing interest in
reducing dependency on multi-modal imaging—beginning at the
acquisition stage—to maintain radiotherapy accuracy without
sacrificing detection efficacy (27).

4.2 Predicting treatment response and local
failure

Stereotactic radiosurgery (SRS) offers significant benefits for
patients with BM, including local tumor control, symptomatic
relief, and potential improvement in overall survival. Nevertheless,
challenges persist in optimizing drug selection, dosage
individualization, and treatment parameter configuration,
underscoring the need for AI-based prognostic tools. Integrating
radiomic features from BM with ML enables assessment of local
recurrence risk following SRS. Beyond conventional predictors,
tumor core sphericity has emerged as an independent prognostic
factor that may further enhance predictive accuracy (28).

The Monte Carlo (MC) technique represents the most accurate
method for dose calculation and optimization in radiotherapy
and serves as a key tool for validating treatment plan accuracy.
However, its clinical adoption has been limited by computationally
intensive processes. In a systematic clinical validation across
multiple matched linear accelerators (LINACs), Luigi Manco
et al. demonstrated that the optimized GoldMC model achieved
agreement within 3% between calculated and measured point
doses, underscoring the physical precision of MC algorithms in
managing electron transport in heterogeneous media (29). Despite
this technical advancement, the model has not yet been integrated
into real-world clinical workflows or evaluated for its impact on
final patient outcomes.

Furthermore, the incorporation of longitudinal imaging data
into predictive models can substantially improve prognostic
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TABLE 3 Summary of predictions for brain metastases.

Models Deep Learning
Systems (DLS)

Conditional
Generative
Adversarial
Network (cGAN)

XGBoost 2D Conv-GRU,
3D Conv-GRU,
Dmax,
radiomics

Random
Forest (RF)

GoldCC,
CctoMC,
GoldMC

Authors Hana Jeongi et al. Yuhao Yani et al. Chaofan Lii et al. Se Jin Choi et al. Andrei Mouravievi
et al.

Luigi Manco et al.

Number of
patients

193 + 112 12 + 9 1,933 + 67 194 87 This study is a
physical validation
and did not utilize
patient data.

Exclusion
criteria

No brain metastasis;
Small cell lung cancer;
Received treatment;
History of whole
brain radiotherapy;
There is enhancement
of non-brain
metastases; Lack of
reference standard
follow-up data

No specific explanation
provided

Two or more primary
cancers; Survival time
unknown; Age under
20 years old; Male
patients with breast
cancer; Missing
patients

History of whole
brain surgery or
radiation therapy;
Lack of 1 mm thick
3D enhanced T1
weighted image;
Visible BM
nodules<5 mm

Cystic metastatic
tumor; Non
parenchymal
metastatic tumor;
surgical cavity;
received SRS

This study is a
physical validation
and did not utilize
patient data.

Conclusion The consistency with
clinical treatment
decisions is 76.8%
(81.3% after
considering targeted
drugs); 95%
sensitivity and 81%
specificity in high-risk
patients

The synthesized CT
generated by cGAN
showed excellent
performance in low
field MRI, with a MAE
of 70.9 ± 10.4 HU and
negligible dosimetric
differences; Consistent
performance in external
validation.

The AUC of XGBoost
model predicting
6-month, 1-year,
2-year, and 3-year
survival rates are
0.824, 0.813, 0.800,
and 0.803,
respectively

The 2D Conv GRU
model outperforms
other models in
predicting SRS
treatment response,
and its accuracy
improves with an
increasing number of
follow-up MRIs.

The integration of
radiomics features
with clinical features
can significantly
enhance the accuracy
of predicting local
failure, particularly
the sphericity of the
tumor core.

The GoldMC model
demonstrated good
dose calculation
accuracy (≤ 3% error,
gamma pass rate ≥
95%) across all three
types of LINAC.

Limitations Single center research;
The sample size is
relatively small;
Possible
underestimation of
the volume of
cystic/necrotic
lesions; Clinical
benefits need to be
further validated
through long-term
results

Small sample size;
Limited generalization
ability for
post-operative
abnormal anatomical
structures; Further
validation is needed to
confirm its applicability
in a multi center
environment

The SEER database
lacks data on disease
recurrence or
subsequent metastasis
sites; Racial
differences may limit
the universality of the
model; Lack of
detailed information
on brain metastasis
treatment

No external
verification has been
conducted; Small
sample size; The
ground truth values
are mainly based on
clinical and
radiological
information; The
preprocessing and
segmentation
processes are complex

The sample size is
relatively small; The
endpoint of the lesion
is mainly based on
imaging criteria
rather than
pathological
confirmation; The
importance of FLAIR
features is relatively
low

Model optimization
requires a
compromise to adapt
to three LINACs;
CctoMC performs
slightly better in some
complex scenarios,
but the difference is
minimal.

This table is a summary of the prediction models for brain metastases. The MC algorithm has excellent physical accuracy, but its computing speed cannot meet the real-time clinical needs.
Currently, research is mostly focused on model construction and technical validation, lacking evidence embedded in actual diagnosis and treatment processes and evaluation of its impact on
final treatment outcomes.

precision. Predictive performance continues to enhance with an
increasing number of follow-up scans, enabling more dynamic and
personalized risk assessment (30).

4.3 Survival prediction

AI-powered dynamic tracking technology enables quantitative
assessment of changes in lesion volume following radiotherapy or
targeted therapy. By detecting and amplifying subtle differences
in metabolic activity within affected regions, this approach
effectively differentiates between radiation necrosis and tumor
recurrence, providing critical data to guide adjustments in
clinical management strategies. When integrated with patient-
specific clinical characteristics, algorithm-enhanced Cox regression
models contribute to the prediction of survival outcomes. Several
established prognostic factors—such as the association between
higher socioeconomic status and prolonged survival, as well as the

benefits of surgical intervention in certain molecular subtypes—
further refine these predictions (31).

Moreover, multimodal diagnostic models that incorporate
primary tumor history, serum biomarkers, and genomic profiling
can assist in identifying the origin of metastases, thereby supporting
clinical decision-making. From an implementation perspective, AI
systems are capable of autonomously screening electronic health
records within seconds, maintaining high diagnostic accuracy while
significantly reducing the cognitive burden on clinicians.

5 Discussion

5.1 Limitations of AI

Although AI has shown significant promise in the imaging-
based management of brain metastases, several key limitations
impede its broad integration into clinical practice:
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Methodological Constraints: Many studies exhibit
inherent data biases—such as retrospective designs, limited
sample sizes, and inconsistent annotation standards—which
substantially compromise the reliability and generalizability of the
reported outcomes.

Computational Complexity in Longitudinal Analysis:
While longitudinal tracking has been explored, accurate image
registration across time points remains challenging, particularly
with interval development of new lesions or substantial changes
in existing lesion morphology. Reliable and automated volume
monitoring remains computationally intensive and technically
demanding, requiring further optimization (5, 10, 30).

Unclear Impact on Clinical Decision-Making: Although AI is
designed to augment rather than replace clinical judgment, critical
issues such as accountability in misdiagnosis, effective human–AI
collaboration, and the ethical implications of automated decision
support have not been sufficiently addressed.

Clinical Integration and Workflow Barriers: Most existing
evidence stems from retrospective studies, with a notable absence
of prospective clinical validation. It remains uncertain whether
AI-assisted workflows can tangibly improve patient outcomes
in real-world settings, underscoring the need for large-scale
prospective trials.

5.2 The advantages of AI

Research on AI in BM imaging has advanced considerably,
with its core clinical value manifested in three key areas: precision
detection, efficient segmentation, and intelligent decision support.

DL-based detection algorithms enable rapid identification of
millimeter-scale metastases, significantly improving sensitivity
and reducing missed diagnoses. Multimodal image fusion
further enhances model performance in complex clinical
scenarios—particularly in differentiating radiation necrosis
from tumor recurrence—thereby providing robust support for
diagnostic decision-making.

Treatment planning and prognostic evaluation have also been
optimized through automated segmentation tools that deliver
submillimeter accuracy in target delineation for SRS. Supplemented
by synthetic CT generation via GANs, AI reduces reliance on
conventional CT and streamlines the radiotherapy workflow.
Furthermore, AI-enhanced models that integrate radiomic features
with clinical variables improve survival prediction accuracy,
establish a basis for personalized therapy, and offer clinicians
multiple evidence-based options during strategy formulation.

AI also promotes non-invasive “virtual biopsy” by extracting
subtle imaging features beyond human visual perception,
allowing detailed assessment of metastatic phenotypes. Integrating
radiomics with PET-MRI multimodal characteristics further
enables discrimination between GBM and solitary BM, potentially
reducing the need for invasive craniotomy biopsies and advancing
patient-centric diagnostic pathways (32).

Despite this promising trajectory, clinical integration of
AI in BM management continues to face challenges such as
data heterogeneity and model interpretability. Future efforts
should prioritize multicenter validation, real-world performance

monitoring, and cross-disciplinary collaboration—including
genomic data integration—to ultimately achieve a closed-
loop intelligent system spanning from imaging diagnosis to
therapeutic intervention.

5.3 Future directions

Data Standardization and High-Quality Multicenter Databases:
Multicenter studies with large datasets represent the gold standard
for validating the clinical applicability of AI models (6, 12).
Establishing unified image acquisition protocols and annotation
standards is essential to facilitate the development of large-scale,
prospective, and multicenter databases. Furthermore, the adoption
of privacy-preserving computational techniques—such as federated
learning—can enable collaborative multicenter modeling while
ensuring stringent protection of patient data privacy.

Characterization of Tumor Microenvironment and Biological
Behavior: Analysis of peritumoral microenvironmental features has
revealed distinct imaging characteristics between glioblastoma and
brain metastases, enhancing our understanding of their divergent
growth and dissemination patterns. When integrated with AI-
driven imaging genomics, these features can bridge radiographic
appearances with gene expression profiles, enabling non-invasive
assessment of molecular tumor characteristics (2, 20).

Precision Radiotherapy Planning: AI-based automatic
segmentation of tumor target volumes reduces inter-observer
variability in delineation and improves radiotherapy precision. The
incorporation of Monte Carlo algorithms shows strong potential
in enhancing dose calculation accuracy during treatment delivery
(29). Additionally, deep learning-generated synthetic CT images
from low-field MRI offer a pathway toward purely MRI-guided
radiotherapy, which may eliminate the need for CT simulation,
streamline workflows, and minimize systematic errors (27).

Methodological Robustness: The nnU-Net framework
has become a benchmark in medical image segmentation by
automatically adapting to diverse datasets and optimizing
architecture configurations, effectively balancing generalizability
and task-specific performance (6). Meanwhile, ensemble learning
techniques help mitigate overfitting risks and enhance model
robustness and accuracy, proving particularly valuable when
analyzing complex medical imaging data (10).
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