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Proliferative diabetic retinopathy (PDR) represents the most advanced and vision-
threatening stage of diabetic retinopathy (DR) and remains a leading cause of
blindness in individuals with diabetes. This review presents a comprehensive overview
of recent advances in the application of artificial intelligence (Al) for the diagnosis
and treatment of PDR, emphasizing its clinical potential and associated challenges.
The role of vascular endothelial growth factor (VEGF) in the pathogenesis of PDR has
become increasingly clear, and Al offers novel capabilities in retinal image analysis,
disease progression prediction, and treatment decision-making. These advancements
have notably improved diagnostic accuracy and efficiency. Furthermore, Al-based
models show promise in optimizing anti-VEGF therapy by enhancing therapeutic
outcomes while reducing unnecessary healthcare expenditures. Future research
should focus on the safe, effective, and ethical integration of Al into clinical workflows.
Overcoming practical deployment barriers will require interdisciplinary collaboration
among technology developers, clinicians, and regulatory bodies. The strategies
and frameworks discussed in this review are expected to provide a foundation for
future Al research and clinical translation in fields of PDR.

KEYWORDS

anti-VEGF therapy, deep learning, machine learning, proliferative diabetic retinopathy,
artificial intelligence

1 Introduction

Diabetic retinopathy (DR), a microvascular complication of diabetes, has become an
escalating global health concern. As the number of diabetic patients rises, so also does the
burden of DR-related vision loss. Persistent hyperglycemia damages retinal blood vessels; in
advanced stages, this can lead to vitreous hemorrhage, retinal detachment, and ultimately,
irreversible blindness (1).

Proliferative diabetic retinopathy (PDR) represents the most vision-threatening stage of
DR. Its pathogenesis is closely associated with elevated levels of VEGE, a key molecule promoting
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pathological angiogenesis (2), increased vascular permeability (3), and
heightened within  the
microenvironment (4). VEGF expression is further upregulated under

inflammatory  responses retinal
oxidative stress and hypoxic conditions—both common in diabetes—
driving progressive neovascular complications. Accumulating evidence
suggests that vitreous VEGF levels strongly correlate with oxidative
stress markers, reinforcing its central role in disease progression (5).

Despite  significant advances in understanding DR
pathophysiology and the widespread use of anti-VEGF therapies—
particularly for PDR and diabetic macular edema (DME) (6)—several
critical clinical challenges persist. Notably, DR diagnosis still largely
depends on the manual interpretation of fundus photographs by
ophthalmologists, a process that is time-consuming and resource-
intensive (7). In response, Al—specifically deep learning and large
language models (LLMs)—has emerged as a transformative tool.
Recent studies demonstrate that Al systems can accurately and reliably
detect various stages of DR, including PDR, with the potential to
alleviate diagnostic workload and improve early detection (8).

Beyond diagnosis, Al is increasingly being explored for its
potential to assist in therapeutic decision-making and postoperative
monitoring. For instance, integrating Al into anti-VEGF therapy
workflows may allow for more personalized and predictive PDR
management. Given the pathological overlap between PDR and DME
(9, 10), this Al-guided strategy could have wide-reaching clinical
implications. While DME frequently co-occurs with PDR, this review
focuses exclusively on Al applications specific to PDR.

This narrative review aims to provide a comprehensive overview
of recent advances in Al applications for PDR, encompassing
automated diagnosis, individualized treatment planning, and
follow-up evaluation. By highlighting AT’s potential to enhance clinical
decision-making, improve workflow efficiency, and optimize patient
outcomes, this article serves as a practical resource for retinal
specialists ~and  ophthalmic

surgeons  managing  the

complexities of PDR.

2 Methods

This narrative review was conducted to present a method that
synthesizes recent developments in the application of Al in the
diagnosis, surgical management, and anti-VEGF therapy optimization
for PDR. Relevant literature was identified through systematic
searches of PubMed, Web of Science, Embase, and Google Scholar
databases. The search period was from January 2015 to June 2025. The
following keywords were used in various combinations: “proliferative
diabetic retinopathy;,” “PDR,” “artificial intelligence,” “deep learning,”
“machine learning,” “anti-VEGF therapy;” “retinal image analysis,” and
“precision surgery”.

Inclusion criteria of this review included: (1) peer-reviewed
articles or conference papers; (2) studies focused on Al applications
in PDR or DR-related diagnosis/treatment; (3) articles describing
clinical studies, model development, or review of Al in DR. Exclusion
criteria included: (1) non-English publications, (2) case reports or
letters without sufficient methodology, and (3) studies focused solely
on non-proliferative DR or other unrelated retinal diseases.

A total of over 100 articles were included based on their relevance,
novelty, and contribution to the understanding or advancement of AI
applications in PDR management (Table 1).
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3 Advances in Al for PDR diagnosis

DR, a leading cause of blindness in individuals with diabetes,
results in progressive and often irreversible visual impairment
(11). Recent advances in Al technologies have enabled large-scale
screening and the development of tailored predictive models,
thereby improving the efficiency and cost-effectiveness of DR
screening programs (12). Modern ophthalmic computer-aided
diagnosis (CAD) systems demonstrate low diagnostic error rates
and offer significant savings in time, cost, and clinical manpower
compared to traditional DR screening methods (13). Machine
learning (ML) algorithms can effectively detect, localize, and
quantify pathological features of DR, mimicking the human
brain’s pattern recognition capabilities. Furthermore, by
identified  through
unsupervised convolutional neural networks (CNNs), these

leveraging patterns autonomously

algorithms can accurately classify the various stages of DR (14).

3.1 Deep learning-based image learning

Arora et al. employed convolutional layering and compound
scaling strategies in AI models to develop the EfficientNet framework
(15). Specifically, the EfficientNetB0 model was optimized in terms of
depth, width, and resolution to classify DR severity (16). Recent
studies have utilized Generative Adversarial Networks (GANs) to
generate synthetic fundus images, thereby enriching the diversity of
training datasets. These synthetic images were incorporated into
DiaGAN-CNN, a transfer learning-based deep learning model, to
improve the accuracy of image-based DR classification (16). The final
model achieved an accuracy of 0.84255, a quadratic weighted Kappa
0f 0.79565, and an AUC exceeding 0.90 (17).

Chao Chen et al. adopted Inception-V3 as the base architecture,
reduced network complexity using Global Average Pooling (GAP),
and integrated a fully connected layer with ReLU activation and a
Softmax output layer. The model was trained on the ImageNet and
Kaggle DR datasets, and the system was optimized through
asynchronous calling mechanisms, multithreading, and microservice
architecture (18). Using the Baidu EasyDL platform, Cao et al.
applied a transfer learning approach, retraining the upper-layer
network parameters to construct a new classifier based on a
pre-trained model and a publicly available diabetic fundus disease
dataset from Kaggle. Their model achieved a Kappa coefficient of
1.00 (19).

Collectively, these technical advancements have substantially
improved the accuracy, consistency, and clinical applicability of
Al-based diagnostic tools for DR and PDR detection.

3.2 Diversity input and overfitting
prevention for data analysis

Researchers have noted that limited demographic diversity in
training datasets may compromise the generalizability of Al models,
resulting in reduced accuracy when applied to broader or
underrepresented populations. To mitigate this issue, large-scale
public datasets containing DR images of varying severity levels are
commonly used to ensure adequate variability (15). In addition, a
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TABLE 1 Classification of Diabetic Retinopathy and Al Applications.

Classification method @ Classification basis

Classification criteria

10.3389/fmed.2025.1644456

Al applications and

International Clinical Severity of lesion

Classification

only.

No Retinopathy (0): No significant signs of
retinopathy.

Mild NPDR (1): Presence of microaneurysms

Moderate NPDR (2): Retinal hemorrhages, hard
exudates, or cotton wool spots not meeting
severe NPDR criteria.

Severe NPDR (3): Microvascular abnormalities,
numerous hemorrhages, intraretinal/preretinal
hemorrhages, or venous beading.

PDR (4): Neovascularization or fibrous

membranes on the retina or optic disk.

breakthroughs

Researchers developed a hybrid deep
learning model (E-DenseNet) integrating
EyeNet and DenseNet to improve DR

lesion classification accuracy (29).

ETDRS classification Lesion characteristics and severity

Mild NPDR: Characterized by microaneurysms.
Moderate NPDR: Presence of retinal
hemorrhages, hard exudates, and other lesions.
Severe NPDR: Intraretinal microvascular
abnormalities.

PDR: Defined by the presence of

neovascularization.

Researchers proposed an Al technique
(ABiD) using forward-backward
compensation to improve classification

near decision boundaries (82).

American Academy of Risk of lesion progression and

Ophthalmology Classification characterization

Normal or Mild NPDR: Normal fundus or few
microaneurysms.

Mild to Moderate NPDR: Microaneurysms with
few hemorrhages or hard exudates.

Severe NPDR & Non-High-Risk PDR: Advanced | (83).
lesions without high-risk features.
High-Risk PDR: Meets >3 of 4 criteria:
neovascularization, optic disk involvement,
extensive neovascularization, or vitreous/

peripheral hemorrhage.

Researchers applied a Mask R-CNN
model to quantify microaneurysms and
proposed a ResNeXt-based algorithm
(ADRPPA) to assess DR severity over time

Diagrams illustrating the associations investigated in this study are provided below: NPDR, Nonproliferative Diabetic Retinopathy; PDR, Proliferative Diabetic Retinopathy; DR, Diabetic

Retinopathy; ABiD, Asymmetric Bi-Classifier Discrepancy Minimization.

two-stage training strategy was employed in conjunction with the
NASNet-Large pre-trained model to address the risk of overfitting due
to excessive oversampling. This approach incorporated decision tree
algorithms and the Synthetic Minority Over-sampling Technique
(SMOTE) to manage data imbalance and improve model
generalization (20).

3.3 Clinical validation of Al models

A dataset of retinal scans from Brazilian patients was used to
develop and validate a deep learning algorithm capable of diagnosing
various stages of DR, including PDR. The algorithm achieved a
sensitivity of 97.8%, a specificity of 61.4%, and an area under the ROC
curve of 0.89, highlighting its high sensitivity and overall diagnostic
performance (21).

Beyond imaging, Fatma et al. proposed a hybrid model that
integrates metabolomics data to enhance both the interpretability
and predictive power of DR diagnosis. Model performance was
validated using multiple metrics, including 10-fold cross-validation
and SHAP (SHapley Additive exPlanations), demonstrating improved
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predictive accuracy and greater transparency in clinical
interpretation (22).

To further improve generalizability across imaging devices, Zhang
et al. introduced a novel preprocessing method, Single-Channel
Standard Deviation Normalization (SCSDN). SCSDN maintained
consistent performance across images acquired from various fundus
camera models, minimized algorithm dependency on specific
hardware, reduced clinical deployment costs, and significantly
improved diagnostic accuracy in real-world DR validation
scenarios (23).

Collectively, these clinical validations underscore the robustness,
adaptability, and increasing reliability of AI-based diagnostic systems
in detecting and stratifying PDR across diverse clinical settings

(Table 2).

4 The value of Al in guiding PDR
precision surgery

As Al technology advances, its use in the diagnosis, treatment
planning, and postoperative evaluation of PDR becomes more ubiquitous.
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TABLE 2 Comparison of model performance in PDR and DME.

Category

Diagnosis

Al model

E-DenseNet (29) (2022)

Dataset

EyePACS, APTOS 2019,
MESSIDOR, IDRiD

Task

Grading diagnosis of
Diabetic Retinopathy (DR)

Performance Metrics

ACC: Average 91.2%
SEN: Average 96%
SPE: Average 69%
DSC: Average 92.45%
QKS: Average 0.883

Limitations

1. Relatively low specificity (average 69%).
2. Suboptimal capability in identifying PDR,
with AUC only 76%.

ABID (82) (2024)

One toy dataset (inter-
twining moons), two public
datasets (IDRiD, DDR) and

one private dataset (Aier)

Addressing Grade Shift
Domain Adaptation (GSDA)

problem

ABID (ABiD#) method showed overall Acc. improvements of
7.44% (8.42%), 2.45% (5.05%), 3.67% (4.52%) and 3.00% (12.88%),
6.19% (9.25%), 3.06% (3.61%) respectively.

1. Domain adaptation process requires model
training, demanding substantial computational
resources.

2. Image-level supervised training poses

challenges for accurate lesion detection.

ADRPPA (83) (2024) EyePACS dataset Prediction of Diabetic Recall, precision, and F1-score were 0.338 (95% CI: 0.228-0.451), 1. The time intervals between the encounters
Retinopathy progression 0.561 (95% CI: 0.405-0.714), and 0.422 (95% CI: 0.299-0.532), varied significantly
respectively. 2. Other known RDR features beyond
microaneurysms were not explored.

3. Ensemble of multiple CNNs or inclusion of
multimodal data to enhance prediction
accuracy and reliability was not investigated.

EfficientNetBO0 (15) (2024) Kaggle 46 Classification of Diabetic Maximum accuracy: 97.1% 1. Potential bias introduced by the dataset.
Retinopathy severity 2. Lack of enrichment for representation of
minority classes
Hybrid Explainable Artificial T2DM dataset DR grading prediction and SVC + RF: Accuracy: 86.11%, Precision: 83.39%, F1-Score: 84.38% 1. Lack of extensive clinical validation.

Intelligence Models (22) (2024)

metabolic biomarker

discovery

SVC + DT: Accuracy: 85.80%, Precision: 83.48%, F1-Score: 84.75%
SVC + LR: Accuracy: 83.91%, Precision: 80.79%, F1-Score: 81.41%
SVC + MLP: Accuracy: 89.58%, Precision: 87.18%, F1-Score:
88.20%

Class imbalance.

N

IDx-DR (84) (2023)

Retinal image dataset from

Polish diabetic clinics

Automated screening for
RDR

Sensitivity: 99%, Specificity: 68% (For RDR); Sensitivity: 99%,
Specificity: 44% (For any DR)

—

. Sample selection bias.

N

Insufficient external generalizability.

Medios AI (84) (2023)

Retinal image dataset from

Polish diabetic clinics

Automated screening for

RDR

Sensitivity: 95%, Specificity: 80% (For RDR); Sensitivity: 89%,
Specificity: 90% (For any DR)

—_

. Sample selection bias.

[

. Insufficient external generalizability.

Deep learning models (U-Net et al.)

(85) (2023)

Public Kaggle EyePACS

dataset

Five-stage classification of
DR

Accuracy ranges from 82.00 to 97.92%

—

. Generalization capability requires validation.

N

High computational cost.

DeepDR (86) (2023)

Consecutive T2DM patients
referred to a tertiary
specialist diabetes eye clinic

(Sep-Dec 2019)

Screening and grading of DR

Compared to clinical examination: AUC: 0.921, Sensitivity: 89.1%,
Specificity: 100%, PPV: 100%, NPV: 91.4%, DE: 94.9%

Compared to the standard fundus camera: AUC:0.883, Sensitivity:
83.2%, Specificity: 100%, PPV: 100%, NPV: 87.3%, DE: 92.2%

—

. Lack of integration with different imaging
modalities or sources to validate method
versatility.

2. Dependence on image quality.

(Continued)
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TABLE 2 (Continued)

Category Al model Dataset Task Performance Metrics Limitations
Surgery Coarse-to-fine DR Network, CF- Public IDRiD and Kaggle Preoperative grading of DR CF-DRNet achieved an accuracy of 60.20%, sensitivity of 69.61%, 1. Requires designing a finer network to reduce
DRNet (25) (2020) fundus image datasets severity and specificity of 88.78%. confusion between the 4 stages of DR severity.
Semantic Segmentation Ophthalmology Department, | Intraoperative Average specificity was 0.9976, indicating 99.76% of Not-Neo 1. Insufficient data scale.
Convolutional Neural Network (27) | Health Campus, Universiti neovascularization detection | pixels were correctly classified. 2. Risk of missing fine vessels.
(2021) Sains Malaysia and localization in
Proliferative Diabetic
Retinopathy (PDR)
Ensembled U-Net Architecture OCTA scan dataset Intraoperative Dice loss model performed best on the DCP layer (F1 = 0.67); 1. Limited data scale.
(Ensembled U-Nets) (33) (2024) microaneurysm ensemble strategy improved recall. 2. Risk of missing tiny MAs.
segmentation in DR
XGBoost-based Ensemble (39) Preoperative and Postoperative infection early | Calibration slope: 0.85-0.95 (close to ideal value of 1) 1. Absence of sensitive variables.
(2025) intraoperative routine care prediction and clinical Calibration intercept: —0.02 to —0.13 (close to ideal value of 0) 2. Data imbalance issue
EHR data from patients decision support
Treatment AlphaFold 3 (AF3) (47) (2024) Training data: Protein Data Prediction of complex Comprehensive enhancement in joint prediction performance for 1. Stereochemical errors.

Bank (PDB), sequence

databases, nucleic acid data

structures involving
proteins, nucleic acids, small
molecules, ions, and

modified residues

multiple types of biomolecules.

2. Hallucination issues.

CADNet(Convolutional Attention-
to-DME Network) (42) (2020)

127 subjects receiving three
consecutive anti-VEGF

injections

Prediction of anti-VEGF

treatment response

Average AUC was 0.866; average precision, sensitivity, and

specificity were 85.5, 80.1, and 85.0%, respectively.

1. Small sample size.
2. Failure to differentiate between anti-VEGF

drugs.

Xception-MLP Hybrid Architecture
(49) (2024)

272 anti-VEGF-treated DME

eyes

Prediction of clinical metrics

post anti-VEGF treatment

Xception-MLP significantly outperformed pure CNN.

1. Deficiencies in retrospective data.

2. Lack of external validation.

Diagrams illustrating the associations investigated in this study are provided below: (A) Data description: The year in the table is the time of publication of the literature related to the model. There are differences and diversity in the performance metrics of Al reported

in different literatures; Hybrid Explainable Artificial Intelligence Models (SVC + RF etc.) represent the joint application of multiple algorithms; (B) RDR, Referable Diabetic Retinopathy; DR, Diabetic Retinopathy; AUC, Under the Curves; PPV, Positive Predictive
Value; NPV, Negative Predictive Value; DE, Diagnostic Effectiveness; SVC, Support Vector Machines; RE, Random Forest; DT, Decision Tree; LR, Logistic Regression; MLP, Multilayer Perceptrons; F1-Score, The Harmonic mean of Precision and Recall Values; ACC,
Average Accuracy; SEN, Specificity; DSC, Dice similarity coefficient; QKS, The quadratic Kappa score; GSDA, Gradeskewed Domain Adaptation.
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4.1 Preoperative assessment

4.1.1 CNNs-based innovations

Accurate preoperative evaluation is essential for ensuring
surgical success. In recent years, CNN-based models have been
extensively applied to screen and classify DR (24). These automated
systems can distinguish between different pathological grades
using fundus images or optical coherence tomography (OCT),
thereby providing a scientific foundation for designing
personalized surgical plans.

The hierarchical coarse-to-fine classification network
(CF-DRNet), proposed by Wu et al,, facilitates this process through a
cascaded structure comprising a coarse classification step (No DR vs.
DR) followed by fine-grained classification (four-stage DR grading).
By incorporating an attention mechanism to enhance lesion feature
extraction, the model achieved accuracies of 56.19 and 83.10% on the
IDRID and Kaggle datasets, respectively. This approach effectively
addresses challenges such as inter-class similarity and data imbalance
in DR classification (25).

In another study, accurate DR staging was achieved by integrating
ultra-widefield fundus imaging (Optos) and OCT angiography (OCTA)
into a deep convolutional neural network (DCNN). This multimodal
framework achieved an area under the curve (AUC) of 0.964 and a
specificity of 96.4% in differentiating between no evident DR (NDR)
and proliferative diabetic retinopathy (PDR), demonstrating strong
clinical utility, particularly in complex cases (26).

Tang et al. developed a semantic segmentation CNN that
achieved 99.48% accuracy and an 84.66% Dice similarity
coefficient in pixel-level detection of neovascularization. Its
ability to localize lesion sites significantly outperformed
traditional patch-based classification methods (27). Furthermore,
Aleksandra et al. compared the performance of a standalone Al
model with conventional techniques for early-stage DR staging.
Their findings indicated that the AI model demonstrated higher
sensitivity and specificity in detecting early lesions, enabling
earlier identification of potential complications and formulation
of individualized surgical plans. This study highlights how AI
accelerates diagnostic workflows and enhances the detection of
subtle pathological changes, which is essential for early clinical
intervention (28).

4.1.2 Hybrid architectures and attention
mechanisms

Hybrid methods and attention-based models have further
improved grading accuracy for PDR. Abdel et al. proposed a
hybrid deep learning framework, E-DenseNet, which integrates
a pre-trained EyeNet with the DenseNet architecture. This model
achieved an 84% classification accuracy for PDR on the APTOS
2019 dataset. Its advantages include enhanced feature reuse
through dense connectivity modules and strong robustness in
cross-dataset validation (29).

Gu et al. combined a Vision Transformer (ViT) with class-specific
residual attention (CSRA). The ViT module captured fine-grained
pathological variations, while CSRA enhanced inter-class
discriminability. The model achieved a PDR classification AUC of
0.9081 on the DDR dataset (30). Similarly, Mondal et al. introduced
EDLDR, an ensemble model combining DenseNet101 and ResNeXt.
With data augmentation using a GAN, it achieved an accuracy of
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86.08% for five-class classification on the APTOS 2019 dataset.
Grad-CAM visualization confirmed that the model accurately focused
on PDR lesion regions (31).

4.2 Real-time surgical guidance systems

Accurate preoperative planning enabled by AI can
be seamlessly integrated with real-time intraoperative guidance
systems to enhance surgical outcomes. Building on diagnostic
advancements, Al plays a pivotal role during surgery by leveraging
detailed structural and flow information derived from non-invasive
imaging modalities such as OCT and OCT angiography (32). The
incorporation of AI into surgical workflows has markedly
improved the precision of PDR treatment.

For example, U-Net-based ensemble models have been employed
for the non-invasive segmentation of microaneurysms (33). Other
deep learning algorithms applied to OCTA not only achieve high
diagnostic accuracy for DR and referable status but also generate class
activation maps (CAMs), which visualize specific pathological
regions—such as foveal avascular zone (FAZ) alterations and vessel
density changes—thus potentially guiding intraoperative decision-
making directly on OCTA images (34). Additionally, Al-driven
systems can distinguish pathological neovascularization (NV) from
compensatory angiogenesis, enabling targeted interventions such as
suppression of NV using high-intensity, low-intensity pulsed
ultrasound (LIPUS; 0.5 MHz, 210 mW/cm (2)), inducing endothelial
apoptosis via the p38 MAPK/ER stress signaling pathway (35).
Accurate Al-aided segmentation of these features is essential for
precise localization and surgical planning (32). As a result, real-time
intraoperative imaging integration becomes feasible, significantly
improving surgical precision.

PDR pathogenesis involves retinal microvascular occlusion,
which promotes NV formation. These newly formed, fragile vessels
are prone to rupture, frequently leading to vitreous hemorrhage
and pathological foci (27). To address this, AI models are
instrumental not only in anatomical localization but also in
assessing neovascular activity. For instance, deep learning methods
applied to ultra-widefield fluorescein angiography (UWEF-FA) can
detect neovascular leakage with high accuracy (AUC = 0.96),
effectively distinguishing active lesions requiring treatment from
confounding retinal features, thereby guiding laser or surgical
planning (36). In ischemic regions, AI-guided application of
low-intensity LIPUS (1.5 MHz, 30 mW/cm?) can promote
AKT-mediated angiogenesis, enhance local vascular density, and
support metabolic recovery (37). Michael et al. developed a deep
learning algorithm capable of identifying NV in fundus images and
providing real-time intraoperative feedback, thereby supporting
targeted and adaptive interventions during surgery (27).
Collectively, these Al-assisted technologies substantially enhance
the safety and precision of PDR surgery.

4.3 Post-operative risk prediction models
AT also plays a pivotal role in postoperative management by

enabling predictive analytics and personalized medicine strategies
for patients with DR. For instance, few-shot learning (FSL)
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combined with explainable AI (XAI) has been used to quantify
macular features from OCTA images, enabling accurate assessment
of recovery trajectories and facilitating individualized treatment
planning (38).

In another study, Siri et al. developed an XGBoost-based
predictive model using electronic health record (EHR) data to
estimate 7-day and 30-day postoperative infection risks, thereby
supporting systematic monitoring and early clinical intervention (39).
These AI-powered tools contribute to optimizing recovery protocols
and reducing complication rates, ultimately enhancing long-term
clinical outcomes in DR management.

5 The role of Al in guiding precision
VEGF therapy

Research on the application of AI in anti-VEGF therapy
specifically for PDR remains limited, largely due to the shared
pathological basis between DME and PDR. This section focuses on the
use of Al in anti-VEGF therapy for DME, with the aim of providing a
reference for its potential application in PDR and facilitating future
advancements in this field.

5.1 Current limitations and pathologic
rationale

Current Al studies specifically targeting anti-VEGF therapy in
PDR remain scarce, necessitating extrapolation from DME evidence.
Research on Al applications targeting anti-VEGF therapy for PDR
remains limited—a gap that underscores the need for a translational
research paradigm informed by findings from DME. This approach is
justified by three core pathological commonalities:

First, both DME and PDR share a VEGF-driven pathogenic
mechanism. The pathogenesis of these conditions is closely associated
with elevated VEGF levels (5, 40). Notably, oxidative stress under
hypoxic conditions is significantly and positively correlated with
VEGF concentrations in the vitreous fluid of patients with DME and
PDR (41, 42). VEGF activates several downstream signaling pathways,
including PLCy-PKC-MAPK, PI3K-AKT, and RAC, which
collectively regulate angiogenesis (43). While anti-VEGF therapy is
the first-line treatment for DME (10), it also serves as an alternative
or adjunctive option in PDR, with demonstrated therapeutic efficacy
(44). Furthermore, VEGF forms complexes with proteins such as
copper transport protein 1 (CTRI) via disulfide bonds (45), and
assembles ternary structures involving endoglin (ENG), neuropilin 1
(NRP1), and VEGFR2 to enhance pro-angiogenic signaling (46).
These pathogenic complexes can now be structurally analyzed using
Al-based tools such as AlphaFold 3 (AF3), which predicts interactions
among proteins, nucleic acids, small molecules, ions, and modified
residues, providing novel insights into anti-VEGF therapeutic
mechanisms (47).

Second, both diseases exhibit common imaging biomarkers of
vascular mobility. DME is primarily induced by ischemia, which
increases retinal capillary permeability and promotes microaneurysm
formation (48). The resistance index (RI = [PSV - EDV] / PSV), an
indicator of distal microvascular resistance, has been significantly
associated with progression toward retinal non-perfusion. The
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vasculopathic processes seen in DME are expected to induce RI-like
changes in vascular parameters in PDR as well (49). Wang et al.
reported that diabetic patients with proliferative retinopathy exhibited
the highest mean RI value (0.83), compared to significantly lower
values in healthy controls (0.54, p < 0.001) (50).

Third, there is a generalizability of treatment response
prediction. Gross et al. demonstrated that anti-VEGF agents such
as ranibizumab are effective in both PDR and DME, reducing the
risk of visual field loss associated with panretinal photocoagulation
(PRP) (51). Li et al. proposed a multimodal fusion architecture
that separately extracts and hierarchically integrates structural
and blood flow information, enhances feature representation via
multiscale feature interaction, and applies a weighted average
(Avg) of OCTA grading outcomes to avoid alignment-dependent
feature fusion. The model uses ResNet50 as the backbone,
optimized with the Adam optimizer and supported by data
augmentation techniques. This multimodal fusion architecture
demonstrates applicability to both PDR and DME (52).

5.2 Al can predict treatment outcomes

Understanding these molecular interactions enables Al to predict
therapeutic responses, as demonstrated in the following predictive
models. Medical Al, particularly in predicting patient responses to
treatment, has demonstrated considerable promise—especially in
forecasting outcomes of anti-VEGF therapy for DME. Deep learning
models—particularly those based on OCT image analysis—have been
extensively employed to evaluate initial patient responses to therapy.

In one study, Rasti et al. employed a deep learning algorithm to
analyze OCT images obtained before and after treatment to assess the
therapeutic response in DME patients undergoing anti-VEGF therapy.
Performance metrics such as AUC, sensitivity, precision, and
specificity were used to evaluate the predictive model (53).

To accurately predict best-corrected visual acuity (BCVA), central
subfield thickness (CST), cube volume (CV), and cube average
thickness (CAT) from multimodal data in DME patients receiving
anti-VEGF therapy, Leng et al. developed a deep learning model
integrating a convolutional neural network (CNN) and a multilayer
perceptron (MLP) (54).

Alternatively, generative adversarial networks (GANs) have been
employed to predict OCT image outcomes. These models effectively
identified key biomarkers—including intraretinal fluid (IRF),
subretinal fluid (SRF), and hard exudates (HE)—enabling more
detailed forecasts of treatment response in DME patients. Such
approaches further assist clinicians in predicting both short- and long-
term therapeutic outcomes (55).

Xin et al. proposed a separate prediction model, demonstrating
that cube-measured foveal volume (CMFV) provided more accurate
estimates of initial anti-VEGF treatment efficacy than CST. Their deep
learning model estimated CMFV from OCT images, incorporating
additional
performance (56).

differentiation techniques to enhance predictive

In another study, Sastry et al. developed the Notal OCT Analyzer
(NOA), a machine learning system for quantifying retinal fluid
volumes—including SREF, IRF, and total retinal fluid (TRF)—which are
critical for evaluating patient responses to anti-VEGF therapy. Their
results showed that fluctuations in these volumes were associated with
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treatment efficacy, providing clinicians with improved insight into
therapeutic outcomes and prognostic potential (57).

Building upon these foundational studies, our analysis proposes a
unified framework to optimize the role of Al in personalized anti-
VEGF therapy.

5.3 Al can optimize treatment plans

China bears a substantial burden of diabetic retinopathy (DR),
and Al-assisted solutions can be particularly valuable in economically
underdeveloped regions. These approaches have the potential to
significantly reduce the workload associated with image grading and
lower capital expenditures (58).

To enhance treatment planning and minimize the unnecessary
use of high-cost drugs, Anwesa et al. developed a hybrid deep
learning model to predict responses to anti-VEGF therapy in
patients with DME (59). Ruijie et al. applied a machine learning
regression model trained on real-world data to predict the short-
term efficacy of anti-VEGF therapy in DME patients. Model
performance was assessed using mean absolute error (MAE), mean
squared error (MSE), and the coefficient of determination (R?).
This predictive capability is essential for both clinical and economic
decision-making related to the short-term outcomes of anti-VEGF
therapy (60).

Al-based prediction of anti-VEGF treatment response in DR and
DME supports the development of personalized and effective
therapeutic strategies (61).

5.4 Al can aid clinical decision-making and
improve treatment efficiency

In clinical decision-making, AI provides predictive insights to
assess responses to anti-VEGF therapy, mitigate associated risks, and
optimize therapeutic outcomes. Ying et al. developed a machine
learning model to predict changes in best-corrected visual acuity (VA)
in patients with DME 1 month after anti-VEGF treatment. This model
supports clinicians in making informed treatment decisions, tailoring
individualized therapeutic strategies, and managing patient
expectations regarding treatment outcomes (62).

To obtain a more objective evaluation of visual function,
researchers have used OCT imaging to infer visual acuity in DME
patients (63). The resulting predictive models achieved R* values of
99.9% for DR, 97.7% for early DR, 93.9% for DME, and 98.4% for
strong responders in the training set, and 96.3, 96.8, 79.9, and 96.3%,
respectively, in the validation set.

Yuhui et al. combined multi-omics analysis with machine learning
to enable early diagnosis of DR and DME and to predict responses to
anti-VEGF therapy. Their model accurately forecasted early DR
progression and treatment response in DME patients, offering a novel
tool for clinical diagnosis and therapeutic planning (64).

Soumya et al. integrated AI algorithms to automate OCT data
segmentation and analysis, resulting in reduced processing time and
cost, faster diagnostic reporting, and improved workflow efficiency
(65) (Figure 1).
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Diagrams illustrating the associations investigated in this study
are provided below: (A) Fundus photographs and OCT images are
input and preprocessed using GAN and SCSDN to enhance image
quality and improve model accuracy. (B) The core algorithm
leverages CNNs, hybrid deep learning models, and ViT networks,
incorporating optimization steps to enhance model performance,
classification accuracy, and generalization. (C) The AI model
detects lesion features in fundus images and classifies PDR,
providing clinicians with a reliable diagnostic basis while
enhancing treatment efficiency and patient quality of life. (D) Data
Validation: The model’s performance was evaluated by calculating
the area under the ROC curve, sensitivity, specificity, and other
metrics. Its accuracy and feasibility were verified by comparing it
with traditional physicians and handheld fundus cameras. (E)
OCT, Optical Coherence Tomography; GAN, Generative
Adversarial Network; SCSDN, Single Channel Standard Deviation
Normalization; CNN, Convolutional Neural Network; ViT
networks, Vision Transformer networks; ROC Curve, Receiver
Operating Characteristic Curve.

6 Critical appraisal: technological
divide and breakthrough paths for Al
in PDR management

6.1 Inherent limitations of Al models
applied to PDR

One major limitation of current AI models is their heavy
reliance on training data from limited geographic regions, resulting
in notable generalization issues. For instance, Ting et al. developed
a deep learning system (DLS) for diabetic retinopathy screening
using multi-country datasets, with the AUC for referable diabetic
retinopathy ranging from 0.889 to 0.983 across 10 externally
validated datasets (66). This variability stems from the inclusion of
datasets from diverse countries, leading to fluctuations in model
performance and introducing uncertainty in clinical applications.
Additionally, differences in the quality of fundus color photographs,
the algorithms used, and the performance of imaging equipment
across studies contribute to significant inconsistencies in Al
diagnostic outcomes (67). Notably, these models have been found
to be more sensitive to changes in camera equipment than
human physicians.

Another critical challenge is the so-called algorithmic “black
box” and the resulting clinical trust issues. In AI, “black box
models” refer to algorithmic systems—particularly deep learning
models—whose internal decision-making processes are difficult
to interpret. Although such models often achieve high predictive
accuracy, their opacity hampers trust, reproducibility, and clinical
adoption. While models like ExplAIn have demonstrated a
balance between performance and interpretability for DR
diagnosis—through an

end-to-end weakly supervised

segmentation architecture with generalized occlusion

regularization (68)—the issue of transparency remains
unresolved. In most cases, interpretability is limited to identifying

correlations. For example, Herrero-Tudela et al. employed SHAP
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FIGURE 1
Al-driven model for PDR diagnosis and treatment.
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to quantify and visualize feature contributions, marking a step
forward in model interpretability (69). However, SHAP has
inherent limitations: it can indicate the relative importance of
metabolites but fails to uncover the causal pathways underlying
This
uninterpretable” nature continues to pose a major barrier to

key pathological mechanisms. “trustworthy  yet

clinical adoption.

6.2 Barriers to real-world applications
The real-world implementation of AI models continues to face

substantial challenges. A primary issue is the regulatory divide and the
absence of standardized validation protocols. Ong et al. conducted a
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global analysis of Al as Medical Devices (AlaMDs), identifying 36
devices from 28 manufacturers—97% (35/36) approved in the EU,
22% (8/36) in Australia, and only 8% (3/36) in the United States (70).
These findings highlight significant disparities in regulatory approval
processes across countries.

Moreover, the false negative and false positive rates of AI models
remain critical concerns. A meta-analysis by Wang et al. reported that,
despite improvements in Al-based diagnosis of ocular diseases, the
false negative rate (FNR) of 12% and false positive rate (FPR) of 8.8%
remain non-negligible (71). Even more concerning is the lack of
globally harmonized standards for validating AT’s ability to assess
dynamic disease progression.

Al deployment is further constrained by resource allocation
challenges. Increasing sensitivity may enhance the identification of
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high-risk patients and improve clinical outcomes, but it also elevates
healthcare costs. Conversely, increasing specificity may reduce
unnecessary testing but risks missed diagnoses (72). This trade-off places
a disproportionate burden on low-income regions. Additionally, Al
systems trained on homogeneous datasets may underperform in diverse
populations, leading to racial and ethnic disparities in detection
rates (73).

Although Vision Transformers (ViTs) have shown promise in
detecting diabetic retinopathy in clinical settings, their application
is limited by high computational demands. Training ViTs requires
high-performance GPUs, with memory usage exceeding 20 GB and
power consumption approaching 400 watts per GPU. These
resource-intensive requirements pose significant barriers to
clinical deployment, particularly in settings with limited
infrastructure and funding (74). Collectively, these multifaceted
barriers underscore the long and complex path toward real-world
adoption of Al in healthcare.

6.3 Research gaps and breakthrough
directions

Currently, three critical gaps characterize Al research in this field:
the absence of cross-model evaluation standards, which leads to
fragmentation among diagnostic and therapeutic models—resulting
in treatment delays and resource inefficiency; the lack of model
generalizability, which impedes large-scale application; and the
deficiency of multi-center validation, which causes the performance
of otherwise high-precision, single-center models to deteriorate in
real-world settings.

To address these challenges, future advancements should focus on
three key areas:

1. Establishment of Federated Learning Architecture: Federated
learning (FL) offers a promising solution to current
limitations. FL enables the development of a unified machine
learning model across institutions using decentralized
datasets. During training, only model parameters—not raw
data—are shared among sites, thereby preserving data
privacy. The final model can be retained by a single party or
distributed among collaborators (75). This approach facilitates
training on larger and more diverse datasets, ultimately
enhancing model generalizability.

2. Development of Multimodal Time-Series Models: Chen et al.
introduced the MuTri framework to align and transform
multimodal data, achieving up to 92% consistency (76). This
underscores the feasibility and effectiveness of integrating
temporal and multimodal information to improve performance
in clinical applications.

3. Promotion of Ultrasound-OCTA-AI Integration: Ultrasound
provides a foundational imaging modality capable of
overcoming optical occlusion; OCTA offers high-resolution
microcirculatory imaging; and Al serves as the integrative
engine for fusing heterogeneous data and conducting
dynamic risk assessments. The complementary strengths of
these three technologies hold promise for mitigating

limitations and transformative

individual enabling

applications in PDR management.
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4. Furthermore, effective cost control is essential for the global

deployment of AI models. Techniques such as model
and hybrid
optimization can substantially reduce computational demands.

compression, architectural lightweighting,
Although these methods may slightly compromise accuracy,
they enable broader accessibility and improve overall benefit

7 Conclusion

AT has demonstrated substantial value in the diagnosis and
treatment of PDR. By enabling efficient analysis of retinal images,
guiding surgical procedures with high precision, and optimizing
individualized anti-VEGF treatment strategies, Al enhances
diagnostic accuracy, therapeutic safety, and procedural efficiency.
However, AI-driven PDR management faces challenges, including
inadequate data quality, limited model generalizability, the opaque
“black-box” nature of algorithms, and unequal distribution of
healthcare resources. Addressing these challenges requires
overcoming barriers related to data privacy and clinical trust.
Proposed solutions include establishing unified regulatory
frameworks to enhance system efficacy and safety, developing deep
learning systems based on multimodal data fusion, and promoting
equitable implementation of automated screening technologies
within universal healthcare systems. These measures aim to
balance the demands of precision medicine with ethical imperatives
for equitable access to care.

In future applications, Al may be utilized to construct time-series
forecasting models through multimodal data fusion, enabling end-to-end
optimization from early risk prediction to personalized intervention. Al
systems could integrate blood glucose fluctuations with real-time retinal
microvascular dynamics to predict the risk of vitreous hemorrhage and
dynamically adjust anti-VEGF therapy regimens, thereby improving
therapeutic response rates while reducing costs. Intelligent decision-
support systems may integrate multidimensional data (e.g., genomics,
metabolomics) to implement closed-loop care encompassing screening,
risk stratification, and treatment optimization. In resource-limited
settings, lightweight AI screening devices integrated with 5G-enabled
telemedicine networks could help overcome geographic barriers and
democratize access to ocular disease prevention and management. In
surgical applications, AI-driven intraoperative OCTA navigation systems
could precisely localize neovascularization, minimizing the risk of
complications. Moreover, by synthesizing genetic and environmental
data, AI may support the development of personalized prevention
strategies to delay disease progression, while blockchain technology can
ensure data security and promote global healthcare equity. Additionally,
the integration of advanced ultrasound technologies with AT may provide
new opportunities to support intraoperative decision-making.
Collectively, these advancements could catalyze a paradigm shift from
reactive treatment to proactive health management, particularly
benefiting the middle-aged and elderly population (Figure 2).
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FIGURE 2

Current challenges and prospects of Al in PDR diagnosis and treatment diagrams illustrating the associations investigated in this study are provided
below: Current Challenges (Left Panel): Summarizes key barriers to Al implementation in PDR management, including: Data heterogeneity and lack of
standardization. Limited model generalizability across devices/populations. Suboptimal therapy personalization. Technical limitations. Weaknesses in
screening capacity and early warning systems. Insufficient Al interpretability. Inefficient postoperative monitoring. Future Solutions and Prospects (Right
Panel): Highlights proposed approaches and future goals, such as: Multimodal data integration and database construction. Development of explainable
Al frameworks. *Real-time Al-assisted navigation and quantification. Telemedicine solutions leveraging lightweight Al and 5G. * Fusion of continuous
monitoring data with retinal imaging. Advanced dynamic modeling. Improved equitable healthcare delivery. Data Sources and References (32, 77-81). OCT,
Optical coherence tomography; Grad-CAM, Gradient-weighted Class Activation Mapping; CGM, Continuous Glucose Monitoring System.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This article was supported by
the following programs to Shi-Xue Dai: Natural Science Foundation of
Jiangxi (NSFJ, No. 20252BAC240528), the High-Level Personnel Program

of Guangdong Provincial Peoples Hospital (2021DFJH0008/

Frontiers in Medicine

KY012021458), Starting Program for National Natural Science
Foundation of China at Guangdong Provincial Peoples Hospital
(8207034250), National Natural Science Foundation of China (NSFC, No.
81300370), Natural Science Foundation of Guangdong (NSFG, No.
2018A030313161), General Program (No. 2017M622650), Special
Support Program (No. 2018T110855) from the China Postdoctoral
Science Foundation (CPSF).

frontiersin.org


https://doi.org/10.3389/fmed.2025.1644456
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Ke et al.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

S-XD declared that they were an editorial board member of
Frontiers, at the time of submission. This had no impact on the peer
review process and the final decision.

Generative Al statement

The authors declare that Gen Al was used in the creation of this
manuscript. During the preparation of this work the authors used Al
models in order to polish. After using these tools, the authors reviewed

References

1. Almas S, Wahid F, Ali S, Alkhyyat A, Ullah K, Khan J, et al. Visual impairment
prevention by early detection of diabetic retinopathy based on stacked auto-encoder. Sci
Rep. (2025) 15:2554. doi: 10.1038/s41598-025-85752-2

2. Wu R, Zhu Z, Zhou D. VEGE apelin and HO-1 in diabetic patients with
retinopathy: a correlation analysis. BMC Ophthalmol. (2020) 20:326. doi:
10.1186/512886-020-01593-9

3. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular
endothelial growth factor induces rapid phosphorylation of tight junction proteins
occludin and zonula occluden 1. A potential mechanism for vascular permeability in
diabetic retinopathy and tumors. ] Biol Chem. (1999) 274:23463-7. doi:
10.1074/jbc.274.33.23463

4. Chernykh VYV, Varvarinsky EV, Smirnov EV, Chernykh DV, Trunov AN. Proliferative
and inflammatory factors in the vitreous of patients with proliferative diabetic retinopathy.
Indian ] Ophthalmol. (2015) 63:33-6. doi: 10.4103/0301-4738.151464

5. Izuta H, Matsunaga N, Shimazawa M, Sugiyama T, Ikeda T, Hara H. Proliferative
diabetic retinopathy and relations among antioxidant activity, oxidative stress, and
VEGEF in the vitreous body. Mol Vis. (2010) 16:130-6.

6. Macaron MM, Al Sabbakh N, Shami MZ, Akrobetu D, Bourdakos NE, Abdulsalam
FA, et al. Anti-VEGF injections vs. Panretinal photocoagulation laser therapy for
proliferative diabetic retinopathy: a systematic review and Meta-analysis. Ophthalmol.
Retina. (2025) 9:105-21. doi: 10.1016/j.0ret.2024.08.004

7. Dos Reis MA, Kiinas CA, da Silva Aragjo T, Schneiders J, de Azevedo PB, Nakayama
LE et al. Advancing healthcare with artificial intelligence: diagnostic accuracy of
machine learning algorithm in diagnosis of diabetic retinopathy in the Brazilian
population. Diabetol Metab Syndr. (2024) 16:209. doi: 10.1186/s13098-024-01447-0

8. LiJ, Guan Z, Wang J, Cheung CY, Zheng Y, Lim LL, et al. Integrated image-based
deep learning and language models for primary diabetes care. Nat Med. (2024)
30:2886-96. doi: 10.1038/s41591-024-03139-8

9. Abu El-Asrar AM, Nawaz MI, Kangave D, Mairaj Siddiquei M, Geboes K.
Angiogenic and vasculogenic factors in the vitreous from patients with proliferative
diabetic retinopathy. J Diabetes Res. (2013) 2013:539658. doi: 10.1155/2013/539658

10. Zhang J, Zhang J, Zhang C, Zhang J, Gu L, Luo D, et al. Diabetic macular edema:
current understanding, molecular mechanisms and therapeutic implications. Cells.
(2022) 11:3362. doi: 10.3390/cells11213362

11. GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert
Group of the Global Burden of Disease Study. Causes of blindness and vision impairment
in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to
VISION 2020: the right to sight: an analysis for the global burden of disease study. Lancet
Glob Health. (2021) 9:¢144-60. doi: 10.1016/S2214-109X(20)30489-7

12. Vujosevic S, Aldington SJ, Silva P, Hernandez C, Scanlon P, Peto T, et al. Screening
for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol.
(2020) 8:337-47. doi: 10.1016/52213-8587(19)30411-5

13. Lakshminarayanan V, Kheradfallah H, Sarkar A, Jothi Balaji J. Automated
detection and diagnosis of diabetic retinopathy: a comprehensive survey. J Imaging.
(2021) 7:165. doi: 10.3390/jimaging7090165

14. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunovi¢ H.
Artificial intelligence in retina. Prog Retin Eye Res. (2018) 67:1-29. doi:
10.1016/j.preteyeres.2018.07.004

15. Arora L, Singh SK, Kumar S, Gupta H, Alhalabi W, Arya V, et al. Ensemble deep
learning and EfficientNet for accurate diagnosis of diabetic retinopathy. Sci Rep. (2024)
14:30554. doi: 10.1038/s41598-024-81132-4

Frontiers in Medicine

10.3389/fmed.2025.1644456

and edited the content as needed and takes full responsibility for the
content of the publication.

Any alternative text (alt text) provided alongside figures in this article has
been generated by Frontiers with the support of artificial intelligence and
reasonable efforts have been made to ensure accuracy, including review by
the authors wherever possible. If you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

16. Shoaib MR, Emara HM, Mubarak AS, Omer OA, Abd El-Samie FE, Esmaiel H.
Revolutionizing diabetic retinopathy diagnosis through advanced deep learning
techniques: harnessing the power of GAN model with transfer learning and the
DiaGAN-CNN model. Biomed Signal Process Control. (2025) 99:106790. doi:
10.1016/j.bspc.2024.106790

17. Chen C, Yang B, Ye K, Lv X, Xu Y-L, Shao Y-T, et al. Fundus image-assisted
diagnosis system for diabetic retinopathy based on deep learning. J Artif Intell. (2021)
3:38-46. doi: 10.16453/j.cnki.ISSN2096-5036.2021.03.005

18. Cao Q, Wang C, Wan J, Jinlong W, Qunfeng Y. Development of an artificial
intelligent grading diagnosis model for diabetic fundus lesions based on EasyDL and its
verification evaluation. J New Medicine. (2022) 53:361-5. doi: 10.3969/].
issn.0253-9802.2022.05.012

19. Pang H, Wang E. Deep learning models for diabetic retinopathy detection. J Softw.
(2017) 28:3018-29. doi: 10.13328/j.cnki.jos.005332

20. Chen PN, Lee CC, Liang CM, Pao SI, Huang KH, Lin KF. General deep learning
model for detecting diabetic retinopathy. BMC Bioinformatics. (2021) 22:84. doi:
10.1186/512859-021-04005-x

21. Malerbi FK, Andrade RE, Morales PH, Stuchi JA, Lencione D, de Paulo JV, et al.
Diabetic retinopathy screening using artificial intelligence and handheld smartphone-
based retinal camera. ] Diabetes Sci Technol. (2022) 16:716-23. doi:
10.1177/1932296820985567

22. Yagin FH, Colak C, Algarni A, Gormez Y, Guldogan E, Ardigo LP. Hybrid
explainable artificial intelligence models for targeted metabolomics analysis of diabetic
retinopathy. Diagnostics (Basel). (2024) 14:1364. doi: 10.3390/diagnostics14131364

23. Zhang Y-1, Xiong J-h, Li M. Single channel standard deviation normalization for
improving prediction diabetic retinopathy. China Digit Med. (2021) 3:38-46. doi:
10.3969/j.issn.1673-7571.2021.07.018

24. Shaban M, Ogur Z, Mahmoud A, Switala A, Shalaby A, Abu Khalifeh H, et al. A
convolutional neural network for the screening and staging of diabetic retinopathy. PLoS
One. (2020) 15:€0233514. doi: 10.1371/journal.pone.0233514

25. Wu Z, Shi G, Chen Y, Shi F, Chen X, Coatrieux G, et al. Coarse-to-fine classification
for diabetic retinopathy grading using convolutional neural network. Artif Intell Med.
(2020) 108:101936. doi: 10.1016/j.artmed.2020.101936

26. Nagasawa T, Tabuchi H, Masumoto H, Morita S, Niki M, Ohara Z, et al. Accuracy
of diabetic retinopathy staging with a deep convolutional neural network using ultra-
wide-field fundus ophthalmoscopy and optical coherence tomography angiography. J
Ophthalmol. (2021) 2021:1-10. doi: 10.1155/2021/6651175

27. Tang MCS, Teoh SS, Ibrahim H, Embong Z. Neovascularization detection and
localization in fundus images using deep learning. Sensors (Basel). (2021) 21:5327. doi:
10.3390/s21165327

28. Sedova A, Hajdu D, Datlinger F, Steiner I, Neschi M, Aschauer J, et al. Comparison
of early diabetic retinopathy staging in asymptomatic patients between autonomous
Al-based screening and human-graded ultra-widefield colour fundus images. Eye
(Lond). (2022) 36:510-6. doi: 10.1038/s41433-021-01912-4

29. AbdelMaksoud E, Barakat S, Elmogy M. A computer-aided diagnosis system for
detecting various diabetic retinopathy grades based on a hybrid deep learning technique.
Med Biol Eng Comput. (2022) 60:2015-38. doi: 10.1007/s11517-022-02564-6

30. Gu Z, Li Y, Wang Z, Kan J, Shu J, Wang Q. Classification of diabetic retinopathy
severity in fundus images using the vision transformer and residual attention. Comput
Intell Neurosci. (2023) 2023:1305583. doi: 10.1155/2023/1305583

frontiersin.org


https://doi.org/10.3389/fmed.2025.1644456
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1038/s41598-025-85752-2
https://doi.org/10.1186/s12886-020-01593-9
https://doi.org/10.1074/jbc.274.33.23463
https://doi.org/10.4103/0301-4738.151464
https://doi.org/10.1016/j.oret.2024.08.004
https://doi.org/10.1186/s13098-024-01447-0
https://doi.org/10.1038/s41591-024-03139-8
https://doi.org/10.1155/2013/539658
https://doi.org/10.3390/cells11213362
https://doi.org/10.1016/S2214-109X(20)30489-7
https://doi.org/10.1016/S2213-8587(19)30411-5
https://doi.org/10.3390/jimaging7090165
https://doi.org/10.1016/j.preteyeres.2018.07.004
https://doi.org/10.1038/s41598-024-81132-4
https://doi.org/10.1016/j.bspc.2024.106790
https://doi.org/10.16453/j.cnki.ISSN2096-5036.2021.03.005
https://doi.org/10.3969/j.issn.0253-9802.2022.05.012
https://doi.org/10.3969/j.issn.0253-9802.2022.05.012
https://doi.org/10.13328/j.cnki.jos.005332
https://doi.org/10.1186/s12859-021-04005-x
https://doi.org/10.1177/1932296820985567
https://doi.org/10.3390/diagnostics14131364
https://doi.org/10.3969/j.issn.1673-7571.2021.07.018
https://doi.org/10.1371/journal.pone.0233514
https://doi.org/10.1016/j.artmed.2020.101936
https://doi.org/10.1155/2021/6651175
https://doi.org/10.3390/s21165327
https://doi.org/10.1038/s41433-021-01912-4
https://doi.org/10.1007/s11517-022-02564-6
https://doi.org/10.1155/2023/1305583

Ke et al.

31. Mondal SS, Mandal N, Singh KK, Singh A, Izonin I. EDLDR: an ensemble deep
learning technique for detection and classification of diabetic retinopathy. Diagnostics
(Basel). (2022) 13:124. doi: 10.3390/diagnostics13010124

32. Vaz-Pereira S, Morais-Sarmento T, Engelbert M. Update on optical coherence
tomography and optical coherence tomography angiography imaging in proliferative
diabetic retinopathy. Diagnostics (Basel). (2021) 11:1869. doi:
10.3390/diagnostics11101869

33. Husvogt L, Yaghy A, Camacho A, Lam K, Schottenhamml ], Ploner SB, et al.
Ensembling U-nets for microaneurysm segmentation in optical coherence tomography
angiography in patients with diabetic retinopathy. Sci Rep. (2024) 14:21520. doi:
10.1038/s41598-024-72375-2

34.Ryu G, Lee K, Park D, Park SH, Sagong M. A deep learning model for identifying
diabetic retinopathy using optical coherence tomography angiography. Sci Rep. (2021)
11:23024. doi: 10.1038/s41598-021-02479-6

35.Su Z, Xu T, Wang Y, Guo X, Tu J, Zhang D, et al. Low-intensity pulsed ultrasound
promotes apoptosis and inhibits angiogenesis via p38 signaling-mediated endoplasmic
reticulum stress in human endothelial cells. Mol Med Rep. (2019) 19:4645-54. doi:
10.3892/mmr.2019.10136

36. Zhao PY, Bommakanti N, Yu G, Aaberg MT, Patel TP, Paulus YM. Deep learning
for automated detection of neovascular leakage on ultra-widefield fluorescein
angiography in diabetic retinopathy. Sci Rep. (2023) 13:9165. doi:
10.1038/s41598-023-36327-6

37.1iJ, Guo W, Yu F, Liu L, Wang XT, Li LY, et al. Low-intensity pulsed ultrasound
promotes angiogenesis via the AKT pathway and DNA methylation in human umbilical
vein endothelial cells. Ultrasonics. (2022) 118:106561. doi: 10.1016/j.ultras.2021.106561

38. Movassagh AA, Jajroudi M, Homayoun Jafari A, Khalili Pour E, Farrokhpour H,
Faghihi H, et al. Quantifying the characteristics of diabetic retinopathy in macular
optical coherence tomography angiography images: a few-shot learning and explainable
artificial intelligence approach. Cureus. (2025) 17:¢76746. doi: 10.7759/cureus.76746

39. Van der Meijden SL, van Boekel AM, Schinkelshoek LJ, van Goor H, Steyerberg
EW, Nelissen RGH. Development and validation of artificial intelligence models for early
detection of postoperative infections (PERISCOPE): a multicentre study using electronic
health record data. Lancet Reg Health Eur. (2024) 49:101163. doi:
10.1016/j.lanepe.2024.101163

40. Sakini ASA, Hamid AK, Alkhuzaie ZA, Al-Aish ST, Al-Zubaidi S, Tayem AA, et al.
Diabetic macular edema (DME): dissecting pathogenesis, prognostication, diagnostic
modalities along with current and futuristic therapeutic insights. Int ] Retina Vitreous.
(2024) 10:83. doi: 10.1186/540942-024-00603-y

41. Andrés-Blasco 1, Gallego-Martinez A, Casaroli-Marano RP, Di Lauro S, Arévalo
JE, Pinazo-Duran MD. Molecular-genetic biomarkers of diabetic macular edema. J Clin
Med. (2024) 13:7426. doi: 10.3390/jcm13237426

42. Boyer DS, Hopkins JJ, Sorof J, Ehrlich JS. Anti-vascular endothelial growth factor
therapy for diabetic macular edema. Ther Adv Endocrinol Metab. (2013) 4:151-69. doi:
10.1177/2042018813512360

43. Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular
endothelial growth factor a. Nat Rev Mol Cell Biol. (2023) 24:816-34. doi:
10.1038/s41580-023-00631-w

44. Pramanik S, Mondal LK, Paine SK, Jain S, Chowdhury S, Ganguly U, et al. Efficacy
and cost-effectiveness of anti-VEGF for treating diabetic retinopathy in the Indian
population. Clin Ophthalmol. (2021) 15:3341-50. doi: 10.2147/OPTH.S317771

45. Das A, Ash D, Fouda AY, Sudhahar V, Kim YM, Hou Y, et al. Cysteine oxidation
of copper transporter CTR1 drives VEGFR?2 signalling and angiogenesis. Nat Cell Biol.
(2022) 24:35-50. doi: 10.1038/s41556-021-00822-7

46. Sharma S, Ehrlich M, Zhang M, Blobe GC, Henis YI. NRP1 interacts with endoglin
and VEGFR2 to modulate VEGF signaling and endothelial cell sprouting. Commun Biol.
(2024) 7:112. doi: 10.1038/s42003-024-05798-2

47. Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure
prediction of biomolecular interactions with AlphaFold 3. Nature. (2024) 630:493-500.
doi: 10.1038/s41586-024-07487-w

48. Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and
cellular pathology of diabetic retinopathy. Nat Rev Endocrinol. (2021) 17:195-206. doi:
10.1038/s41574-020-00451-4

49.Lechner ], O'Leary OE, Stitt AW. The pathology associated with diabetic
retinopathy. Vis Res. (2017) 139:7-14. doi: 10.1016/j.visres.2017.04.003

50. Wang X-h, Jing X, Sheng X-1. Analysis of retinal hemodynamics in patients with
diabetic retinopathy by color Doppler ultrasonography. Int Eye Sci. (2018) 18:112-4. doi:
10.3980/j.issn.1672-5123.2018.1.26

51. Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, Antoszyk AN, et al.
Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic
retinopathy: a randomized clinical trial. JAMA. (2015) 314:2137-46. doi:
10.1001/jama.2015.15217

52.Li Y, El Habib Daho M, Conze PH, Zeghlache R, Le Boité H, Bonnin S, et al.
Hybrid fusion of high-resolution and ultra-widefield OCTA acquisitions for the
automatic diagnosis of diabetic retinopathy. Diagnostics (Basel). (2023) 13:2770. doi:
10.3390/diagnostics13172770

Frontiers in Medicine

13

10.3389/fmed.2025.1644456

53. Rasti R, Allingham M]J, Mettu PS, Kavusi S, Govind K, Cousins SW, et al. Deep
learning-based single-shot prediction of differential effects of anti-VEGF treatment in
patients with diabetic macular edema. Biomed Opt Express. (2020) 11:1139-52. doi:
10.1364/BOE.379150

54. Leng X, Shi R, Xu Z, Zhang H, Xu W, Zhu K, et al. Development and validation of
CNN-MLP models for predicting anti-VEGF therapy outcomes in diabetic macular
edema. Sci Rep. (2024) 14:30270. doi: 10.1038/s41598-024-82007-4

55.Baek J, He Y, Emamverdi M, Mahmoudi A, Nittala MG, Corradetti G, et al.
Prediction of long-term treatment outcomes for diabetic macular edema using a
generative adversarial network. Transl Vis Sci Technol. (2024) 13:4. doi:
10.1167/tvst.13.7.4

56. Ye X, Gao K, He S, Zhong X, Shen Y, Wang Y, et al. Artificial intelligence-based
quantification of central macular fluid volume and VA prediction for diabetic macular
edema wusing OCT images. Ophthalmol Ther. (2023) 12:2441-52. doi:
10.1007/540123-023-00746-5

57. Sastry RC, Perkins SW, Kalur A, Singh RP. Correlation of limited-early-response
status with 12-month CST, BVA, and machine learning-quantified retinal fluid in
diabetic macular oedema in routine clinical practice. Eye (Lond). (2024) 38:2805-12.
doi: 10.1038/s41433-024-03172-4

58.Song P, Yu J, Chan KY, Theodoratou E, Rudan I. Prevalence, risk factors and
burden of diabetic retinopathy in China: a systematic review and meta-analysis. ] Glob
Health. (2018) 8:10803. doi: 10.7189/jogh.08.010803

59. Mondal A, Nandi A, Pramanik S, Mondal LK. Application of deep learning
algorithm for judicious use of anti-VEGF in diabetic macular edema. Sci Rep. (2025)
15:4569. doi: 10.1038/s41598-025-87290-3

60.Shi R, Leng X, Wu Y, Zhu S, Cai X, Lu X. Machine learning regression
algorithms to predict short-term efficacy after anti-VEGF treatment in diabetic
macular edema based on real-world data. Sci Rep. (2023) 13:18746. doi:
10.1038/541598-023-46021-2

61. Kalavar M, Al-Khersan H, Sridhar J, Gorniak RJ, Lakhani PC, Flanders AE, et al.
Applications of artificial intelligence for the detection, management, and treatment of diabetic
retinopathy. Int Ophthalmol Clin. (2020) 60:127-45. doi: 10.1097/110.0000000000000333

62. Zhang Y, Xu E Lin Z, Wang J, Huang C, Wei M, et al. Prediction of visual acuity
after anti- VEGF therapy in diabetic macular edema by machine learning. J Diabetes Res.
(2022) 2022:1-10. doi: 10.1155/2022/5779210

63.Lin TY, Chen HR, Huang HY, Hsiao YI, Kao ZK, Chang KJ, et al. Deep
learning to infer visual acuity from optical coherence tomography in diabetic
macular edema. Front Med (Lausanne). (2022) 9:1008950. doi:
10.3389/fmed.2022.1008950

64.Pang Y, Luo C, Zhang Q, Zhang X, Liao N, Ji Y, et al. Multi-omics integration
with machine learning identified early diabetic retinopathy, diabetic macula edema
and anti-VEGF treatment response. Transl Vis Sci Technol. (2024) 13:23. doi:
10.1167/tvst.13.12.23

65. Sharma S, Daigavane S, Shinde P. Innovations in diabetic macular edema
management: a comprehensive review of automated quantification and anti-vascular
endothelial growth factor intervention. Cureus. (2024) 16:€54752. doi:
10.7759/cureus.54752

66. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development
and validation of a deep learning system for diabetic retinopathy and related eye diseases
using retinal images from multiethnic populations with diabetes. JAMA. (2017)
318:2211-23. doi: 10.1001/jama.2017.18152

67. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial
intelligence and deep learning in ophthalmology. Br ] Ophthalmol. (2019) 103:167-75.
doi: 10.1136/bjophthalmol-2018-313173

68. Quellec G, Al Hajj H, Lamard M, Conze PH, Massin P, Cochener B. ExplAIn:
explanatory artificial intelligence for diabetic retinopathy diagnosis. Med Image Anal.
(2021) 72:102118. doi: 10.1016/j.media.2021.102118

69. Herrero-Tudela M, Romero-Oraa R, Hornero R, Gutiérrez Tobal GC, Lépez MI,
Garcia M. An explainable deep-learning model reveals clinical clues in diabetic
retinopathy through SHAP. Biomed Signal Process Control. (2025) 102:107328. doi:
10.1016/j.bspc.2024.107328

70. Ong AY, Taribagil P, Sevgi M, Kale AU, Dow ER, Macdonald T, et al. A scoping
review of artificial intelligence as a medical device for ophthalmic image analysis in
Europe, Australia and America. NPJ Digit Med. (2025) 8:323. doi: 10.1038/s41746-025-
01726-8

71.Wang Z, Li Z, Li K, Mu S, Zhou X, di Y. Performance of artificial intelligence
in diabetic retinopathy screening: a systematic review and meta-analysis of
prospective studies. Front Endocrinol (Lausanne). (2023) 14:1197783. doi:
10.3389/fend0.2023.1197783

72. Wang Y, Liu C, Hu W, Luo L, Shi D, Zhang J, et al. Economic evaluation for medical
artificial intelligence: accuracy vs. cost-effectiveness in a diabetic retinopathy screening
case. NPJ Digit Med. (2024) 7:1032. doi: 10.1038/s41746-024-01032-9

73.DeLuca NJ, Wertheimer B, Ansari Z. Artificial intelligence in ophthalmic
screening: advancing diabetic retinopathy detection in low-income immigrant
populations. Curr Ophthalmol Rep. (2025) 13:333. doi:
10.1007/540135-025-00333-w

frontiersin.org


https://doi.org/10.3389/fmed.2025.1644456
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.3390/diagnostics13010124
https://doi.org/10.3390/diagnostics11101869
https://doi.org/10.1038/s41598-024-72375-2
https://doi.org/10.1038/s41598-021-02479-6
https://doi.org/10.3892/mmr.2019.10136
https://doi.org/10.1038/s41598-023-36327-6
https://doi.org/10.1016/j.ultras.2021.106561
https://doi.org/10.7759/cureus.76746
https://doi.org/10.1016/j.lanepe.2024.101163
https://doi.org/10.1186/s40942-024-00603-y
https://doi.org/10.3390/jcm13237426
https://doi.org/10.1177/2042018813512360
https://doi.org/10.1038/s41580-023-00631-w
https://doi.org/10.2147/OPTH.S317771
https://doi.org/10.1038/s41556-021-00822-7
https://doi.org/10.1038/s42003-024-05798-2
https://doi.org/10.1038/s41586-024-07487-w
https://doi.org/10.1038/s41574-020-00451-4
https://doi.org/10.1016/j.visres.2017.04.003
https://doi.org/10.3980/j.issn.1672-5123.2018.1.26
https://doi.org/10.1001/jama.2015.15217
https://doi.org/10.3390/diagnostics13172770
https://doi.org/10.1364/BOE.379150
https://doi.org/10.1038/s41598-024-82007-4
https://doi.org/10.1167/tvst.13.7.4
https://doi.org/10.1007/s40123-023-00746-5
https://doi.org/10.1038/s41433-024-03172-4
https://doi.org/10.7189/jogh.08.010803
https://doi.org/10.1038/s41598-025-87290-3
https://doi.org/10.1038/s41598-023-46021-2
https://doi.org/10.1097/IIO.0000000000000333
https://doi.org/10.1155/2022/5779210
https://doi.org/10.3389/fmed.2022.1008950
https://doi.org/10.1167/tvst.13.12.23
https://doi.org/10.7759/cureus.54752
https://doi.org/10.1001/jama.2017.18152
https://doi.org/10.1136/bjophthalmol-2018-313173
https://doi.org/10.1016/j.media.2021.102118
https://doi.org/10.1016/j.bspc.2024.107328
https://doi.org/10.1038/s41746-025-01726-8
https://doi.org/10.1038/s41746-025-01726-8
https://doi.org/10.3389/fendo.2023.1197783
https://doi.org/10.1038/s41746-024-01032-9
https://doi.org/10.1007/s40135-025-00333-w

Ke et al.

74. Haq NU, Waheed T, Ishaq K, Hassan MA, Safie N, Elias NF, et al. Computationally
efficient deep learning models for diabetic retinopathy detection: a systematic literature
review. Artif Intell Rev. (2024) 57:309. doi: 10.1007/510462-024-10942-9

75. Topol EJ. High-performance medicine: the convergence of human and artificial
intelligence. Nat Med. (2019) 25:44-56. doi: 10.1038/s41591-018-0300-7

76. Chen Z, Wang H, Ou C, Li X. Mutri: multi-view tri-alignment for OCT to OCTA
3d image translation. Comput Vis Pattern Recogn. (2025) 2025:1428. doi:
10.48550/arXiv.2504.01428

77.Xiao L-L, Dou X-Y. Application of artificial intelligence and deep learning in
ophthalmology. ] Int Eye Sci. (2020) 20:1197-201. doi: 10.3980/j.issn.1672-5123.2020.7.18

78. Swaminathan U, Daigavane S. Unveiling the potential: a comprehensive review of
artificial intelligence applications in ophthalmology and future prospects. Cureus. (2024)
16:¢61826. doi: 10.7759/cureus.61826

79. Cleland CR, Rwiza J, Evans JR, Gordon I, MacLeod D, Burton MJ, et al. Artificial
intelligence for diabetic retinopathy in low-income and middle-income countries: a scoping
review. BMJ Open Diabetes Res Care. (2023) 11:¢003424. doi: 10.1136/bmjdrc-2023-003424

80. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM:

visual explanations from deep networks via gradient-based localization. J Int ] Comput
Vision. (2020) 128:336-59. doi: 10.1007/s11263-019-01228-7

Frontiers in Medicine

14

10.3389/fmed.2025.1644456

81.Zhang R, Liu Q. Learning with few samples in deep learning for image
classification, a mini-review. Front Comput Neurosci. (2023) 16:1075294. doi:
10.3389/fncom.2022.1075294

82.MaY, GuY, Guo S, Qin X, Wen S, Shi N, et al. Grade-skewed domain adaptation
via asymmetric bi-classifier discrepancy minimization for diabetic retinopathy grading.
IEEE Trans Med Imaging. (2024) 44:1115-26. doi: 10.1109/TMI.2024.3485064

83. Wang VY, Lo MT, Chen TC, Huang CH, Huang A, Wang PC. A deep learning—
based ADRPPA algorithm for the prediction of diabetic retinopathy progression. Sci
Rep. (2024) 14:31772. doi: 10.1038/s41598-024-82884-9

84. Grzybowski A, Rao DP, Brona P, Negiloni K, Krzywicki T, Savoy FM. Diagnostic
accuracy of automated diabetic retinopathy image assessment Softwares: IDx-DR and
Medios artificial intelligence. Ophthalmic Res. (2023) 66:1286-92. doi: 10.1159/000
534098

85.Ishtiaq U, Abdullah ERME Ishtiaque Z. A hybrid technique for diabetic
retinopathy detection based on ensemble-optimized CNN and texture features.
Diagnostics (Basel). (2023) 13:1816. doi: 10.3390/diagnostics13101816

86. Tomi¢ M, Vrabec R, Hendelja D, Kolari¢ V, Bulum T, Raheli¢ D. Diagnostic
accuracy of hand-held fundus camera and artificial intelligence in diabetic retinopathy
screening. Biomedicine. (2023) 12:34. doi: 10.3390/biomedicines12010034

frontiersin.org


https://doi.org/10.3389/fmed.2025.1644456
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1007/s10462-024-10942-9
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.48550/arXiv.2504.01428
https://doi.org/10.3980/j.issn.1672-5123.2020.7.18
https://doi.org/10.7759/cureus.61826
https://doi.org/10.1136/bmjdrc-2023-003424
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.3389/fncom.2022.1075294
https://doi.org/10.1109/TMI.2024.3485064
https://doi.org/10.1038/s41598-024-82884-9
https://doi.org/10.1159/000534098
https://doi.org/10.1159/000534098
https://doi.org/10.3390/diagnostics13101816
https://doi.org/10.3390/biomedicines12010034

	Artificial intelligence in proliferative diabetic retinopathy: advancing diagnosis, precision surgery, and anti-VEGF therapy optimization
	1 Introduction
	2 Methods
	3 Advances in AI for PDR diagnosis
	3.1 Deep learning-based image learning
	3.2 Diversity input and overfitting prevention for data analysis
	3.3 Clinical validation of AI models

	4 The value of AI in guiding PDR precision surgery
	4.1 Preoperative assessment
	4.1.1 CNNs-based innovations
	4.1.2 Hybrid architectures and attention mechanisms
	4.2 Real-time surgical guidance systems
	4.3 Post-operative risk prediction models

	5 The role of AI in guiding precision VEGF therapy
	5.1 Current limitations and pathologic rationale
	5.2 AI can predict treatment outcomes
	5.3 AI can optimize treatment plans
	5.4 AI can aid clinical decision-making and improve treatment efficiency

	6 Critical appraisal: technological divide and breakthrough paths for AI in PDR management
	6.1 Inherent limitations of AI models applied to PDR
	6.2 Barriers to real-world applications
	6.3 Research gaps and breakthrough directions

	7 Conclusion

	References

