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Proliferative diabetic retinopathy (PDR) represents the most advanced and vision-
threatening stage of diabetic retinopathy (DR) and remains a leading cause of 
blindness in individuals with diabetes. This review presents a comprehensive overview 
of recent advances in the application of artificial intelligence (AI) for the diagnosis 
and treatment of PDR, emphasizing its clinical potential and associated challenges. 
The role of vascular endothelial growth factor (VEGF) in the pathogenesis of PDR has 
become increasingly clear, and AI offers novel capabilities in retinal image analysis, 
disease progression prediction, and treatment decision-making. These advancements 
have notably improved diagnostic accuracy and efficiency. Furthermore, AI-based 
models show promise in optimizing anti-VEGF therapy by enhancing therapeutic 
outcomes while reducing unnecessary healthcare expenditures. Future research 
should focus on the safe, effective, and ethical integration of AI into clinical workflows. 
Overcoming practical deployment barriers will require interdisciplinary collaboration 
among technology developers, clinicians, and regulatory bodies. The strategies 
and frameworks discussed in this review are expected to provide a foundation for 
future AI research and clinical translation in fields of PDR.
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1 Introduction

Diabetic retinopathy (DR), a microvascular complication of diabetes, has become an 
escalating global health concern. As the number of diabetic patients rises, so also does the 
burden of DR-related vision loss. Persistent hyperglycemia damages retinal blood vessels; in 
advanced stages, this can lead to vitreous hemorrhage, retinal detachment, and ultimately, 
irreversible blindness (1).

Proliferative diabetic retinopathy (PDR) represents the most vision-threatening stage of 
DR. Its pathogenesis is closely associated with elevated levels of VEGF, a key molecule promoting 
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pathological angiogenesis (2), increased vascular permeability (3), and 
heightened inflammatory responses within the retinal 
microenvironment (4). VEGF expression is further upregulated under 
oxidative stress and hypoxic conditions—both common in diabetes—
driving progressive neovascular complications. Accumulating evidence 
suggests that vitreous VEGF levels strongly correlate with oxidative 
stress markers, reinforcing its central role in disease progression (5).

Despite significant advances in understanding DR 
pathophysiology and the widespread use of anti-VEGF therapies—
particularly for PDR and diabetic macular edema (DME) (6)—several 
critical clinical challenges persist. Notably, DR diagnosis still largely 
depends on the manual interpretation of fundus photographs by 
ophthalmologists, a process that is time-consuming and resource-
intensive (7). In response, AI—specifically deep learning and large 
language models (LLMs)—has emerged as a transformative tool. 
Recent studies demonstrate that AI systems can accurately and reliably 
detect various stages of DR, including PDR, with the potential to 
alleviate diagnostic workload and improve early detection (8).

Beyond diagnosis, AI is increasingly being explored for its 
potential to assist in therapeutic decision-making and postoperative 
monitoring. For instance, integrating AI into anti-VEGF therapy 
workflows may allow for more personalized and predictive PDR 
management. Given the pathological overlap between PDR and DME 
(9, 10), this AI-guided strategy could have wide-reaching clinical 
implications. While DME frequently co-occurs with PDR, this review 
focuses exclusively on AI applications specific to PDR.

This narrative review aims to provide a comprehensive overview 
of recent advances in AI applications for PDR, encompassing 
automated diagnosis, individualized treatment planning, and 
follow-up evaluation. By highlighting AI’s potential to enhance clinical 
decision-making, improve workflow efficiency, and optimize patient 
outcomes, this article serves as a practical resource for retinal 
specialists and ophthalmic surgeons managing the 
complexities of PDR.

2 Methods

This narrative review was conducted to present a method that 
synthesizes recent developments in the application of AI in the 
diagnosis, surgical management, and anti-VEGF therapy optimization 
for PDR. Relevant literature was identified through systematic 
searches of PubMed, Web of Science, Embase, and Google Scholar 
databases. The search period was from January 2015 to June 2025. The 
following keywords were used in various combinations: “proliferative 
diabetic retinopathy,” “PDR,” “artificial intelligence,” “deep learning,” 
“machine learning,” “anti-VEGF therapy,” “retinal image analysis,” and 
“precision surgery”.

Inclusion criteria of this review included: (1) peer-reviewed 
articles or conference papers; (2) studies focused on AI applications 
in PDR or DR-related diagnosis/treatment; (3) articles describing 
clinical studies, model development, or review of AI in DR. Exclusion 
criteria included: (1) non-English publications, (2) case reports or 
letters without sufficient methodology, and (3) studies focused solely 
on non-proliferative DR or other unrelated retinal diseases.

A total of over 100 articles were included based on their relevance, 
novelty, and contribution to the understanding or advancement of AI 
applications in PDR management (Table 1).

3 Advances in AI for PDR diagnosis

DR, a leading cause of blindness in individuals with diabetes, 
results in progressive and often irreversible visual impairment 
(11). Recent advances in AI technologies have enabled large-scale 
screening and the development of tailored predictive models, 
thereby improving the efficiency and cost-effectiveness of DR 
screening programs (12). Modern ophthalmic computer-aided 
diagnosis (CAD) systems demonstrate low diagnostic error rates 
and offer significant savings in time, cost, and clinical manpower 
compared to traditional DR screening methods (13). Machine 
learning (ML) algorithms can effectively detect, localize, and 
quantify pathological features of DR, mimicking the human 
brain’s pattern recognition capabilities. Furthermore, by 
leveraging patterns autonomously identified through 
unsupervised convolutional neural networks (CNNs), these 
algorithms can accurately classify the various stages of DR (14).

3.1 Deep learning-based image learning

Arora et  al. employed convolutional layering and compound 
scaling strategies in AI models to develop the EfficientNet framework 
(15). Specifically, the EfficientNetB0 model was optimized in terms of 
depth, width, and resolution to classify DR severity (16). Recent 
studies have utilized Generative Adversarial Networks (GANs) to 
generate synthetic fundus images, thereby enriching the diversity of 
training datasets. These synthetic images were incorporated into 
DiaGAN-CNN, a transfer learning-based deep learning model, to 
improve the accuracy of image-based DR classification (16). The final 
model achieved an accuracy of 0.84255, a quadratic weighted Kappa 
of 0.79565, and an AUC exceeding 0.90 (17).

Chao Chen et al. adopted Inception-V3 as the base architecture, 
reduced network complexity using Global Average Pooling (GAP), 
and integrated a fully connected layer with ReLU activation and a 
Softmax output layer. The model was trained on the ImageNet and 
Kaggle DR datasets, and the system was optimized through 
asynchronous calling mechanisms, multithreading, and microservice 
architecture (18). Using the Baidu EasyDL platform, Cao et  al. 
applied a transfer learning approach, retraining the upper-layer 
network parameters to construct a new classifier based on a 
pre-trained model and a publicly available diabetic fundus disease 
dataset from Kaggle. Their model achieved a Kappa coefficient of 
1.00 (19).

Collectively, these technical advancements have substantially 
improved the accuracy, consistency, and clinical applicability of 
AI-based diagnostic tools for DR and PDR detection.

3.2 Diversity input and overfitting 
prevention for data analysis

Researchers have noted that limited demographic diversity in 
training datasets may compromise the generalizability of AI models, 
resulting in reduced accuracy when applied to broader or 
underrepresented populations. To mitigate this issue, large-scale 
public datasets containing DR images of varying severity levels are 
commonly used to ensure adequate variability (15). In addition, a 
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two-stage training strategy was employed in conjunction with the 
NASNet-Large pre-trained model to address the risk of overfitting due 
to excessive oversampling. This approach incorporated decision tree 
algorithms and the Synthetic Minority Over-sampling Technique 
(SMOTE) to manage data imbalance and improve model 
generalization (20).

3.3 Clinical validation of AI models

A dataset of retinal scans from Brazilian patients was used to 
develop and validate a deep learning algorithm capable of diagnosing 
various stages of DR, including PDR. The algorithm achieved a 
sensitivity of 97.8%, a specificity of 61.4%, and an area under the ROC 
curve of 0.89, highlighting its high sensitivity and overall diagnostic 
performance (21).

Beyond imaging, Fatma et  al. proposed a hybrid model that 
integrates metabolomics data to enhance both the interpretability 
and predictive power of DR diagnosis. Model performance was 
validated using multiple metrics, including 10-fold cross-validation 
and SHAP (SHapley Additive exPlanations), demonstrating improved 

predictive accuracy and greater transparency in clinical 
interpretation (22).

To further improve generalizability across imaging devices, Zhang 
et  al. introduced a novel preprocessing method, Single-Channel 
Standard Deviation Normalization (SCSDN). SCSDN maintained 
consistent performance across images acquired from various fundus 
camera models, minimized algorithm dependency on specific 
hardware, reduced clinical deployment costs, and significantly 
improved diagnostic accuracy in real-world DR validation 
scenarios (23).

Collectively, these clinical validations underscore the robustness, 
adaptability, and increasing reliability of AI-based diagnostic systems 
in detecting and stratifying PDR across diverse clinical settings 
(Table 2).

4 The value of AI in guiding PDR 
precision surgery

As AI technology advances, its use in the diagnosis, treatment 
planning, and postoperative evaluation of PDR becomes more ubiquitous.

TABLE 1  Classification of Diabetic Retinopathy and AI Applications.

Classification method Classification basis Classification criteria AI applications and 
breakthroughs

International Clinical 

Classification

Severity of lesion No Retinopathy (0): No significant signs of 

retinopathy.

Mild NPDR (1): Presence of microaneurysms 

only.

Moderate NPDR (2): Retinal hemorrhages, hard 

exudates, or cotton wool spots not meeting 

severe NPDR criteria.

Severe NPDR (3): Microvascular abnormalities, 

numerous hemorrhages, intraretinal/preretinal 

hemorrhages, or venous beading.

PDR (4): Neovascularization or fibrous 

membranes on the retina or optic disk.

Researchers developed a hybrid deep 

learning model (E-DenseNet) integrating 

EyeNet and DenseNet to improve DR 

lesion classification accuracy (29).

ETDRS classification Lesion characteristics and severity Mild NPDR: Characterized by microaneurysms.

Moderate NPDR: Presence of retinal 

hemorrhages, hard exudates, and other lesions.

Severe NPDR: Intraretinal microvascular 

abnormalities.

PDR: Defined by the presence of 

neovascularization.

Researchers proposed an AI technique 

(ABiD) using forward-backward 

compensation to improve classification 

near decision boundaries (82).

American Academy of 

Ophthalmology Classification

Risk of lesion progression and 

characterization

Normal or Mild NPDR: Normal fundus or few 

microaneurysms.

Mild to Moderate NPDR: Microaneurysms with 

few hemorrhages or hard exudates.

Severe NPDR & Non-High-Risk PDR: Advanced 

lesions without high-risk features.

High-Risk PDR: Meets ≥3 of 4 criteria: 

neovascularization, optic disk involvement, 

extensive neovascularization, or vitreous/

peripheral hemorrhage.

Researchers applied a Mask R-CNN 

model to quantify microaneurysms and 

proposed a ResNeXt-based algorithm 

(ADRPPA) to assess DR severity over time 

(83).

Diagrams illustrating the associations investigated in this study are provided below: NPDR, Nonproliferative Diabetic Retinopathy; PDR, Proliferative Diabetic Retinopathy; DR, Diabetic 
Retinopathy; ABiD, Asymmetric Bi-Classifier Discrepancy Minimization.
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TABLE 2  Comparison of model performance in PDR and DME.

Category AI model Dataset Task Performance Metrics Limitations

Diagnosis E-DenseNet (29) (2022) EyePACS, APTOS 2019, 

MESSIDOR, IDRiD

Grading diagnosis of 

Diabetic Retinopathy (DR)

ACC: Average 91.2%

SEN: Average 96%

SPE: Average 69%

DSC: Average 92.45%

QKS: Average 0.883

1. Relatively low specificity (average 69%).

2. Suboptimal capability in identifying PDR, 

with AUC only 76%.

ABiD (82) (2024) One toy dataset (inter-

twining moons), two public 

datasets (IDRiD, DDR) and 

one private dataset (Aier)

Addressing Grade Shift 

Domain Adaptation (GSDA) 

problem

ABiD (ABiD‡) method showed overall Acc. improvements of 

7.44% (8.42%), 2.45% (5.05%), 3.67% (4.52%) and 3.00% (12.88%), 

6.19% (9.25%), 3.06% (3.61%) respectively.

1. Domain adaptation process requires model 

training, demanding substantial computational 

resources.

2. Image-level supervised training poses 

challenges for accurate lesion detection.

ADRPPA (83) (2024) EyePACS dataset Prediction of Diabetic 

Retinopathy progression

Recall, precision, and F1-score were 0.338 (95% CI: 0.228–0.451), 

0.561 (95% CI: 0.405–0.714), and 0.422 (95% CI: 0.299–0.532), 

respectively.

	1.	 The time intervals between the encounters 

varied significantly

	2.	 Other known RDR features beyond 

microaneurysms were not explored.

	3.	 Ensemble of multiple CNNs or inclusion of 

multimodal data to enhance prediction 

accuracy and reliability was not investigated.

EfficientNetB0 (15) (2024) Kaggle 46 Classification of Diabetic 

Retinopathy severity

Maximum accuracy: 97.1% 	1.	 Potential bias introduced by the dataset.

	2.	 Lack of enrichment for representation of 

minority classes

Hybrid Explainable Artificial 

Intelligence Models (22) (2024)

T2DM dataset DR grading prediction and 

metabolic biomarker 

discovery

SVC + RF: Accuracy: 86.11%, Precision: 83.39%, F1-Score: 84.38%

SVC + DT: Accuracy: 85.80%, Precision: 83.48%, F1-Score: 84.75%

SVC + LR: Accuracy: 83.91%, Precision: 80.79%, F1-Score: 81.41%

SVC + MLP: Accuracy: 89.58%, Precision: 87.18%, F1-Score: 

88.20%

1. Lack of extensive clinical validation.

2. Class imbalance.

IDx-DR (84) (2023) Retinal image dataset from 

Polish diabetic clinics

Automated screening for 

RDR

Sensitivity: 99%, Specificity: 68% (For RDR); Sensitivity: 99%, 

Specificity: 44% (For any DR)

1. Sample selection bias.

2. Insufficient external generalizability.

Medios AI (84) (2023) Retinal image dataset from 

Polish diabetic clinics

Automated screening for 

RDR

Sensitivity: 95%, Specificity: 80% (For RDR); Sensitivity: 89%, 

Specificity: 90% (For any DR)

1. Sample selection bias.

2. Insufficient external generalizability.

Deep learning models (U-Net et al.) 

(85) (2023)

Public Kaggle EyePACS 

dataset

Five-stage classification of 

DR

Accuracy ranges from 82.00 to 97.92% 1. Generalization capability requires validation.

2. High computational cost.

DeepDR (86) (2023) Consecutive T2DM patients 

referred to a tertiary 

specialist diabetes eye clinic 

(Sep-Dec 2019)

Screening and grading of DR Compared to clinical examination: AUC: 0.921, Sensitivity: 89.1%, 

Specificity: 100%, PPV: 100%, NPV: 91.4%, DE: 94.9%

Compared to the standard fundus camera: AUC:0.883, Sensitivity: 

83.2%, Specificity: 100%, PPV: 100%, NPV: 87.3%, DE: 92.2%

1. Lack of integration with different imaging 

modalities or sources to validate method 

versatility.

2. Dependence on image quality.

(Continued)
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Category AI model Dataset Task Performance Metrics Limitations

Surgery Coarse-to-fine DR Network, CF-

DRNet (25) (2020)

Public IDRiD and Kaggle 

fundus image datasets

Preoperative grading of DR 

severity

CF-DRNet achieved an accuracy of 60.20%, sensitivity of 69.61%, 

and specificity of 88.78%.

1. Requires designing a finer network to reduce 

confusion between the 4 stages of DR severity.

Semantic Segmentation 

Convolutional Neural Network (27) 

(2021)

Ophthalmology Department, 

Health Campus, Universiti 

Sains Malaysia

Intraoperative 

neovascularization detection 

and localization in 

Proliferative Diabetic 

Retinopathy (PDR)

Average specificity was 0.9976, indicating 99.76% of Not-Neo 

pixels were correctly classified.

1. Insufficient data scale.

2. Risk of missing fine vessels.

Ensembled U-Net Architecture 

(Ensembled U-Nets) (33) (2024)

OCTA scan dataset Intraoperative 

microaneurysm 

segmentation in DR

Dice loss model performed best on the DCP layer (F1 = 0.67); 

ensemble strategy improved recall.

1. Limited data scale.

2. Risk of missing tiny MAs.

XGBoost-based Ensemble (39) 

(2025)

Preoperative and 

intraoperative routine care 

EHR data from patients

Postoperative infection early 

prediction and clinical 

decision support

Calibration slope: 0.85–0.95 (close to ideal value of 1)

Calibration intercept: −0.02 to −0.13 (close to ideal value of 0)

1. Absence of sensitive variables.

2. Data imbalance issue

Treatment AlphaFold 3 (AF3) (47) (2024) Training data: Protein Data 

Bank (PDB), sequence 

databases, nucleic acid data

Prediction of complex 

structures involving 

proteins, nucleic acids, small 

molecules, ions, and 

modified residues

Comprehensive enhancement in joint prediction performance for 

multiple types of biomolecules.

1. Stereochemical errors.

2. Hallucination issues.

CADNet(Convolutional Attention-

to-DME Network) (42) (2020)

127 subjects receiving three 

consecutive anti-VEGF 

injections

Prediction of anti-VEGF 

treatment response

Average AUC was 0.866; average precision, sensitivity, and 

specificity were 85.5, 80.1, and 85.0%, respectively.

1. Small sample size.

2. Failure to differentiate between anti-VEGF 

drugs.

Xception-MLP Hybrid Architecture 

(49) (2024)

272 anti-VEGF-treated DME 

eyes

Prediction of clinical metrics 

post anti-VEGF treatment

Xception-MLP significantly outperformed pure CNN. 1. Deficiencies in retrospective data.

2. Lack of external validation.

Diagrams illustrating the associations investigated in this study are provided below: (A) Data description: The year in the table is the time of publication of the literature related to the model. There are differences and diversity in the performance metrics of AI reported 
in different literatures; Hybrid Explainable Artificial Intelligence Models (SVC + RF etc.) represent the joint application of multiple algorithms; (B) RDR, Referable Diabetic Retinopathy; DR, Diabetic Retinopathy; AUC, Under the Curves; PPV, Positive Predictive 
Value; NPV, Negative Predictive Value; DE, Diagnostic Effectiveness; SVC, Support Vector Machines; RF, Random Forest; DT, Decision Tree; LR, Logistic Regression; MLP, Multilayer Perceptrons; F1-Score, The Harmonic mean of Precision and Recall Values; ACC, 
Average Accuracy; SEN, Specificity; DSC, Dice similarity coefficient; QKS, The quadratic Kappa score; GSDA, Gradeskewed Domain Adaptation.

TABLE 2  (Continued)
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4.1 Preoperative assessment

4.1.1 CNNs-based innovations
Accurate preoperative evaluation is essential for ensuring 

surgical success. In recent years, CNN-based models have been 
extensively applied to screen and classify DR (24). These automated 
systems can distinguish between different pathological grades 
using fundus images or optical coherence tomography (OCT), 
thereby providing a scientific foundation for designing 
personalized surgical plans.

The hierarchical coarse-to-fine classification network 
(CF-DRNet), proposed by Wu et al., facilitates this process through a 
cascaded structure comprising a coarse classification step (No DR vs. 
DR) followed by fine-grained classification (four-stage DR grading). 
By incorporating an attention mechanism to enhance lesion feature 
extraction, the model achieved accuracies of 56.19 and 83.10% on the 
IDRiD and Kaggle datasets, respectively. This approach effectively 
addresses challenges such as inter-class similarity and data imbalance 
in DR classification (25).

In another study, accurate DR staging was achieved by integrating 
ultra-widefield fundus imaging (Optos) and OCT angiography (OCTA) 
into a deep convolutional neural network (DCNN). This multimodal 
framework achieved an area under the curve (AUC) of 0.964 and a 
specificity of 96.4% in differentiating between no evident DR (NDR) 
and proliferative diabetic retinopathy (PDR), demonstrating strong 
clinical utility, particularly in complex cases (26).

Tang et  al. developed a semantic segmentation CNN that 
achieved 99.48% accuracy and an 84.66% Dice similarity 
coefficient in pixel-level detection of neovascularization. Its 
ability to localize lesion sites significantly outperformed 
traditional patch-based classification methods (27). Furthermore, 
Aleksandra et al. compared the performance of a standalone AI 
model with conventional techniques for early-stage DR staging. 
Their findings indicated that the AI model demonstrated higher 
sensitivity and specificity in detecting early lesions, enabling 
earlier identification of potential complications and formulation 
of individualized surgical plans. This study highlights how AI 
accelerates diagnostic workflows and enhances the detection of 
subtle pathological changes, which is essential for early clinical 
intervention (28).

4.1.2 Hybrid architectures and attention 
mechanisms

Hybrid methods and attention-based models have further 
improved grading accuracy for PDR. Abdel et  al. proposed a 
hybrid deep learning framework, E-DenseNet, which integrates 
a pre-trained EyeNet with the DenseNet architecture. This model 
achieved an 84% classification accuracy for PDR on the APTOS 
2019 dataset. Its advantages include enhanced feature reuse 
through dense connectivity modules and strong robustness in 
cross-dataset validation (29).

Gu et al. combined a Vision Transformer (ViT) with class-specific 
residual attention (CSRA). The ViT module captured fine-grained 
pathological variations, while CSRA enhanced inter-class 
discriminability. The model achieved a PDR classification AUC of 
0.9081 on the DDR dataset (30). Similarly, Mondal et al. introduced 
EDLDR, an ensemble model combining DenseNet101 and ResNeXt. 
With data augmentation using a GAN, it achieved an accuracy of 

86.08% for five-class classification on the APTOS 2019 dataset. 
Grad-CAM visualization confirmed that the model accurately focused 
on PDR lesion regions (31).

4.2 Real-time surgical guidance systems

Accurate preoperative planning enabled by AI can 
be seamlessly integrated with real-time intraoperative guidance 
systems to enhance surgical outcomes. Building on diagnostic 
advancements, AI plays a pivotal role during surgery by leveraging 
detailed structural and flow information derived from non-invasive 
imaging modalities such as OCT and OCT angiography (32). The 
incorporation of AI into surgical workflows has markedly 
improved the precision of PDR treatment.

For example, U-Net-based ensemble models have been employed 
for the non-invasive segmentation of microaneurysms (33). Other 
deep learning algorithms applied to OCTA not only achieve high 
diagnostic accuracy for DR and referable status but also generate class 
activation maps (CAMs), which visualize specific pathological 
regions—such as foveal avascular zone (FAZ) alterations and vessel 
density changes—thus potentially guiding intraoperative decision-
making directly on OCTA images (34). Additionally, AI-driven 
systems can distinguish pathological neovascularization (NV) from 
compensatory angiogenesis, enabling targeted interventions such as 
suppression of NV using high-intensity, low-intensity pulsed 
ultrasound (LIPUS; 0.5 MHz, 210 mW/cm (2)), inducing endothelial 
apoptosis via the p38 MAPK/ER stress signaling pathway (35). 
Accurate AI-aided segmentation of these features is essential for 
precise localization and surgical planning (32). As a result, real-time 
intraoperative imaging integration becomes feasible, significantly 
improving surgical precision.

PDR pathogenesis involves retinal microvascular occlusion, 
which promotes NV formation. These newly formed, fragile vessels 
are prone to rupture, frequently leading to vitreous hemorrhage 
and pathological foci (27). To address this, AI models are 
instrumental not only in anatomical localization but also in 
assessing neovascular activity. For instance, deep learning methods 
applied to ultra-widefield fluorescein angiography (UWF-FA) can 
detect neovascular leakage with high accuracy (AUC = 0.96), 
effectively distinguishing active lesions requiring treatment from 
confounding retinal features, thereby guiding laser or surgical 
planning (36). In ischemic regions, AI-guided application of 
low-intensity LIPUS (1.5 MHz, 30 mW/cm2) can promote 
AKT-mediated angiogenesis, enhance local vascular density, and 
support metabolic recovery (37). Michael et al. developed a deep 
learning algorithm capable of identifying NV in fundus images and 
providing real-time intraoperative feedback, thereby supporting 
targeted and adaptive interventions during surgery (27). 
Collectively, these AI-assisted technologies substantially enhance 
the safety and precision of PDR surgery.

4.3 Post-operative risk prediction models

AI also plays a pivotal role in postoperative management by 
enabling predictive analytics and personalized medicine strategies 
for patients with DR. For instance, few-shot learning (FSL) 
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combined with explainable AI (XAI) has been used to quantify 
macular features from OCTA images, enabling accurate assessment 
of recovery trajectories and facilitating individualized treatment 
planning (38).

In another study, Siri et  al. developed an XGBoost-based 
predictive model using electronic health record (EHR) data to 
estimate 7-day and 30-day postoperative infection risks, thereby 
supporting systematic monitoring and early clinical intervention (39). 
These AI-powered tools contribute to optimizing recovery protocols 
and reducing complication rates, ultimately enhancing long-term 
clinical outcomes in DR management.

5 The role of AI in guiding precision 
VEGF therapy

Research on the application of AI in anti-VEGF therapy 
specifically for PDR remains limited, largely due to the shared 
pathological basis between DME and PDR. This section focuses on the 
use of AI in anti-VEGF therapy for DME, with the aim of providing a 
reference for its potential application in PDR and facilitating future 
advancements in this field.

5.1 Current limitations and pathologic 
rationale

Current AI studies specifically targeting anti-VEGF therapy in 
PDR remain scarce, necessitating extrapolation from DME evidence. 
Research on AI applications targeting anti-VEGF therapy for PDR 
remains limited—a gap that underscores the need for a translational 
research paradigm informed by findings from DME. This approach is 
justified by three core pathological commonalities:

First, both DME and PDR share a VEGF-driven pathogenic 
mechanism. The pathogenesis of these conditions is closely associated 
with elevated VEGF levels (5, 40). Notably, oxidative stress under 
hypoxic conditions is significantly and positively correlated with 
VEGF concentrations in the vitreous fluid of patients with DME and 
PDR (41, 42). VEGF activates several downstream signaling pathways, 
including PLCγ–PKC–MAPK, PI3K–AKT, and RAC, which 
collectively regulate angiogenesis (43). While anti-VEGF therapy is 
the first-line treatment for DME (10), it also serves as an alternative 
or adjunctive option in PDR, with demonstrated therapeutic efficacy 
(44). Furthermore, VEGF forms complexes with proteins such as 
copper transport protein 1 (CTR1) via disulfide bonds (45), and 
assembles ternary structures involving endoglin (ENG), neuropilin 1 
(NRP1), and VEGFR2 to enhance pro-angiogenic signaling (46). 
These pathogenic complexes can now be structurally analyzed using 
AI-based tools such as AlphaFold 3 (AF3), which predicts interactions 
among proteins, nucleic acids, small molecules, ions, and modified 
residues, providing novel insights into anti-VEGF therapeutic 
mechanisms (47).

Second, both diseases exhibit common imaging biomarkers of 
vascular mobility. DME is primarily induced by ischemia, which 
increases retinal capillary permeability and promotes microaneurysm 
formation (48). The resistance index (RI = [PSV – EDV] / PSV), an 
indicator of distal microvascular resistance, has been significantly 
associated with progression toward retinal non-perfusion. The 

vasculopathic processes seen in DME are expected to induce RI-like 
changes in vascular parameters in PDR as well (49). Wang et  al. 
reported that diabetic patients with proliferative retinopathy exhibited 
the highest mean RI value (0.83), compared to significantly lower 
values in healthy controls (0.54, p ≤ 0.001) (50).

Third, there is a generalizability of treatment response 
prediction. Gross et al. demonstrated that anti-VEGF agents such 
as ranibizumab are effective in both PDR and DME, reducing the 
risk of visual field loss associated with panretinal photocoagulation 
(PRP) (51). Li et al. proposed a multimodal fusion architecture 
that separately extracts and hierarchically integrates structural 
and blood flow information, enhances feature representation via 
multiscale feature interaction, and applies a weighted average 
(Avg) of OCTA grading outcomes to avoid alignment-dependent 
feature fusion. The model uses ResNet50 as the backbone, 
optimized with the Adam optimizer and supported by data 
augmentation techniques. This multimodal fusion architecture 
demonstrates applicability to both PDR and DME (52).

5.2 AI can predict treatment outcomes

Understanding these molecular interactions enables AI to predict 
therapeutic responses, as demonstrated in the following predictive 
models. Medical AI, particularly in predicting patient responses to 
treatment, has demonstrated considerable promise—especially in 
forecasting outcomes of anti-VEGF therapy for DME. Deep learning 
models—particularly those based on OCT image analysis—have been 
extensively employed to evaluate initial patient responses to therapy.

In one study, Rasti et al. employed a deep learning algorithm to 
analyze OCT images obtained before and after treatment to assess the 
therapeutic response in DME patients undergoing anti-VEGF therapy. 
Performance metrics such as AUC, sensitivity, precision, and 
specificity were used to evaluate the predictive model (53).

To accurately predict best-corrected visual acuity (BCVA), central 
subfield thickness (CST), cube volume (CV), and cube average 
thickness (CAT) from multimodal data in DME patients receiving 
anti-VEGF therapy, Leng et  al. developed a deep learning model 
integrating a convolutional neural network (CNN) and a multilayer 
perceptron (MLP) (54).

Alternatively, generative adversarial networks (GANs) have been 
employed to predict OCT image outcomes. These models effectively 
identified key biomarkers—including intraretinal fluid (IRF), 
subretinal fluid (SRF), and hard exudates (HE)—enabling more 
detailed forecasts of treatment response in DME patients. Such 
approaches further assist clinicians in predicting both short- and long-
term therapeutic outcomes (55).

Xin et al. proposed a separate prediction model, demonstrating 
that cube-measured foveal volume (CMFV) provided more accurate 
estimates of initial anti-VEGF treatment efficacy than CST. Their deep 
learning model estimated CMFV from OCT images, incorporating 
additional differentiation techniques to enhance predictive 
performance (56).

In another study, Sastry et al. developed the Notal OCT Analyzer 
(NOA), a machine learning system for quantifying retinal fluid 
volumes—including SRF, IRF, and total retinal fluid (TRF)—which are 
critical for evaluating patient responses to anti-VEGF therapy. Their 
results showed that fluctuations in these volumes were associated with 
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treatment efficacy, providing clinicians with improved insight into 
therapeutic outcomes and prognostic potential (57).

Building upon these foundational studies, our analysis proposes a 
unified framework to optimize the role of AI in personalized anti-
VEGF therapy.

5.3 AI can optimize treatment plans

China bears a substantial burden of diabetic retinopathy (DR), 
and AI-assisted solutions can be particularly valuable in economically 
underdeveloped regions. These approaches have the potential to 
significantly reduce the workload associated with image grading and 
lower capital expenditures (58).

To enhance treatment planning and minimize the unnecessary 
use of high-cost drugs, Anwesa et  al. developed a hybrid deep 
learning model to predict responses to anti-VEGF therapy in 
patients with DME (59). Ruijie et al. applied a machine learning 
regression model trained on real-world data to predict the short-
term efficacy of anti-VEGF therapy in DME patients. Model 
performance was assessed using mean absolute error (MAE), mean 
squared error (MSE), and the coefficient of determination (R2). 
This predictive capability is essential for both clinical and economic 
decision-making related to the short-term outcomes of anti-VEGF 
therapy (60).

AI-based prediction of anti-VEGF treatment response in DR and 
DME supports the development of personalized and effective 
therapeutic strategies (61).

5.4 AI can aid clinical decision-making and 
improve treatment efficiency

In clinical decision-making, AI provides predictive insights to 
assess responses to anti-VEGF therapy, mitigate associated risks, and 
optimize therapeutic outcomes. Ying et  al. developed a machine 
learning model to predict changes in best-corrected visual acuity (VA) 
in patients with DME 1 month after anti-VEGF treatment. This model 
supports clinicians in making informed treatment decisions, tailoring 
individualized therapeutic strategies, and managing patient 
expectations regarding treatment outcomes (62).

To obtain a more objective evaluation of visual function, 
researchers have used OCT imaging to infer visual acuity in DME 
patients (63). The resulting predictive models achieved R2 values of 
99.9% for DR, 97.7% for early DR, 93.9% for DME, and 98.4% for 
strong responders in the training set, and 96.3, 96.8, 79.9, and 96.3%, 
respectively, in the validation set.

Yuhui et al. combined multi-omics analysis with machine learning 
to enable early diagnosis of DR and DME and to predict responses to 
anti-VEGF therapy. Their model accurately forecasted early DR 
progression and treatment response in DME patients, offering a novel 
tool for clinical diagnosis and therapeutic planning (64).

Soumya et al. integrated AI algorithms to automate OCT data 
segmentation and analysis, resulting in reduced processing time and 
cost, faster diagnostic reporting, and improved workflow efficiency 
(65) (Figure 1).

Diagrams illustrating the associations investigated in this study 
are provided below: (A) Fundus photographs and OCT images are 
input and preprocessed using GAN and SCSDN to enhance image 
quality and improve model accuracy. (B) The core algorithm 
leverages CNNs, hybrid deep learning models, and ViT networks, 
incorporating optimization steps to enhance model performance, 
classification accuracy, and generalization. (C) The AI model 
detects lesion features in fundus images and classifies PDR, 
providing clinicians with a reliable diagnostic basis while 
enhancing treatment efficiency and patient quality of life. (D) Data 
Validation: The model’s performance was evaluated by calculating 
the area under the ROC curve, sensitivity, specificity, and other 
metrics. Its accuracy and feasibility were verified by comparing it 
with traditional physicians and handheld fundus cameras. (E) 
OCT, Optical Coherence Tomography; GAN, Generative 
Adversarial Network; SCSDN, Single Channel Standard Deviation 
Normalization; CNN, Convolutional Neural Network; ViT 
networks, Vision Transformer networks; ROC Curve, Receiver 
Operating Characteristic Curve.

6 Critical appraisal: technological 
divide and breakthrough paths for AI 
in PDR management

6.1 Inherent limitations of AI models 
applied to PDR

One major limitation of current AI models is their heavy 
reliance on training data from limited geographic regions, resulting 
in notable generalization issues. For instance, Ting et al. developed 
a deep learning system (DLS) for diabetic retinopathy screening 
using multi-country datasets, with the AUC for referable diabetic 
retinopathy ranging from 0.889 to 0.983 across 10 externally 
validated datasets (66). This variability stems from the inclusion of 
datasets from diverse countries, leading to fluctuations in model 
performance and introducing uncertainty in clinical applications. 
Additionally, differences in the quality of fundus color photographs, 
the algorithms used, and the performance of imaging equipment 
across studies contribute to significant inconsistencies in AI 
diagnostic outcomes (67). Notably, these models have been found 
to be  more sensitive to changes in camera equipment than 
human physicians.

Another critical challenge is the so-called algorithmic “black 
box” and the resulting clinical trust issues. In AI, “black box 
models” refer to algorithmic systems—particularly deep learning 
models—whose internal decision-making processes are difficult 
to interpret. Although such models often achieve high predictive 
accuracy, their opacity hampers trust, reproducibility, and clinical 
adoption. While models like ExplAIn have demonstrated a 
balance between performance and interpretability for DR 
diagnosis—through an end-to-end weakly supervised 
segmentation architecture with generalized occlusion 
regularization (68)—the issue of transparency remains 
unresolved. In most cases, interpretability is limited to identifying 
correlations. For example, Herrero-Tudela et al. employed SHAP 
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to quantify and visualize feature contributions, marking a step 
forward in model interpretability (69). However, SHAP has 
inherent limitations: it can indicate the relative importance of 
metabolites but fails to uncover the causal pathways underlying 
key pathological mechanisms. This “trustworthy yet 
uninterpretable” nature continues to pose a major barrier to 
clinical adoption.

6.2 Barriers to real-world applications

The real-world implementation of AI models continues to face 
substantial challenges. A primary issue is the regulatory divide and the 
absence of standardized validation protocols. Ong et al. conducted a 

global analysis of AI as Medical Devices (AIaMDs), identifying 36 
devices from 28 manufacturers—97% (35/36) approved in the EU, 
22% (8/36) in Australia, and only 8% (3/36) in the United States (70). 
These findings highlight significant disparities in regulatory approval 
processes across countries.

Moreover, the false negative and false positive rates of AI models 
remain critical concerns. A meta-analysis by Wang et al. reported that, 
despite improvements in AI-based diagnosis of ocular diseases, the 
false negative rate (FNR) of 12% and false positive rate (FPR) of 8.8% 
remain non-negligible (71). Even more concerning is the lack of 
globally harmonized standards for validating AI’s ability to assess 
dynamic disease progression.

AI deployment is further constrained by resource allocation 
challenges. Increasing sensitivity may enhance the identification of 

FIGURE 1

AI-driven model for PDR diagnosis and treatment.
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high-risk patients and improve clinical outcomes, but it also elevates 
healthcare costs. Conversely, increasing specificity may reduce 
unnecessary testing but risks missed diagnoses (72). This trade-off places 
a disproportionate burden on low-income regions. Additionally, AI 
systems trained on homogeneous datasets may underperform in diverse 
populations, leading to racial and ethnic disparities in detection 
rates (73).

Although Vision Transformers (ViTs) have shown promise in 
detecting diabetic retinopathy in clinical settings, their application 
is limited by high computational demands. Training ViTs requires 
high-performance GPUs, with memory usage exceeding 20 GB and 
power consumption approaching 400 watts per GPU. These 
resource-intensive requirements pose significant barriers to 
clinical deployment, particularly in settings with limited 
infrastructure and funding (74). Collectively, these multifaceted 
barriers underscore the long and complex path toward real-world 
adoption of AI in healthcare.

6.3 Research gaps and breakthrough 
directions

Currently, three critical gaps characterize AI research in this field: 
the absence of cross-model evaluation standards, which leads to 
fragmentation among diagnostic and therapeutic models—resulting 
in treatment delays and resource inefficiency; the lack of model 
generalizability, which impedes large-scale application; and the 
deficiency of multi-center validation, which causes the performance 
of otherwise high-precision, single-center models to deteriorate in 
real-world settings.

To address these challenges, future advancements should focus on 
three key areas:

	 1.	 Establishment of Federated Learning Architecture: Federated 
learning (FL) offers a promising solution to current 
limitations. FL enables the development of a unified machine 
learning model across institutions using decentralized 
datasets. During training, only model parameters—not raw 
data—are shared among sites, thereby preserving data 
privacy. The final model can be retained by a single party or 
distributed among collaborators (75). This approach facilitates 
training on larger and more diverse datasets, ultimately 
enhancing model generalizability.

	 2.	 Development of Multimodal Time-Series Models: Chen et al. 
introduced the MuTri framework to align and transform 
multimodal data, achieving up to 92% consistency (76). This 
underscores the feasibility and effectiveness of integrating 
temporal and multimodal information to improve performance 
in clinical applications.

	 3.	 Promotion of Ultrasound–OCTA–AI Integration: Ultrasound 
provides a foundational imaging modality capable of 
overcoming optical occlusion; OCTA offers high-resolution 
microcirculatory imaging; and AI serves as the integrative 
engine for fusing heterogeneous data and conducting 
dynamic risk assessments. The complementary strengths of 
these three technologies hold promise for mitigating 
individual limitations and enabling transformative 
applications in PDR management.

	 4.	 Furthermore, effective cost control is essential for the global 
deployment of AI models. Techniques such as model 
compression, architectural lightweighting, and hybrid 
optimization can substantially reduce computational demands. 
Although these methods may slightly compromise accuracy, 
they enable broader accessibility and improve overall benefit

7 Conclusion

AI has demonstrated substantial value in the diagnosis and 
treatment of PDR. By enabling efficient analysis of retinal images, 
guiding surgical procedures with high precision, and optimizing 
individualized anti-VEGF treatment strategies, AI enhances 
diagnostic accuracy, therapeutic safety, and procedural efficiency. 
However, AI-driven PDR management faces challenges, including 
inadequate data quality, limited model generalizability, the opaque 
“black-box” nature of algorithms, and unequal distribution of 
healthcare resources. Addressing these challenges requires 
overcoming barriers related to data privacy and clinical trust. 
Proposed solutions include establishing unified regulatory 
frameworks to enhance system efficacy and safety, developing deep 
learning systems based on multimodal data fusion, and promoting 
equitable implementation of automated screening technologies 
within universal healthcare systems. These measures aim to 
balance the demands of precision medicine with ethical imperatives 
for equitable access to care.

In future applications, AI may be utilized to construct time-series 
forecasting models through multimodal data fusion, enabling end-to-end 
optimization from early risk prediction to personalized intervention. AI 
systems could integrate blood glucose fluctuations with real-time retinal 
microvascular dynamics to predict the risk of vitreous hemorrhage and 
dynamically adjust anti-VEGF therapy regimens, thereby improving 
therapeutic response rates while reducing costs. Intelligent decision-
support systems may integrate multidimensional data (e.g., genomics, 
metabolomics) to implement closed-loop care encompassing screening, 
risk stratification, and treatment optimization. In resource-limited 
settings, lightweight AI screening devices integrated with 5G-enabled 
telemedicine networks could help overcome geographic barriers and 
democratize access to ocular disease prevention and management. In 
surgical applications, AI-driven intraoperative OCTA navigation systems 
could precisely localize neovascularization, minimizing the risk of 
complications. Moreover, by synthesizing genetic and environmental 
data, AI may support the development of personalized prevention 
strategies to delay disease progression, while blockchain technology can 
ensure data security and promote global healthcare equity. Additionally, 
the integration of advanced ultrasound technologies with AI may provide 
new opportunities to support intraoperative decision-making. 
Collectively, these advancements could catalyze a paradigm shift from 
reactive treatment to proactive health management, particularly 
benefiting the middle-aged and elderly population (Figure 2).
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FIGURE 2

Current challenges and prospects of AI in PDR diagnosis and treatment diagrams illustrating the associations investigated in this study are provided 
below: Current Challenges (Left Panel): Summarizes key barriers to AI implementation in PDR management, including: Data heterogeneity and lack of 
standardization. Limited model generalizability across devices/populations. Suboptimal therapy personalization. Technical limitations. Weaknesses in 
screening capacity and early warning systems. Insufficient AI interpretability. Inefficient postoperative monitoring. Future Solutions and Prospects (Right 
Panel): Highlights proposed approaches and future goals, such as: Multimodal data integration and database construction. Development of explainable 
AI frameworks. *Real-time AI-assisted navigation and quantification. Telemedicine solutions leveraging lightweight AI and 5G. * Fusion of continuous 
monitoring data with retinal imaging. Advanced dynamic modeling. Improved equitable healthcare delivery. Data Sources and References (32, 77–81). OCT, 
Optical coherence tomography; Grad-CAM, Gradient-weighted Class Activation Mapping; CGM, Continuous Glucose Monitoring System.
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