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Timely and accurate diagnosis of breast cancer remains a critical clinical challenge.
In this study, we propose Stacked Artificial Neural Network (StackANN), a robust
stacking ensemble framework that integrates six classical machine learning classifiers
with an Artificial Neural Network (ANN) meta-learner to enhance diagnostic
precision and generalization. By incorporating the Synthetic Minority Over-Sampling
Technique (SMOTE) to address class imbalance and employing SHapley Additive
exPlanations (SHAP) for model interpretability. StackANN was comprehensively
evaluated on Wisconsin Diagnostic Breast Cancer (WDBC) datasets, Ljubljana
Breast Cancer (LBC) datasets and Wisconsin Breast Cancer Dataset (WBCD), as well
as the METABRIC?2 dataset for multi-subtype classification. Experimental results
demonstrate that StackANN consistently outperforms individual classifiers and
existing hybrid models, achieving near-perfect Recall and Area Under the Curve
(AUC) values while maintaining balanced overall performance. Importantly, feature
attribution analysis confirmed strong alignment with clinical diagnostic criteria,
emphasizing tumor malignancy, size, and morphology as key determinants. These
findings highlight StackANN as a reliable, interpretable, and clinically relevant tool
with significant potential for early screening, subtype classification, and personalized
treatment planning in breast cancer care.

KEYWORDS

breast cancer, stacking ensemble, artificial neural network, classification, SHAP,
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1 Introduction

Cancer is a major disease that seriously threatens human health worldwide, and breast
cancer is particularly common among women (1). Breast cancer is the most common cancer
in the world. Breast cancer is the most common type of cancer in the world, with more than
2.3 million new cases diagnosed in 2020 and approximately 685,000 deaths (2). Since the early
symptoms of breast cancer are relatively hidden, many patients do not feel obvious discomfort
in the early stage, and the disease is often discovered in the late stage, resulting in missing the
best treatment opportunity. Therefore, early diagnosis of breast cancer is very important,
which is directly related to the patient’s survival rate and cure rate (3).

Traditional breast cancer diagnosis methods, such as CT, mammography, magnetic
resonance imaging (MRI), ultrasound, and Fine Needle Aspiration (FNA), are widely used in
clinical practice (4). However, these methods heavily rely on the doctor’s experience and
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judgment, which are influenced by subjective factors (5). This is
particularly problematic when the tumor boundary is unclear, or the
lesion is in its early stages, where misdiagnosis or missed diagnosis
can occur. Furthermore, long working hours and fatigue may lead to
increased analysis errors. Despite their broad application, these
methods face significant challenges in accuracy and reliability,
particularly in complex cases or when early-stage detection is critical.
This sets the stage for exploring more robust and objective diagnostic
approaches, such as machine learning-based models (6). Nowadays,
with the rapid development of machine learning technology, the field
of breast cancer diagnosis has ushered in new breakthroughs. Machine
learning can automatically extract hidden patterns and features
through deep learning of large amounts of clinical data and imaging
data, thereby achieving more accurate breast cancer prediction and
classification (7). Compared with traditional diagnostic methods that
rely on expert experience, machine learning improves the stability and
consistency of diagnosis, reduces the impact of human factors, and
significantly reduces the risk of misdiagnosis and missed diagnosis by
doctors (8). Combining traditional methods with machine learning
technology can improve diagnostic efficiency, help doctors make more
objective and accurate judgments, and promote the realization of early
diagnosis and personalized treatment.

In recent years, ensemble learning methods have evolved from
traditional strategies such as Bagging and Boosting to more complex
and efficient fusion models (9). Among these, the stacking method,
also known as stacking generalization, has emerged as a popular
research approach. However, many stacking models still rely on
relatively simple algorithms and do not fully exploit the potential of
multi-model fusion. While stacking methods improve the model’s
ability to handle data features by integrating various algorithms [e.g.,
the linear discriminant of Logistic Regression (LR), the anti-
interference ability of Random Forest (RF), and the boundary
demarcation ability of Support Vector Machine (SVM)], they often
struggle to address issues like class imbalance and high-dimensional
data interactions (10). Moreover, these models may fail to provide a
robust solution in real-world clinical settings where the data is often
noisy and imbalanced. At present, some breast cancer classification
studies have integrated features, but they have not adopted the
stacking method. Among them, the hybrid ensemble model has
become a development trend (11, 12). For example, hybrid models
such as the hybrid of traditional machine learning models and deep
learning models, and the hybrid of traditional methods and machine
learning, can improve the high-dimensional fusion and learning
capabilities of data. This hybrid strategy can achieve more efficient and
accurate predictions in practical applications while taking into
account the advantages of different models. For example, the method
proposed by Murat Karabatak et al. combines association rules and
neural networks, which is a hybrid integration method of feature
selection and classifier (13). The FS-WOA-Stacking model proposed
by Shanshan Kong et al. integrates five mainstream machine learning
models: SVM, ANN, RE, eXtreme Gradient Boosting (XGBoost) and
Adaptive Boosting (AdaBoost), and combines feature selection and
whale optimization algorithm (WOA) optimization for early diagnosis
of breast cancer (14). The hybrid integration method has certain
advantages in improving model performance, but it still lags behind
the stacking method in the deep application of multi-model fusion
and meta-learning strategies. However, machine learning methods
have been widely applied in breast cancer diagnosis, many of these
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studies still rely on traditional models [such as SVM and K-Nearest
Neighbors (KNN)] and identical datasets (e.g., WDBC and LBC),
which limits their ability to generalize across different clinical settings
and improve accuracy in complex cases (9, 15). Traditional single
algorithms struggle to capture complex data patterns and feature
interactions, often leading to overfitting or poor generalization (15).
Furthermore, existing hybrid models often fail to fully leverage multi-
model fusion techniques or address critical issues like class imbalance
and the high-dimensional nature of medical datasets. In existing
studies, Maldonado et al. (16) proposed REF-SVM, which
simultaneously performs feature selection and classification using
kernel-penalized support vector machines. While effective in reducing
feature dimensionality, this model remains sensitive to class imbalance
and relies heavily on kernel function selection. Kumar and Poonkodi
(17) attempted a hybrid RF + KNN + SVM model, which simply
combines multiple classifiers but lacks a meta-learning mechanism,
making it difficult to optimize feature interactions and address class
imbalance. Idri et al. (18) investigated Uniform Multilayer Perceptron
(UMLP) and Evolutionary Parameter-tuned Multilayer Perceptron
(EPMLP). Although these methods improve performance through
structural adjustments and parameter evolution, they suffer from
limited interpretability and high computational costs. None of these
approaches systematically address the synergistic challenges of high-
dimensional feature interactions, class imbalance, and clinical
interpretability in breast cancer diagnosis. To address these gaps,
we propose StackANN, a multi-model stacking approach integrated
with the SMOTE. This method combines multiple classical machine
learning models and employs an ANN as a meta-learner. By effectively
handling complex data patterns, feature interactions, and class
imbalance, StackANN aims to improve classification accuracy and
demonstrates stronger robustness and generalization ability compared
to existing approaches.

2 Methods
2.1 Datasets

The LBC Dataset was provided by the Institute of Oncology,
University Medical Center, Ljubljana, Yugoslavia (19). This dataset
contains clinical sample information from 286 breast cancer patients.
Each sample contains 9 clinical features related to breast cancer
prognosis (such as tumor size, lymph node capsule, etc.) and a label
that identifies the sample category (0 for benign and 1 for malignant).
Among them, there are 201 benign samples and 85 malignant
recurrence samples. In this paper, we performed necessary data
preprocessing on the LBC Dataset. The detailed process of data
preprocessing is shown in the supporting materials.

The WDBC Dataset comes from the UCI Machine Learning
Library and contains 569 breast cancer samples, including 212 benign
samples and 357 malignant samples (20). Each sample consists of 30
features and 1 label, with label value B indicating benign (0) and label
value M indicating malignant (1). The features are obtained through
FNA and mainly describe the morphological characteristics of tumor
cell nuclei, including area, smoothness, and texture.

Prior to machine learning modeling, we standardized both
datasets using Z-score normalization to ensure all features were on a
comparable scale. This preprocessing step centers the data to zero
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mean and unit variance, facilitating stable and efficient model
convergence. The standardized data was used for all subsequent
training and evaluation processes of both base learners and the meta-
learner in our stacking ensemble framework. The datasets were
randomly divided into training and test sets at a ratio of 80 and 20%
(Table 1) for training and performance evaluation of the baseline
model. The training set was used to train the model, and the test set
was used to evaluate the performance of the final training model on
unknown data.

In order to verify the generalization performance of the model,
we selected the WBCD dataset. The WBCD dataset is a dataset
commonly used in breast cancer classification research (21). It
contains 699 breast cancer samples from the University of Wisconsin
Medical Center, of which 458 samples are benign (0) and 241 samples
are malignant (1). Each sample consists of 9 features and 1 label. The
features are obtained through fine FNA and mainly describe the
morphological characteristics of tumor cell nuclei, including radius,
texture, smoothness, perimeter, area, etc. To ensure data quality,
samples containing missing values were removed, and the final dataset
contains 683 valid samples. We use this dataset as an external
validation set.

2.2 Machine learning model

This paper studies various machine learning models for binary
classification tasks (malignant and benign). KNN calculates the
distance between samples, selects the K nearest neighbors, and uses a
majority voting mechanism to determine the sample category (22, 23).
SVM is a supervised learning method that achieves optimal
classification of sample data by constructing a hyperplane that
maximizes the interval between different categories (24). AdaBoost is
an enhancement algorithm that repeatedly trains multiple weak
classifiers and adjusts sample weights in each iteration to increase
attention to misclassified samples, thereby effectively improving the
overall classification performance of the model (25, 26). RF reduces
overfitting and improves prediction stability by constructing multiple
decision trees and outputting the final results by voting or averaging
(27). XGBoost is an ensemble learning algorithm based on gradient
boosting. It iteratively builds decision trees and corrects the previous
round of prediction errors, while combining regularization techniques
to improve the accuracy and generalization ability of the model (28,
29). DT achieves classification by recursively splitting the feature space
and selecting the optimal split point according to the sample
characteristics (30).

This article uses these six machine learning models as baseline
models and applies them to two datasets. The entire computational
process uses the Python 3.11 environment, and the scikit-learn library

TABLE 1 Partitioning of LBC and WDBC datasets.

Datasets Category Malignant Benign Total
number
Training 64 164 228
LBC
Test 21 37 58
Training 286 169 455
WDBC
Test 71 43 114
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is used to implement the training and evaluation of machine learning
models. To ensure a fair comparison of model performance, all base
learners were optimized using the same hyperparameters. The detailed
both datasets are
Supplementary Table S1 in the supporting materials.

optimal configurations for shown in

2.3 Stacked ensemble method

The stacking method is a special ensemble learning method (31).
The performance of a single model under different data distributions
may be unstable, and the stacking method can effectively make up for
the limitations of a single model by integrating the prediction results
of multiple models (32).

The StackANN constructed in this paper has two layers, the first
layer is the base learner, and the second layer is the meta learner. In
the first layer, multiple base models are trained on the training data at
the same time. Each base learner generates corresponding prediction
results based on the training data. These prediction results have two
forms: category labels or category probabilities. These prediction
results have two forms: category labels or category probabilities.
We choose category probabilities as the prediction results because they
provide richer information about the model’s confidence, which can
help the stacking ANN better integrate base learner outputs and
improve overall predictive performance. In the second layer, the
prediction results of the six base learners are used as six new features,
and the corresponding true labels are used as target features to form a
new dataset. However, we found that the generated new dataset has a
serious class imbalance problem, which may cause the model to over-
rely on majority class samples and perform poorly on minority classes.
Therefore, to address this issue and ensure methodological rigor,
we implemented the following processing pipeline before training the
base learners:

(1) Applied the SMOTE (33) to the original dataset to generate a
balanced dataset;

(2) Split the balanced dataset into training and testing sets;

(3) Trained all base learners using the training set and generated
prediction probabilities on the testing set;

(4) Combined the prediction probabilities from each base learner
on the testing set with the true labels to construct a
meta-dataset;

(5) Performed an additional split on the meta-dataset and
employed an ANN as the meta-learner for final training
and prediction.

This approach effectively balances the distribution between
benign and malignant cases while strictly preventing information
leakage between training and testing phases (34). The consistent use
of optimized splitting ratios ensures coherence across different
model levels.

Compared to a single model, StackANN requires training
multiple base learners and one meta-learner, thus incurring higher
computational and time costs during the offline training phase.
However, this cost is justified by a significant improvement in
classification performance—particularly in Recall, a critical
clinical metric for reducing missed diagnoses. During the online
prediction stage after deployment, the computational overhead
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remains comparable to that of a conventional single model,
ensuring no practical impact on the efficiency of real-time
clinical applications.

2.4 ANN as meta-learner

ANN is a computational model that simulates the biological
nervous system. It processes data through multiple interconnected
neuron hierarchies, imitating the information transmission and
processing methods of biological neurons (35). In the second layer
of the StackANN model, ANN is used as a meta-learner to integrate
the prediction results of the base learners and make the final
classification decision. We use an ANN consisting of an input layer,
multiple hidden layers, and an output layer. The input layer contains
6 nodes, corresponding to the prediction results of the 6 base
learners in the first layer. The LBC dataset uses 4 hidden layers,
while the WDBC dataset uses 3 hidden layers. Each hidden layer
has several neurons and uses the ReLU activation function, as
shown in Equation 1. Its function is to set the part of the input less
than 0 to 0 and keep the part of the input greater than 0 unchanged,
thereby enhancing the nonlinear expression ability of the
model (36).

ReLU(x)zmaX(O,x) (1)

The output layer uses the Softmax activation function to convert
the output of the model into a probability distribution, that is, the
sum of the predicted probabilities of each category is 1. In the binary
classification task, the category with a higher probability is selected
as the final prediction result of the model, thereby achieving
classification judgment of the sample. As shown in Equation 2, where
z; denotes the input score of class i, and K is the total number
of classes.

10.3389/fmed.2025.1644857

Softmax(zi)z ¢ , fori=12,...,K )

During the model training process, Binary Cross-Entropy Loss
(also known as Log Loss) is selected as the loss function for supervised
training to measure the difference between the model’s predicted
probability and the true binary classification label. As shown in
Equation 3, where N is the number of samples, y; is the true label of
sample i, which can be either 0 or 1, and p; is the predicted probability
that sample i belongs to the positive class.

LN
Lossz—ﬁzo’i'log(Pi)+(1‘)’i)'log(l_l’i)) @)

i=1

The optimizer used is Adaptive Moment Estimation (Adam)
method, which combines Momentum and Root Mean Square
Propagation (RMSProp) algorithms to improve training efficiency and
accelerate model convergence. The update formula of Adam is as
follows (see Equation 4).

O =0 ————1iy 4)

Vs +€

In which, 6; is the parameter at the current moment, 7 is the
learning rate, 17, is the first moment estimate of the gradient (i.e., the
momentum term), v, is the second moment estimate of the gradient
(i.e., the weighted variance term), and ¢ is a small constant that
prevents division by zero.

All training processes were carried out in Python 3.11. The specific
method framework is shown in Figure 1, which shows the hierarchical
structure and information transmission process of the Stack ANN model.

Input Layer

Datasets

[lidden Layers

Output Layer

X = Al Al Al Al Al
FIGURE 1
The design of StackANN.
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In order to optimize the model performance, we optimized the hidden
layer structure, learning rate, maximum number of iterations and other
detailed
hyperparameters are listed in Table 2. Here, Hidden Layer Sizes refers to

hyperparameters during the setting process. The
the number of neurons in each hidden layer, reflecting the network
architecture; Max Iterations is the maximum number of weight update
iterations during training; Alpha is the L2 regularization parameter, used
to prevent overfitting; Learning Rate Init represents the initial step size
of the learning rate at the start of training. To ensure the reproducibility
of experimental results, we fixed the random seed throughout the entire
experimental workflow: the global random seed was set to 3,407 to
control all major random processes (including SMOTE oversampling
and model initialization); the data splitting process random seed was set
to 42 to ensure consistent training-test splits. This two-level seeding
strategy guarantees complete reproducibility of results while adhering to
best practices in experimental design.

To address these gaps in existing methods, we propose StackANN,
a novel classification method based on multi-model ensemble learning.
While previous studies have relied on traditional classifiers and basic
ensemble strategies, StackANN integrates six classical machine
learning models [KNN, AdaBoost, SVM, RE XGBoost, and Decision
Tree (DT)] and uses an ANN as a meta-learner. This approach
enhances classification performance by leveraging the complementary
strengths of various base models and improving generalization ability,
particularly in complex, high-dimensional, and imbalanced datasets.
Unlike existing hybrid models, which fail to fully address class
imbalance or complex feature interactions, StackANN captures higher-
order feature relationships through the meta-learning process with
ANN, optimizing the decision boundary via nonlinear transformation.
To demonstrate the effectiveness of StackANN, we conducted
experiments on the LBC and WDBC datasets, and also performed
external validation on the WBCD datasets. The results demonstrate
that StackANN significantly outperforms single models in classification
accuracy and robustness. Furthermore, on the external validation set
(WBCD), StackANN
demonstrated good generalization. This result further confirms that

achieved excellent performance and
StackANN provides an efficient and robust solution for complex
classification tasks, outperforming existing hybrid models in handling
data complexity, class imbalance, and feature interactions. Our findings
highlight the potential of StackANN as a clinically applicable,

interpretable, and generalizable model for breast cancer diagnosis.

2.5 Evaluation metrics

In order to better evaluate the model performance and stability of
the two datasets, this study used several common evaluation
indicators: Accuracy (ACC) (37), Precision (Pre) (38), Recall (39),
Fl-score (F1) (40), Specificity (Sp) (41) and AUC (42), these indicators
can reflect the performance of the model in classification tasks from

TABLE 2 Hyperparameter table for ANN.

Models. Hidden Max Alpha Learning
Method layer sizes iterations rate
LBC (200,150,100,50) 400 0.0001 0.001
WDBC (100,50,25) 300 1.0000 0.001
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different angles. We define four basic classification results: True
Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN). These four values constitute the Confusion Matrix,
which provides the basis for various evaluation indicators (43).
Specifically, we use the same evaluation indicators to evaluate the
sample classification results of the two datasets and compare them
with the original processing results. The specific evaluation indicators
are as follows:

ACC is a common indicator for evaluating the overall performance
of a model, indicating the proportion of correctly classified samples to
the total number of samples. The value ranges from 0 to 1, and the
closer it is to 1, the better the model performs in the classification task.
The calculation formula is as shown in Equation 5.

TP+TN
ACC=— 2N (5)
TP+TN + FP + FN

Pre measures the proportion of samples that are actually positive
among those predicted by the model to be positive. The higher the
value, the more accurate the model is in predicting positive classes.
The calculation formula is as shown in Equation 6.

TP
re =
TP+ FP

(6)

Recall measures the proportion of samples that are actually
positive that are successfully classified as positive by the model. The
higher the value, the stronger the model is in identifying positive
samples. The calculation formula is as shown in Equation 7.

Recall = T—P (7)
TP+ FN

F1 is the harmonic mean of Precision and Recall, which aims to
measure the balance between the two. If one of the indicators is low,
F1 will also decrease accordingly, thus avoiding the situation where
the model is biased toward one category. The calculation formula is as
shown in Equation 8.

T - ®)
2TP+FP+FN
Sp reflects the proportion of samples that are correctly predicted
as negative among all samples that are actually negative. The higher
the Sp, the fewer FPs, and the better the model performs on negative
samples. The calculation formula is as shown in Equation 9.

TN

S LA 9
TN +FP ©)

Sp

The Receiver Operating Characteristic (ROC) curve is a curve
drawn with the False Positive Rate (FPR) (see Equation 10) as the
horizontal axis and the True Positive Rate (TPR, i.e., Recall) as the
vertical axis. The closer the ROC curve is to the upper left corner (i.e.,
high TPR and low FPR), the better the model performance.

pR:L (10)
FP+TN
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AUC represents the area under the ROC curve. The calculation of
the area is shown in Equation 11. AUC is a key indicator for measuring
the performance of a binary classification model, which
comprehensively reflects the performance of the model under different
classification thresholds. Its value range is between 0 and 1. The closer
the value is to 1, the better the classification performance of the model
is, and it has a stronger ability to distinguish between positive and
negative samples. Specifically, when the value is 1, the model can
perfectly distinguish between positive and negative samples under all
thresholds, while when the value is 0.5, it means that the performance
of the model is equivalent to random guessing and lacks effective
discrimination ability.

n-1
Avc=1 > (TPR; + TPR; 1 ) (FPR;4; — FPR;)
i=1

1m

3 Results and discussion
3.1 Model performance analysis

To verify the effectiveness of the model, this paper systematically
compares and analyzes the proposed StackANN, six typical machine

10.3389/fmed.2025.1644857

learning baseline models and existing research methods from multiple
performance dimensions based on the LBC and WDBC datasets. For
the specific evaluation indicators of each model on the LBC dataset,
see Table 3. The ACC of the StackANN model reached 0.8824, and the
AUC value was 0.9028, both of which were better than all the baseline
models compared, indicating that the model showed stronger
advantages in overall classification performance and the ability to
distinguish between positive and negative samples. The Pre value of
the model was 0.8750, which was higher than that of KNN, SVM and
DT, but lower than that of AdaBoost, XGBooost and RF (1.0000),
indicating that the ACC of the model in predicting malignant tumors
was at a medium level compared with the baseline model, and there
was a certain degree of false positives (slightly lower Sp value).
However, its Recall and F1 are better than the baseline model, that is,
the comprehensive ability of the model to identify malignant tumors
is stronger than that of the baseline model. In particular, Recall has
been significantly improved (see the broken line change of the Recall
indicator in Figure 2). The Recall of the baseline model is lower than
0.2000, while the Recall of the StackANN model is as high as 0.8750.
In addition, the performance of the various indicators of the Stack ANN
model is relatively balanced. Compared with the baseline model, the
StackANN model has better capabilities in all aspects and does not
overly ignore the optimization of other indicators. The performance
change trends of different indicators of each model are shown in

TABLE 3 Performance comparison of breast cancer classification models on the LBC dataset.

Method ACC Pre Recall F1 Sp AUC
KNN 0.6724 0.6667 0.1905 0.2963 0.9459 0.7278
AdaBoost 0.6897 1.0000 0.1429 0.2500 1.0000 0.6821
SVM 0.6379 0.5000 0.0952 0.1600 0.9459 0.5328
RF 0.6897 1.0000 0.1429 0.2500 1.0000 0.7349
XGBoost 0.6897 1.0000 0.1429 0.2500 1.0000 0.7207
DT 0.6897 0.8000 0.1905 0.3077 0.9730 0.6699
Stack ANN 0.8824 0.8750 0.8750 0.8750 0.8889 0.9028
—&— Accuracy  —#— Precision —&— Recall —4— Fl —— Specificity —+— AUC
1.0 A
(3]
‘S 0381
&
S
8 0.6 -
=1
=
-
= i
S 0.4
St
)
(=%
0.2 1
0.0 T T T T T T T
KNN AdaBoost SVM RF XGBoost DT StackANN
Model
FIGURE 2
Variation of multiple evaluation metrics for different models on the LBC dataset.
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Figure 2. Further analysis shows that StackANN may focus more on
the improvement of Recall during the training optimization process of
the LBC dataset, that is, by accepting some false positives in exchange
for higher positive Recall capabilities. Although Pre has not been
improved, the overall performance of the model in positive recognition
has been enhanced, showing stronger practicality and robustness. In
medical scenarios, high Recall means that the model can identify most
real malignant tumor samples. Even if some benign tumors are
misclassified as malignant (false positives), it can avoid missed
diagnoses to the greatest extent and has important clinical value.
Experimental results on the WDBC dataset demonstrate that the
StackANN model exhibits significant advantages across multiple key
classification metrics. The model achieves an ACC of 0.9847 and an
AUC of 0.9934, reflecting its excellent overall classification
performance and ability to distinguish between categories. Particularly
noteworthy is its Recall of 1.0000, indicating that all malignant tumor
samples were correctly identified with no missed diagnoses,
significantly reducing medical risks. The Pre is 0.9697, showing that
the vast majority of samples predicted as malignant are true positives.
Similarly, the Sp is 0.9697, indicating high ACC in identifying benign
tumors. The harmonic mean F1 score of Pre and Recall is 0.9847,
further highlighting the models outstanding comprehensive
performance in classifying positive samples. The performance change
trends of different indicators of each model are shown in Figure 3.
Compared to traditional machine learning models, the Stack ANN
ensemble model demonstrates comprehensive superiority. Both KNN
and DT exhibit significantly lower Recall and F1 scores than
StackANN. Although AdaBoost, XGBoost, and SVM perform
similarly in terms of Pre, their Recall remains below 1.0000, indicating
a risk of missed diagnoses. While Random Forest (RF) achieves a
relatively high Recall (0.9859), its overall F1 score and Recall still fall
short of StackANN. Compared with recently proposed hybrid and
deep learning models, StackANN demonstrates superior overall
performance in terms of ACC and F1. Specifically, StackANN achieves
an ACC of 0.9846, significantly higher than UMLP (0.9578), and
EPMLP (0.9701). In terms of F1, StackANN (0.9846) also outperforms
UMLP (0.9580) and EPMLP (0.9705). Importantly, StackANN

10.3389/fmed.2025.1644857

achieves a perfect Recall of 1.0000 while maintaining high ACC,
indicating that the model can comprehensively identify all malignant
samples, thereby substantially reducing the risk of missed diagnoses
in clinical settings. In addition, the close alignment between its ACC
and F1 indicates an optimal balance between Pre and Recall, a critical
characteristic in medical diagnostic scenarios where both false
positives and false negatives have significant clinical implications.
These results fully demonstrate that StackANN possesses stronger
generalization capability and stability. The specific evaluation
indicators of each model are shown in Table 4.

3.2 SHAP-based multi-model feature
attribution analysis for breast Cancer
classification

To analyze the impact of features on the model’s prediction
results, this study employs the SHAP method to interpret the feature
importance of the StackANN model (44). Specifically, six baseline
models are trained separately, and the KernelExplainer interpreter is
used on the same test samples to calculate the SHAP value of each
model. Then, the SHAP values output by all models are averaged
element by element in the feature dimension to obtain the global
average SHAP value of each feature, which is used as the basis for the
comprehensive feature interpretation of the StackANN model, and a
SHAP bee swarm diagram is drawn for visual analysis. In the bee
swarm diagram, the X-axis represents the SHAP value of each feature,
indicating the contribution of the feature to the prediction result. A
single point represents the SHAP value of a sample on the feature.
The Y-axis is the feature name, which is sorted from top to bottom by
the absolute value of the average SHAP value (the more important,
the higher the value). The color represents the original value of the
feature, red means that the value of the feature is large, and blue
means it is small. By fusing the interpretation results of multiple
models, it helps to alleviate the bias that may be caused by the
interpretation of a single model and improves the credibility of the
importance of the feature.
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FIGURE 3
Variation of multiple evaluation metrics for different models on the WDBC dataset.
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TABLE 4 Performance comparison of breast cancer classification models on the WDBC dataset.

Method ACC Pre Recall F1 Sp AUC
KNN 0.9474 0.9577 0.9577 0.9577 0.9302 0.9802
AdaBoost 0.9561 0.9583 0.9718 0.9650 0.9302 0.9944
SVM 0.9561 0.9714 0.9577 0.9645 0.9535 0.9964
RF 0.9649 0.9589 0.9859 0.9722 0.9302 0.9953
XGBoost 0.9561 0.9583 0.9718 0.9650 0.9302 0.9908
DT 0.9474 0.9577 0.9577 0.9577 0.9302 0.9440
UMLP (18) 0.9578 0.9580 0.9580 0.9580
EPMLP (18) 0.9701 0.9710 0.9700 0.9705
Stack ANN 0.9846 0.9697 1.0000 0.9846 0.9697 0.9934
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FIGURE 4
SHAP feature importance beeswarm plot of the StackANN model on the LBC dataset.

As can be observed from Figure 4, in the LBC dataset, the model
mainly relies on clinical features such as tumor malignancy, location,
and size for prediction. Specifically, feature deg_malig3 (malignancy
level 3) is the feature with the greatest impact on the model output,
followed by feature pos_2 (position 2) and feature tumor_size (tumor
size), while demographic features such as age and breast location
have relatively small impacts. The points of top features such as deg_
malig3, pos_2, and tumor_size are widely distributed, indicating that
they have significant effects on different samples to varying degrees.
Feature deg_malig3 represents the highest level in histological
grading. Grade 3 represents the most poorly differentiated and most
malignant tumor, reflecting the high degree of atypia and poor
differentiation of tumor cells. Clinically, it usually represents the most
aggressive and worst prognostic pathological type (45). Therefore, it
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plays a decisive role in the prediction model. The feature pos_2
reveals the specific location of the tumor in the breast, which affects
its prognosis and malignancy. The feature tumor_size is a key
indicator to measure the growth potential of the tumor, which
directly affects the malignancy and prediction results. In summary,
the model mainly relies on the biological behavior characteristics of
the tumor for prediction, especially key factors such as histological
grade, tumor location and size.

The analysis results of Figure 5 show that in the WDBC dataset, the
morphological features of the most severe tumor area play a dominant
role in model prediction. Among them, the feature “worst concave points”
was identified as the most influential predictor, with the widest
distribution of SHAP values and the highest contribution. This feature
reflects the degree of concavity of the tumor contour. More or deeper
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FIGURE 5
SHAP feature importance beeswarm plot for the StackANN model on the WDBC dataset.

concavities usually mean irregular tumor boundaries, suggesting stronger
invasive growth potential and higher risk of malignancy. The important

»

features that follow closely include: “worst radius;,” “worst texture” and

“worst area” Among them, the feature “worst radius” reflects the

Frontiers in Medicine

maximum size of the tumor and is closely related to the volume of the
lesion; the feature “worst texture” measures the complexity of the texture
of the tumor area, and uneven grayscale indicates enhanced tissue
structural heterogeneity; and the feature “worst area” represents the
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maximum projection area of the lesion in the image, which can also
be regarded as an intuitive indicator of the extension range of the tumor.
It is worth noting that all features prefixed with “worst” (representing the
most extreme state of the tumor) generally contribute more to the model
than the average features prefixed with “mean,” indicating that the model
relies more on identifying the most malignant areas of the tumor. This
trend is highly consistent with the clinical diagnostic strategy of focusing
on the most invasive and malignant areas (45). In addition, various error
features (such as area error, etc.) contribute relatively little to model
prediction, suggesting that the absolute level of features (such as
maximum value) is more valuable for clinical judgment than its volatility
(error). The above feature importance ranking provides a valuable
reference for clinical practice and an important reference for intelligent
diagnosis of breast cancer, indicating that in the actual judgment process,
we should focus on indicators such as tumor edge morphology, size and
structural heterogeneity.

10.3389/fmed.2025.1644857

3.3 Analysis of model classification effect

The confusion matrix is an important tool for evaluating the
classification performance of a model (46), it visually shows how the
model’s predictions for both positive and negative classes compare to
the true labels. To more comprehensively analyze the classification
effects of each model, we plotted confusion matrices for the LBC and
WDBC datasets, respectively, to further reveal the recognition
capabilities and classification biases of the models on different types
of samples.

In the experiment of LBC dataset, StackANN was used as a
stacking model to compare the classification results with those of the
baseline models. From the results in Figure 6, among the six baseline
models, XGBoost, AdaBoost and RF performed consistently in the
classification results. Their confusion matrices showed that the models
successfully identified 37 negative examples (TN = 37) and did not
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Confusion matrix comparison of StackANN model and baseline model on LBC dataset.
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misjudge any negative examples as positive examples (FP =0),
indicating that these three models have high accuracy in the
classification of benign samples. However, the performance in the
identification of malignant samples was very weak, with only 3 positive
examples correctly predicted (TP =3) and 18 missed (FN = 18),
showing a high risk of missed diagnosis. In contrast, KNN was slightly
inferior in the classification of negative examples, with only 35 negative
examples (TN = 35) identified and 2 false positives (FP = 2), but it was
slightly improved in the classification of positive examples, with 4
positive examples correctly identified (TP=4) and 17 missed
(FN = 17), but the ability to identify malignant samples was still weak.
SVM performs the same as KNN in negative example recognition
(TN =35, FP =2), but is more insufficient in positive example
recognition, with only 2 positive examples correctly classified (TP = 2)
and 19 missed (FN = 19), making it the least sensitive to malignant
samples among the six models. DT is slightly better than KNN and
SVM in negative example recognition (TN = 36, FP = 1), and is on par
with KNN in positive example recognition (TP =4, FN =17). In
general, the six baseline models perform well in the recognition of
benign tumors and have high classification ACC; however, there is a
common problem of missed diagnosis in the recognition of malignant
tumors. This will lead to the failure of key disease warnings and
seriously affect clinical decision-making. In addition, the dataset of the
baseline model has a sample imbalance problem, with more benign
samples than malignant samples, which will affect the model’s tendency
to learn the features of the majority class (negative examples), resulting
in poor performance in the recognition of the minority class (positive
examples), resulting in a high missed diagnosis rate.

Compared with the above baseline model, the optimized
StackANN model showed obvious advantages in positive example
recognition ability, identifying a total of 6 positive examples (TP = 7)
and missing only 1 positive example (FN = 1), significantly reducing
the missed detection rate of malignant tumors. At the same time, the
negative example recognition performance was TN = 8 and FP = 1.
Although the Sp decreased, the overall improvement in the positive
example Recall rate was more clinically valuable. This result shows that
the StackANN model can effectively alleviate the shortcomings of the
traditional baseline model in positive example recognition while
improving the model Recall, and has stronger practical application
potential. In addition, the relative balance of samples (the number of
positive samples is 8 and the number of negative samples is 9) helps
to optimize the performance of the StackANN model, further
supporting its advantage in positive example classification.

The experimental results on the WDBC dataset are shown in
Figure 7, which shows the confusion matrix comparison between the
StackANN model and the six baseline models. Overall, the baseline
models performed well in the identification of both positive and negative
examples, with generally low numbers of FP and FN. Among them,
KNN and DT had relatively high numbers of errors in both categories,
both FP = 3 and FN = 3. However, in comparison, the StackANN model
only missed one positive example (FN =0) while keeping the false
positive zero (FP =1), showing better classification performance,
especially in reducing missed diagnoses. In addition, the sample
distribution of the optimized StackANN model is more balanced, with
32 positive samples and 33 negative samples, while the data used by the
baseline model has 71 positive samples and 43 negative samples, which
is imbalanced to a certain extent. In summary, the StackANN model
shows higher classification ACC and lower misclassification rate when
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processing imbalanced datasets, especially in reducing missed diagnoses,
proving its potential and effectiveness in practical applications.

3.4 External validation and cross-dataset
generalization evaluation

To further assess the robustness and generalization of the proposed
StackANN model in real-world clinical applications, we employed the
WBCD as an independent external validation set and ensured
comparability by strictly following the same preprocessing and
normalization pipeline as applied to the WDBC dataset. As illustrated
in Figure 8, StackANN delivered consistently strong performance
across all key metrics on the WBCD dataset, achieving ACC, Pre,
Recall, F1, and Sp values of 0.9630, with an outstanding AUC of 0.9959.
The high consistency among these indicators highlights the model’s
desirable balance between sensitivity and specificity, which is critical
in minimizing both false positives and false negatives in medical
diagnosis. Importantly, the exceptionally high AUC underscores
StackANN's strong discriminative capacity in distinguishing malignant
from benign breast cancer cases, even under different feature spaces
and sample distributions. These findings confirm that StackANN not
only preserves superior diagnostic capability across multiple datasets
but also exhibits resilience to variations in data characteristics, with
results on the WBCD dataset remaining stable and consistent with
those on the WDBC dataset. Clinically, this external validation
underscores the practical applicability of StackANN, as its ability to
generalize across datasets collected under diverse conditions and
feature sets is essential for reliable deployment in multi-center and real-
world hospital environments (47). Moreover, its stable performance
indicates reduced risk of model degradation in new patient populations,
which is a key prerequisite for safe clinical adoption. In conclusion, the
external validation experiments demonstrate that StackANN achieves
excellent generalization and stability, reinforcing its potential as a
clinically valuable tool for breast cancer diagnosis and providing strong
evidence to support its future large-scale, multi-institutional application.

3.5 Multiclassification assessment of breast
Cancer subtypes

In breast cancer diagnosis, beyond the traditional binary
classification of benign versus malignant, finer-grained classifications
such as Basal-like, HER2-enriched, Luminal A, Luminal B, Normal-like,
and Claudin-low subtypes hold significant clinical value and can guide
personalized treatment (48). To extend the original StackANN model,
which was designed for binary classification, to a multi-class setting, the
following adjustments are required: first, use a LabelEncoder to encode
each subtype label as an integer so that the model can handle multiple
class outputs; second, each base model (KNN, AdaBoost, SVM, RE,
XGBoost, DT) predicts the probability of each sample belonging to each
class, and these probabilities are concatenated to form new feature
vectors, which serve as inputs to the ANN meta-learner; finally, the
ANN output layer is configured with a number of nodes equal to the
number of classes, with each node corresponding to the predicted
probability of a subtype, thereby enabling multi-class prediction.

We conducted experiments on the METABRIC2 dataset, which
includes six breast cancer subtypes (49). This dataset was jointly
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constructed and provided by the Canadian Cancer Society Research
Institute and its international collaborators. It contains comprehensive
data from 1,980 patients with primary breast cancer, including gene 107 09630 09630 09630 09630 09630
expression data, clinical pathological features, and long-term survival

0.9959

information for each sample. For our breast cancer subtype
classification study, we extracted gene expression profiles and clinical
features, totaling 505 features. To meet the input requirements of
machine learning algorithms, we performed digital encoding of
categorical variables. For example, ER and PR statuses were mapped
from “Positive/Negative” to numeric values of 1/0. In addition,

Score

we processed missing values to ensure the integrity and quality of the
data. Based on the predictions of the StackANN model, we calculated
multiple performance metrics for each subtype, including overall

ACC, Pre, Recall, F1, Sp, and AUC. Here, ACC represents the overall : Sp
correctness of the model across all samples; Pre, Recall, and F1 are FIGURE 8
calculated for each class, reflecting the model’s performance on Confusion matrix comparison of StackANN model and baseline

individual subtypes; Sp and AUC are computed using a one-vs-rest model on WDBC dataset.

(OVR) strategy to evaluate the model’s ability to distinguish a specific
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TABLE 5 Performance of the StackANN model in the METABRIC2 breast cancer multi-subtype classification task.

Subtype ACC Pre Recall F1 Sp AUC
LumA 0.9266 0.8667 0.8966 0.8814 0.9730 0.9860
LumB 0.9266 0.9600 0.8000 0.8727 0.9932 0.9875
Her2 0.9266 0.9032 0.9655 0.9333 0.9797 0.9984
Basal 0.9266 0.9375 1.0000 0.9677 0.9864 1.0000
Normal 0.9266 0.9355 0.9667 0.9508 0.9864 0.9966
Claudin-low 0.9266 0.9643 0.9310 0.9474 0.9932 0.9991

subtype from all others. The results of these metrics are summarized
in the Table 5.

The experimental results on the METABRIC2 dataset
demonstrate that the StackANN model performs excellently in
classifying six breast cancer subtypes. The overall ACC is
consistently 0.9266 across all subtypes, indicating stable general
classification capability. Specifically, the LumA subtype shows a Pre
of 0.8667, Recall of 0.8966, and F1 of 0.8814, suggesting a good
balance between Pre and Recall for LumA samples. LumB achieves
a high Pre of 0.9600 but a relatively lower Recall of 0.8000,
indicating that some LumB samples may be misclassified. Her2 and
Basal subtypes have Recalls of 0.9655 and 1.0000, and F1 of 0.9333
and 0.9677, showing the model effectively identifies high-risk
subtypes, especially Basal samples, which are almost perfectly
captured. Normal and Claudin-low subtypes also demonstrate
robust performance, with Pre of 0.9355 and 0.9643, F1 of 0.9508
and 0.9474, Sp above 0.98, and AUC close to 1, indicating strong
capability in distinguishing these subtypes from others. Overall,
StackANN exhibits high ACC, Recall, and Sp in multi-class breast
cancer subtype classification, with particularly strong performance
(Basal and Claudin-low),
highlighting its potential clinical utility for multi-subtype diagnosis.

on critical high-risk subtypes

3.6 Discussion on deployment and
computing efficiency optimization

Although StackANN demonstrates excellent accuracy and
robustness in breast cancer diagnosis, its relatively complex model
structure may impose a computational burden in real-world hospital
environments, particularly in primary healthcare settings or scenarios
with limited computational resources. In our experiments, we verified
that StackANN can perform inference on standard CPU environments,
indicating that the model remains feasible under resource-constrained
conditions. However, to further enhance efficiency and response speed
in real-time clinical applications, multiple optimization strategies
should be considered.

First, model pruning and quantization techniques can reduce
the number of model parameters and storage requirements,
thereby
maintaining performance close to the original model (50). Second,

significantly ~shortening inference latency while
knowledge distillation can be employed to train a lightweight
student model, achieving faster inference speed while preserving
StackANN’s classification performance as much as possible (51).
In addition, feature selection and dimensionality reduction
methods (e.g., Principal Component Analysis (PCA), LASSO) can

lower the input feature dimensions, reducing computational load
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and improving model interpretability, which provides clinicians
with more intuitive decision support. Finally, deploying the model
on optimized inference frameworks (e.g., TensorRT or ONNX
Runtime), combined with hardware acceleration via GPU, FPGA,
or other devices, can further reduce response time to meet real-
time diagnostic requirements (52).

Future work should systematically evaluate these optimization
strategies to balance StackANN’s diagnostic accuracy with real-time
performance, ensuring that the model provides high-precision
predictions while adapting to diverse hardware conditions and
resource constraints in clinical applications.

4 Conclusion

This study proposes StackANN, a stacking ensemble framework
that integrates multiple classical machine learning models with an
ANN meta-learner, achieving superior performance in breast
cancer classification. Experiments on the LBC, WDBC, and WBCD
datasets demonstrated that Stack ANN consistently outperforms
single models and recent hybrid approaches, particularly in
identifying malignant cases with high Recall and balanced overall
metrics. SHAP-based feature analysis further confirmed that the
model’s decisions align with key clinical indicators such as tumor
malignancy, size, and morphology. These results highlight
StackANN’s robustness, generalization ability, and clinical
relevance. While current validation remains limited, future work
will focus on large-scale, multi-center external datasets and
advanced techniques such as transfer learning to further enhance
its clinical applicability. Overall, Stack ANN shows strong potential
as a reliable, interpretable, and practical tool to support early breast
cancer screening and diagnosis.
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