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Background: Inflammatory pathways critically contribute to the pathogenesis 
of intracardiac thrombosis (ICT) following acute myocardial infarction (AMI) 
patients. This study evaluated the predictive value of inflammation biomarkers 
for ICT.

Methods: This retrospective case–control study included 8,999 AMI patients 
hospitalized at the First Affiliated Hospital of Xi’an Jiaotong University from 
January 2018 to December 2022, among whom 88 developed ICT. To address 
class imbalance, 891 non-ICT patients were randomly selected as controls using 
a 1:10 ratio. Inflammation-related biomarkers were screened using univariate 
and multivariate logistic regression, and a risk heatmap was generated based on 
key predictors.

Results: Multivariate logistic regression identified elevated neutrophil-to-
lymphocyte ratio (NLR), N-terminal pro–B-type natriuretic peptide (NT-
proBNP), low-density lipoprotein cholesterol (LDL-C), and reduced albumin-
to-globulin ratio (AGR) as independent risk factors for ICT. NLR demonstrated 
the highest discriminatory capacity, demonstrating superior predictive 
performance [receiver operating characteristic (ROC) curve, area under the 
curve (AUC) = 0.774, 95% confidence interval (CI): 0.724–0.823, p < 0.001] 
that persisted after full covariate adjustment, and remained significant after full 
adjustment [odds ratio (OR) = 2.54, 95% CI: 1.98–3.15, p = 0.002]. Integration 
of NLR and LDL-C into a sex-stratified risk stratification matrix significantly 
enhanced diagnostic accuracy (AUC = 0.838, 95% CI: 0.799–0.878).

Conclusion: This study established NLR as a robust indicator for ICT assessment 
and presents a practical, visual risk heatmap that may facilitate personalized 
thromboprophylaxis in AMI management.
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1 Introduction

Acute myocardial infarction (AMI) remains a leading global 
health burden, with a steadily increasing incidence worldwide (1). 
AMI initiates a complex pathophysiological cascade, including 
inflammation, oxidative stress, platelet activation, and thrombus 
formation. Among these, intracardiac thrombosis (ICT) represents a 
clinically significant and potentially life-threatening complication, as 
it can compromise cardiac function and precipitate heart failure or 
myocardial rupture (2). Dislodged thrombi may cause major embolic 
events—such as ischemic stroke, acute limb ischemia, or pulmonary 
embolism—substantially increasing morbidity and mortality (3–5). 
However, ICT is often subclinical and lacks overt symptoms. Its 
diagnosis depends heavily on imaging, which is limited by cost and 
equipment availability, making widespread screening impractical (6). 
These limitations underscore the need for alternative, cost-effective, 
and readily available biomarkers for early detection and 
risk stratification.

Recent studies have demonstrated that persistent low-grade 
inflammation plays a central role in the onset, progression, and 
complications of cardiovascular diseases (5). In AMI patients, 
inflammation not only destabilizes atherosclerotic plaques but also 
contributes to thrombogenesis by activating neutrophils, promoting 
platelet aggregation, and impairing endothelial function—key 
mechanisms in ICT development (7). The presence and intensity of 
chronic inflammation can be  reflected by circulating inflammatory 
biomarkers (8). Among these, the neutrophil-to-lymphocyte ratio 
(NLR), a simple marker derived from routine blood counts, has emerged 
as a reliable predictor of cardiovascular outcomes and thrombotic risk 
(8, 9). NLR reflects the dynamic balance between innate and adaptive 
immunity, with elevated levels indicating systemic inflammation. A 
prospective study by Song et al. (10) confirmed that elevated NLR is 
associated with cause-specific mortality—including cardiovascular, 
respiratory, infectious, and renal diseases—highlighting its potential as 
a risk stratification tool in both public health and clinical settings (11).

In addition to NLR, several other routinely assessed serum 
biomarkers are known to correlate with thrombosis risk and 
myocardia function. These include markers of myocardial injury or 
dysfunction [e.g., N-terminal pro–B-type natriuretic peptide 
(NT-proBNP), creatine kinase-MB (CK-MB), and creatine kinase 
(CK)], lipid metabolism indicators [e.g., high-density lipoprotein 
cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-
C)], as well as composite indices such as the albumin-to-globulin ratio 
(AGR) and the atherogenic plasma index (API).

While inflammation is recognized as a key factor in AMI 
prognosis, the association between inflammatory markers and the risk 
of ICT remains insufficiently characterized. This study focuses on 
NLR and other accessible serum biomarkers to evaluate their 
predictive value for ICT in AMI patients and to propose a practical 
early risk stratification model to guide clinical management.

2 Methods

2.1 Study design and patients

This retrospective observational study was conducted at the 
First Affiliated Hospital of Xi’an Jiaotong University (No. 277, West 

Yanta Road, Xi’an, Shaanxi Province, 710061, China). Clinical data 
were retrospectively collected from patients diagnosed with acute 
myocardial infarction (AMI) between January 2018 and December 
2022. AMI and ICT were diagnosed according to established 
criteria (12, 13), and treatment protocols adhered to the 2023 
European Society of Cardiology guidelines for the management of 
acute coronary syndromes (14). Eligible patients included those 
with confirmed diagnoses of AMI, including both ST-elevation 
myocardial infarction and non-ST-elevation myocardial infarction. 
ICT was confirmed through echocardiographic imaging performed 
during hospitalization, encompassing thrombus detection in the 
left and right ventricles, atria, atrial appendages, apex, or other 
cardiac chambers (6, 15). All AMI patients underwent 
transthoracic echocardiography during admission as part of 
routine inpatient assessment, allowing for systematic detection of 
intracardiac thrombus. Standardized transthoracic 
echocardiography (TTE) was performed on all patients within 24 h 
of admission using with apical 4-chamber and subcostal views for 
thrombus screening.

Patients with missing data for the majority of laboratory 
parameters were excluded. Given the low incidence of ICT, a 1:10 
random sampling strategy was employed to select non-ICT controls, 
thereby addressing extreme class imbalance and enhancing model 
robustness. To preserve the integrity of variable distribution and avoid 
masking the effects of potential risk factors, we  did not perform 
matching during control selection. Instead, all relevant covariates were 
included in the multivariate regression models to adjust for 
confounding. To evaluate potential sampling bias, we additionally 
compared baseline characteristics between the included non-ICT 
controls and the excluded AMI patients without ICT; no significant 
differences were observed (Supplementary Table S1). All ICT cases 
included were first-time diagnoses, and patients with active infections 
within the preceding month were excluded to minimize confounding. 
For patients with partial laboratory data missing, multiple imputation 
was applied to preserve statistical power and optimize 
model discrimination.

The study protocol conformed to the ethical standards of the 
Declaration of Helsinki (1975, revised in 2024) and was approved by 
the Institutional Review Board of Xi’an Jiaotong University (Approval 
No. XJTU1AF2025LSYY-410). As this study involved retrospective 
analysis of de-identified data obtained from the hospital’s biobank, the 
requirement for written informed consent was formally waived. All 
data handling complied with institutional protocols governing the 
secondary use of biomedical data. An overview of the study design 
and patient selection process is shown in Figure 1.

2.2 Data collection

Comprehensive baseline data were systematically collected at the 
time of hospital admission, encompassing demographic 
characteristics, pre-existing comorbidities, and heart failure status 
assessed via the Killip classification. Laboratory parameters were 
extracted from the hospital’s electronic medical records and included 
cardiac injury markers, complete blood count indices, absolute 
neutrophil count (ANC), absolute lymphocyte count (ALC), lipid 
profiles, hepatic and renal function tests, as well as serum 
electrolyte levels.
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Inflammation-related composite biomarkers were calculated as 
follows: the neutrophil-to-lymphocyte ratio (NLR) was derived by 
dividing the neutrophil count by the lymphocyte count 
[NLR = neutrophil count (NEUT) / ALC], and the albumin-to-
globulin ratio (AGR) was computed as serum albumin divided by 
globulin [AGR = ALB / total protein (TP)  – albumin (ALB)]. All 
laboratory values were obtained upon admission to ensure consistency 
and minimize potential confounding due to treatment interventions.

2.3 Statistical analysis

Continuous variables were evaluated for normality. Those 
conforming to a normal distribution were expressed as mean ± 
standard deviation, while skewed data were reported as medians with 
interquartile ranges. Categorical variables were presented as counts 
and percentages. Between-group differences were assessed using 
independent samples t-tests for normally distributed continuous 
variables and the Mann–Whitney U test for non-normally distributed 
data. Categorical comparisons were performed using Pearson’s 
chi-square test or Fisher’s exact test where appropriate.

To identify potential risk factors for ICT and to screen for predictive 
inflammation-related biomarkers among AMI patients, univariate 
logistic regression analyses were conducted. Variables with a p < 0.05 in 

univariate analysis were subsequently entered into a multivariate logistic 
regression model to identify independent predictors. Results were 
reported as odds ratios with corresponding 95% confidence intervals.

To further assess the predictive role of NLR in ICT, four hierarchical 
logistic regression models were constructed with progressive 
adjustment for potential confounders: Model 1 was unadjusted; Model 
2 adjusted for age and sex; Model 3 included additional adjustments for 
hypertension, diabetes, chronic kidney disease, arrhythmia, and Killip 
class; and Model 4 further accounted for laboratory indicators 
including cardiac injury biomarkers, liver function enzymes, lipid 
profile, renal function parameters, electrolytes, and hemoglobin levels. 
NLR was also categorized into high and low groups based on the 
optimal threshold determined via ROC curve analysis, and its 
predictive performance was evaluated across all models.

Based on multivariate analysis, the strongest predictors—NLR 
and LDL-C—were used to construct overall and sex-specific risk 
heatmaps. Model performance was assessed using ROC curves and 
calibration plots. All statistical analyses were conducted using SPSS 
version 26.0 (IBM Corp., Armonk, NY, USA) and R version 4.5.0. A 
two-sided p-value of < 0.05 was considered statistically significant.

This retrospective observational study was conducted at the First 
Affiliated Hospital of Xi’an Jiaotong University (No. 277, West Yanta 
Road, Xi’an, Shaanxi Province, 710061, China). Clinical data were 
retrospectively collected from patients diagnosed with acute 

FIGURE 1

A flowchart of the study.
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myocardial infarction (AMI) between January 2018 and December 
2022. AMI and ICT were diagnosed according to established criteria 
(12, 13), and treatment protocols adhered to the 2023 European 
Society of Cardiology guidelines for the management of acute coronary 
syndromes (14). Eligible patients included those with confirmed 
diagnoses of AMI, including both ST-elevation myocardial infarction 
and non-ST-elevation myocardial infarction. ICT was confirmed 
through echocardiographic imaging performed during hospitalization, 
encompassing thrombus detection in the left and right ventricles, atria, 
atrial appendages, apex, or other cardiac chambers (6, 15).

3 Results

3.1 Clinical characteristics of study 
participants

A total of 9,415 patients diagnosed with AMI were admitted to the 
First Affiliated Hospital of Xi’an Jiaotong University. After excluding 
416 patients due to incomplete laboratory data, 8,999 remained eligible 
for analysis, among whom 88 were diagnosed with ICT. Given the low 
prevalence of ICT, to address class imbalance and improve model 
stability and discriminatory performance, a 1:10 ratio of non-ICT 
controls was randomly sampled, resulting in a final cohort of 979 
patients (88 ICT cases and 891 controls). For variables with missing 
values (<5%), multiple imputation by chained equations (MICE) was 
performed. The imputation model included all relevant predictors and 
outcome variables used in the main analysis, such as demographics, 
comorbidities, Killip classification, and laboratory parameters including 
inflammatory, cardiac, hepatic, renal, and hematologic indices. To 
improve transparency, we  summarized the missingness for each 
laboratory covariate and presented their means and standard deviations 
in Supplementary Table S2. Given the low level of missingness, the 
distributions of variables before and after imputation were comparable, 
with no substantial shifts observed. Five imputed datasets were 
generated and combined using Rubin’s rules to minimize bias and 
optimize statistical power. No significant differences were observed 
between groups in baseline demographics, comorbidities, or Killip 
class. However, several laboratory parameters differed significantly: the 
ICT group had higher levels of NLR, CK-MB, CK, LDH, AST, ALT, 
NT-proBNP, cTnT, and LDL-C, while AGR was significantly lower (all 
p < 0.05). Detailed baseline characteristics are presented in Table 1.

3.2 Identification of inflammation-related 
predictors of ICT

Baseline demographic and clinical variables were compared 
between the ICT and non-ICT groups. NLR, CK-MB, CK, LDH, ALT, 
NT-proBNP, cTnT, LDL-C, and AGR were significantly associated 
with ICT (p < 0.05). These variables were entered into multivariate 
logistic regression (Table 2), identifying NLR [odds ratio (OR) = 2.25, 
95% confidence interval (CI): 1.79–2.83, p < 0.001], NT-proBNP 
(OR = 1.01, 95% CI: 1.00–1.02, p = 0.012), and LDL-C (OR = 2.86, 
95% CI: 2.03–4.02, p < 0.001) as independent predictors, while AGR 
was protective (OR = 0.79, 95% CI: 0.64–0.97, p = 0.026).

Receiver operating characteristic (ROC) curve analysis was 
performed to evaluate the predictive performance of these markers 

(Figure 2). NLR [area under the curve (AUC) = 0.774, 95% CI: 0.724–
0.823, p < 0.001] and LDL-C (AUC = 0.728, 95% CI: 0.677–0.778, 
p < 0.001) demonstrated favorable discriminative ability. These 
findings highlight the potential clinical utility of NLR and LDL-C as 
inflammation-related biomarkers for predicting ICT in AMI patients.

3.3 Predictive value of NLR after 
adjustment and stratification

To evaluate the independent predictive value of NLR for ICT, 
we  constructed four logistic regression models with progressive 
adjustment for potential confounders.

When included as a continuous variable, NLR remained significantly 
associated with ICT across all four models (all p < 0.001), demonstrating 
consistent independent predictive value. In the fully adjusted Model 4, 
the OR for NLR was 2.54 (95% CI: 1.98–3.15) (Figure 3A). We then 
stratified NLR using the ROC-derived cut-off value of 3.894 and 
analyzed it as a categorical variable. NLR remained significantly 
predictive of ICT in all models, with an OR of 18.9 (95% CI: 10.8–33.4) 
in Model 4 (Figure 3B), further supporting its role as a stable and reliable 
inflammation-related biomarker for predicting ICT in AMI patients.

3.4 Visual heatmap model for risk 
prediction

To enhance the clinical applicability of our findings, we developed 
a visual risk heatmap model based on the two top-performing 
inflammation-related biomarkers—NLR and LDL-C. Both markers 
were divided into sextiles, and a combined risk heatmap was generated 
for the entire cohort (Figure 4A), followed by sex-stratified heatmaps 
to visualize differential risk distribution (Figure  4B). This model 
intuitively illustrated the probability of ICT occurrence across varying 
levels of NLR and LDL-C.

The model achieved strong discriminatory performance with an 
AUC of 0.838 (95% CI: 0.799–0.878), outperforming either marker 
alone (Figure 5A). The calibration curve showed close agreement 
between predicted and observed probabilities, and the Hosmer–
Lemeshow test (χ2 = 8.872, p = 0.357) confirmed the model’s goodness 
of fit and reliability (Figure 5B).

4 Discussion

This study investigated the predictive value of inflammation-
related biomarkers for ICT in patients with AMI. The main findings 
are as follows: (1) four biomarkers—elevated NLR, LDL-C, 
NT-proBNP, and decreased AGR—were independently associated 
with ICT occurrence in multivariable logistic regression (all p < 0.05); 
(2) among them, NLR demonstrated the strongest predictive power, 
remaining statistically significant across all adjusted models (fully 
adjusted OR = 2.54; subgroup OR = 18.9); (3) a risk heatmap 
combining NLR and LDL-C exhibited good discriminatory 
performance (AUC = 0.838), suggesting its potential clinical utility in 
ICT risk stratification in AMI patients.

Inflammation plays a central role in AMI, not only as a response 
to cardiomyocyte necrosis but also as a driver of post-infarction 
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complications. Necrotic myocardium releases cytokines such as IL-6, 
TNF-α, and IL-1β, which recruit neutrophils and monocytes to the 
infarcted area (16). This inflammatory cascade may aggravate injury, 
trigger oxidative stress, and activate coagulation, fostering a 

prothrombotic state (17, 18). Persistent inflammation following AMI 
contributes to endothelial dysfunction, tissue factor expression, and 
platelet activation, all of which promote ICT (19). As noted by 
Frangogiannis, inflammation orchestrates both early tissue damage 

TABLE 1 Baseline characteristics of patients with AMI.

Variables Total (n = 979) Control group (n = 891) ICT group (n = 88) p-value

Enrollment basic characteristics

Age (years, IQR) 64.00 (55.00, 71.00) 64.00 (55.00, 71.00) 62.00 (55.00, 71.00) 0.986

Female (n, %) 253 (25.84) 236 (26.49) 17 (19.32) 0.143

Comorbidities

Hypertension (n, %) 457 (46.68) 415 (46.58) 42 (47.73) 0.837

Diabates (n, %) 600 (61.29) 543 (60.94) 57 (64.77) 0.482

CKD (n, %) 7 (0.72) 5 (0.56) 2 (2.27) 0.125

Arrhythmia (n, %) 82 (8.38) 72 (8.08) 10 (11.36) 0.289

Killip classification (n, %)

I 815 (83.25) 743 (83.39) 72 (81.82) 0.707

II 122 (12.46) 110 (12.35) 12 (13.64) 0.727

III 23 (2.35) 21 (2.36) 2 (2.27) 1.000

IV 19 (1.941) 17 (1.91) 2 (2.27) 1.000

Laboratory results

NLR (IQR) 2.83 (2.36–3.45) 2.78 (2.30–3.37) 3.63 (3.07–5.34) <0.001

AGR (IQR) 2.15 (1.40–2.89) 2.19 (1.55–2.90) 1.60 (1.09–2.39) <0.001

CK-MB (U/L, IQR) 26.00 (14.00–78.00) 26.00 (14.00–76.00) 34.85 (18.00–106.65) 0.031

CK (U/L, IQR) 225.00 (96.0–763.0) 221.0 (95.00–734.00) 257.50 (126.00–1219.00) 0.024

LDH (U/L, IQR) 279.0 (218.00–432.00) 271.0(216.00–415.00) 420.00 (266.50–705.50) <0.001

AST (U/L, IQR) 42.00 (25.00–97.00) 41.00 (25.00–92.00) 59.00 (31.50–163.00) 0.004

ALT (U/L, IQR) 31.0 (21.00–47.00) 31.00 (21.00–46.00) 39.00 (25.75–54.50) 0.002

NT-proBNP (pg/mL, IQR) 749.40 (266.40–1879) 697.00 (254.05–1715.00) 2210.0(650.1–5071.25) <0.001

cTnT (ng/mL, IQR) 0.46 (0.08–1.54) 0.42 (0.07–1.46) 0.89 (0.19–2.48) <0.001

LDL-C (mmol/L, IQR) 2.13 (1.69–2.70) 2.09 (1.63–2.60) 2.70 (2.27–3.17) <0.001

HDL-C (mmol/L, IQR) 0.95 (0.81–1.09) 0.95 (0.82–1.10) 0.91 (0.76–1.06) 0.104

BUN (mmol/L, IQR) 5.57 (4.48–6.92) 5.54 (4.46–6.91) 5.72 (4.57–6.93) 0.465

Creatinine (μmol/L, IQR) 64.00 (54.00–77.50) 64.00 (54.00–78.00) 62.50 (53.00–77.00) 0.758

ANC (×109/L, IQR) 6.54 (4.76–9.06) 6.61 (4.79–9.03) 6.05 (4.34–9.12) 0.443

ALC (×109/L, IQR) 1.42 (1.04–1.89) 1.42 (1.04–1.89) 1.43 (1.09–1.90) 0.697

WBC (×109/L, IQR) 8.62 (6.96–11.20) 8.68 (6.99–11.16) 8.22 (6.75–11.38) 0.481

NEUT (100%, IQR) 76.40 (68.40–83.20) 76.40 (68.55–83.30) 76.65 (66.90–81.03) 0.269

Hb (g/L, IQR) 142.00 (129.00–153.50) 142.00 (129.50–154.00) 139.00 (123.25–151.00) 0.123

K+ (mmol/L, IQR) 3.95 (3.67–4.23) 3.95 (3.67–4.23) 3.99 (3.66–4.25) 0.707

Na+ (mmol/L, IQR) 140.00 (138.00–142.00) 140.00 (138.00–142.00) 139.93 (137.45–142.00) 0.331

Cl− (mmol/L, IQR) 102.00 (99.40–104.90) 102.10 (99.40–104.80) 101.80 (100.00–105.40) 0.618

Ca2+ (mmol/L, IQR) 2.26 (2.15–2.35) 2.26 (2.15–2.35) 2.24 (2.11–2.36) 0.320

Mg2+ (mmol/L, IQR) 0.98 (0.92–1.06) 0.98 (0.92–1.06) 0.99 (0.91–1.08) 0.870

AMI, acute myocardial infarction; ICT, intracardiac thrombosis; IQR, interquartile range; CKD, chronic kidney disease; NLR, neutrophil-to-lymphocyte ratio; AGR, albumin-to-globulin ratio; 
CK-MB, creatine kinase–MB isoenzyme; CK, creatine kinase; LDH, lactate dehydrogenase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; NT-proBNP, N-terminal pro–B-
type natriuretic peptide; cTnT, cardiac troponin T; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; BUN, blood urea nitrogen; ANC, absolute 
neutrophil count; ALC, absolute lymphocyte count; WBC, white blood cell count; NEUT, neutrophil percentage; Hb, hemoglobin; K+, serum potassium; Na+, serum sodium; Cl−, serum 
chloride; Ca2+, serum calcium; Mg2+, serum magnesium. All p-values presented are unadjusted due to the hypothesis-driven nature of the analysis; multivariable models were used to confirm 
independent associations.
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and late-stage thrombus deposition (20). Structural substrates, 
including anterior wall infarction, reduced LVEF, ventricular 
aneurysm, and high Killip class, are established risk factors for left 
ventricular thrombus (LVT) (21–23), and elevated CK-MB levels are 
also associated with thrombosis (24). Although Sia et  al. linked 
elevated NLR with LVT (25), data on inflammation-based predictors 
for other ICT subtypes remain limited. Additionally, neutrophil 
extracellular traps (NETs) contribute to thrombogenesis by interacting 
with TF and platelets within infarcted myocardium (25, 26), 
suggesting inflammation may directly participate in ICT pathogenesis.

The NLR is a simple and accessible inflammation-related biomarker 
derived from routine peripheral blood counts, reflecting the balance 
between innate immune activation and adaptive immune suppression 
(27). In our study, NLR was the strongest independent predictor of 
intracardiac thrombosis (ICT) among all evaluated biomarkers, with its 
predictive value remaining robust across fully adjusted and subgroup 
models. Previous studies have linked elevated NLR to adverse 

cardiovascular outcomes, including acute coronary syndrome, heart 
failure, and stroke (28–30). While Zazula et  al. demonstrated its 
association with left ventricular thrombus (LVT) in AMI patients (31), 
more recent findings suggest that elevated NLR is also associated with 
left atrial thrombus and spontaneous echocardiographic contrast in 
patients with atrial fibrillation or dilated ventricles (32, 33), supporting 
its broader role in identifying prothrombotic conditions across cardiac 
chambers. Mechanistically, an elevated NLR reflects a shift toward a 
pro-inflammatory and pro-thrombotic state. Activated neutrophils 
release reactive oxygen species, proteolytic enzymes, and 
myeloperoxidase, which contribute to endothelial damage and 
upregulate tissue factor expression (34). In addition, neutrophil 
extracellular traps (NETs)—web-like DNA structures enriched with 
tissue factor and platelets—facilitate thrombus propagation (35–37). 
Concurrently, reduced lymphocyte levels indicate impaired 
immunoregulation, promoting sustained neutrophil activation and 
thrombin generation (38). These immuno-thrombotic mechanisms 
provide a biological rationale for the association between elevated NLR 
and ICT development (26, 39). In our cohort, an NLR threshold of 3.894 
was derived using receiver operating characteristic (ROC) analysis, 
offering an optimal trade-off between sensitivity and specificity for ICT 
risk stratification. Although cut-off values may vary across populations, 
similar thresholds have been reported—for example, 4.25 for predicting 
ventricular remodeling following anterior STEMI (40), and 5.509 for 
in-hospital mortality in NSTEMI patients (41). Accordingly, we applied 
this ROC-derived threshold to facilitate stratified analysis and improve 
clinical interpretability, while acknowledging that it is context-specific 
and requires external validation in independent cohorts.

Our study identified elevated low-density lipoprotein cholesterol 
(LDL-C) as an independent predictor of ICT in patients with AMI, 
with significant predictive value (OR = 2.86, 95% CI: 2.03–4.02, 
p < 0.001). Mechanistically, LDL-C contributes to post-AMI 
thrombogenesis through multiple pathways. Oxidized LDL promotes 
endothelial expression of tissue factor and adhesion molecules, 
thereby activating the factor VII–dependent extrinsic coagulation 
cascade and facilitating thrombus formation (42). It also upregulates 
inflammatory mediators such as MCP-1 and IL-6, enhancing local 
inflammation and plaque instability (43). In parallel, LDL-C binds to 
the platelet surface receptor CD36, promoting platelet adhesion and 

FIGURE 2

ROC curves of four inflammation-related biomarkers for predicting 
ICT in patients with AMI. NLR, neutrophil-to-lymphocyte ratio; 
LDL-C, low-density lipoprotein cholesterol; NT-proBNP, N-terminal 
pro–B-type natriuretic peptide; AGR, albumin-to-globulin ratio.

TABLE 2 Results of multivariate logistic regression model.

Variables Univariate regression (p < 0.05) Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value

NLR 2.35 (1.90–2.90) <0.001 2.25 (1.79–2.83) <0.001

AGR 0.67 (0.53–0.84) <0.001 0.79 (0.64–0.97) 0.026

CK-MB (U/L) 1.01 (1.00–1.03) <0.001 1.00 (1.00–1.01) 0.709

CK (U/L) 1.05 (1.03–1.07) <0.001 1.00 (1.00–1.00) 0.871

LDH (U/L) 1.01 (1.01–1.01) <0.001 1.00 (1.00–1.00) 0.131

AST (U/L) 1.01 (1.01–1.01) <0.001 1.00 (0.99–1.00) 0.162

ALT (U/L) 1.00 (1.00–1.00) 0.078

NT-proBNP (pg/mL) 1.02 (1.00–1.04) <0.001 1.01 (1.00–1.02) 0.012

cTnT (ng/mL) 1.15 (1.06–1.24) <0.001 1.07 (0.92–1.24) 0.371

LDL-C (mmol/L) 2.75 (2.06–3.67) <0.001 2.86 (2.03–4.02) <0.001

NLR, neutrophil-to-lymphocyte ratio; AGR, albumin-to-globulin ratio; CK-MB, creatine kinase–MB isoenzyme; CK, creatine kinase; LDH, lactate dehydrogenase; AST, aspartate 
aminotransferase; NT-proBNP, N-terminal pro–B-type natriuretic peptide; cTnT, cardiac troponin T; LDL-C, low-density lipoprotein cholesterol. Bold values indicate statistical significance 
(p < 0.05) in the multivariate logistic regression analysis.

https://doi.org/10.3389/fmed.2025.1643933
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhao et al. 10.3389/fmed.2025.1643933

Frontiers in Medicine 07 frontiersin.org

aggregation (44), which in the prothrombotic milieu of AMI further 
amplifies clot formation. Moreover, elevated LDL-C is closely 
associated with endothelial dysfunction. It reduces nitric oxide (NO) 
bioavailability and impairs anti-inflammatory and antiplatelet 

responses, while abnormal vascular tone promotes local flow 
disturbances that favor thrombus development (44, 45). Collectively, 
these findings suggest that beyond its role in atherogenesis, LDL-C 
may actively drive ICT via a cascade involving inflammation, 

FIGURE 3

Association between NLR and ICT in patients with AMI. (A) NLR as a continuous variable; (B) NLR as a categorical variable. Model 1: unadjusted; Model 2: 
adjusted for age and sex; Model 3: adjusted for age, sex, comorbidities (hypertension, diabetes, CKD, arrhythmia), and Killip classification; Model 4: additionally 
adjusted for laboratory parameters including liver function, renal function, serum electrolytes, and cardiac injury biomarkers. AMI, acute myocardial 
infarction; ICT, intracardiac thrombosis; NLR, neutrophil-to-lymphocyte ratio; CKD, chronic kidney disease; OR, odds ratio; CI, confidence interval.
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endothelial injury, and coagulation activation. As such, LDL-C 
represents a clinically relevant inflammation-related biomarker for 
ICT risk stratification in AMI patients (46).

To improve bedside applicability, we further incorporated NLR 
and LDL-C into a visual risk heatmap, enabling intuitive stratification 

of ICT risk using admission laboratory data. This tool may assist 
clinicians in identifying AMI patients at heightened thrombotic risk 
who warrant early or repeat echocardiographic screening—even in 
the absence of overt clinical signs. In scenarios with limited imaging 
availability or diagnostic uncertainty, the heatmap may also support 

FIGURE 4

Heatmap visualization of ICT risk based on the combined distribution of NLR and LDL-C. (A) Risk heatmap for the overall cohort. (B) Sex-stratified risk 
heatmaps. ICT, intracardiac thrombosis; NLR, neutrophil-to-lymphocyte ratio; LDL-C, low-density lipoprotein cholesterol.
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individualized decisions regarding closer surveillance or early 
initiation of prophylactic anticoagulation, in accordance with 
bleeding risk profiles. By translating biomarker data into a user-
friendly format, this approach provides a practical aid for timely and 
personalized decision-making in routine AMI care.

In addition to NLR and LDL-C, our analysis identified elevated 
NT-proBNP and decreased AGR as independent predictors of ICT in 
AMI patients. NT-proBNP, a marker of myocardial stress and volume 
overload, may reflect left ventricular dilation and intracardiac stasis—
conditions that favor thrombus formation. Prior studies have linked 
NT-proBNP levels to increased risk of left ventricular thrombus in 
anterior STEMI patients (47–49). AGR, an index reflecting systemic 
inflammation and nutritional status, has been associated with adverse 
cardiovascular outcomes and in-hospital mortality (50, 51). 
Mechanistically, a reduced AGR may indicate persistent inflammation 
and impaired immune regulation, thereby promoting endothelial 
dysfunction and coagulation activation (52). Together, these markers 
may provide supplementary predictive value beyond traditional 
inflammatory and lipid indicators.

We also observed that male patients had a higher risk of ICT than 
females at similar levels of inflammatory biomarkers, suggesting a 
possible sex-based vulnerability. While the underlying mechanisms 
remain unclear, prior studies have reported sex-specific differences in 
thrombotic susceptibility, vascular response, and diagnostic patterns 
in AMI patients (53–55). These findings warrant further investigation 
in sex-stratified prospective cohorts.

We acknowledge several limitations in this study. Firstly, the 
retrospective nature of data collection introduces a potential risk of 
information bias, such as incomplete clinical documentation and 
variability in diagnostic testing. These factors may compromise the 
accuracy of outcome ascertainment and the consistency of biomarker 
evaluation. Moreover, the retrospective design inherently limits causal 

inference between inflammation-related biomarkers and 
clinical outcomes.

Second, there is a risk of residual confounding due to unmeasured 
or incompletely captured clinical variables, such as medication use (e.g., 
anticoagulants) and in-hospital treatments (e.g., thrombolysis, 
percutaneous interventions). These factors may influence both systemic 
inflammation and thrombosis risk but were not adequately adjusted for 
due to dataset limitations. Third, the incidence of ICT observed in our 
study was 1%, which is notably lower than the 5–8% reported in earlier 
literature (56, 57). This discrepancy may be attributed to several factors, 
including the absence of recent large-scale epidemiological data, 
improvements in clinical management that have reduced thrombotic 
complications, and the early and effective interventions available at our 
center, a high-volume tertiary hospital in Northwestern China. Lastly, 
while we  applied a 1:10 random sampling strategy to address class 
imbalance, this approach may have introduced information loss or 
sampling variability, potentially affecting model robustness. Despite 
these limitations, our study provides important evidence on the role of 
inflammation-related biomarkers in predicting ICT among patients with 
acute myocardial infarction. It helps to address a current gap in the 
literature and lays the groundwork for improved risk stratification and 
individualized management in clinical practice.

5 Conclusion

In this large retrospective analysis of 8,999 patients with AMI, 
we employed a 1:10 case–control matching strategy to systematically 
evaluate the predictive value of inflammation-related biomarkers 
for ICT. NLR, NT-proBNP, and LDL-C were identified as 
independent risk factors, while AGR appeared protective. 
Multivariable logistic regression and sensitivity analyses consistently 

FIGURE 5

Discrimination and calibration performance of the risk heatmap model based on NLR and LDL-C. (A) ROC curve of the model (B) calibration curve 
assessing the agreement between predicted and observed probabilities. NLR, neutrophil-to-lymphocyte ratio; LDL-C, low-density lipoprotein 
cholesterol; ROC, receiver operating characteristic; AUC, area under the curve.
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confirmed the robust predictive power of NLR, which remained 
significant even after full adjustment (OR = 18.9). Building on these 
findings, we developed a visual risk heatmap model based on NLR 
and LDL-C, which demonstrated strong discrimination 
(AUC = 0.838) and good calibration, thereby enhancing clinical 
applicability. Our findings provide a practical tool for early ICT risk 
stratification in AMI patients, underscore the pivotal role of 
inflammation in post-AMI thrombogenesis, and offer new 
perspectives on the application of inflammatory biomarkers in 
cardiovascular disease management.
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