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Timely and accurate diagnosis of breast cancer remains a critical clinical challenge. 
In this study, we propose Stacked Artificial Neural Network (StackANN), a robust 
stacking ensemble framework that integrates six classical machine learning classifiers 
with an Artificial Neural Network (ANN) meta-learner to enhance diagnostic 
precision and generalization. By incorporating the Synthetic Minority Over-Sampling 
Technique (SMOTE) to address class imbalance and employing SHapley Additive 
exPlanations (SHAP) for model interpretability. StackANN was comprehensively 
evaluated on Wisconsin Diagnostic Breast Cancer (WDBC) datasets, Ljubljana 
Breast Cancer (LBC) datasets and Wisconsin Breast Cancer Dataset (WBCD), as well 
as the METABRIC2 dataset for multi-subtype classification. Experimental results 
demonstrate that StackANN consistently outperforms individual classifiers and 
existing hybrid models, achieving near-perfect Recall and Area Under the Curve 
(AUC) values while maintaining balanced overall performance. Importantly, feature 
attribution analysis confirmed strong alignment with clinical diagnostic criteria, 
emphasizing tumor malignancy, size, and morphology as key determinants. These 
findings highlight StackANN as a reliable, interpretable, and clinically relevant tool 
with significant potential for early screening, subtype classification, and personalized 
treatment planning in breast cancer care.
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1 Introduction

Cancer is a major disease that seriously threatens human health worldwide, and breast 
cancer is particularly common among women (1). Breast cancer is the most common cancer 
in the world. Breast cancer is the most common type of cancer in the world, with more than 
2.3 million new cases diagnosed in 2020 and approximately 685,000 deaths (2). Since the early 
symptoms of breast cancer are relatively hidden, many patients do not feel obvious discomfort 
in the early stage, and the disease is often discovered in the late stage, resulting in missing the 
best treatment opportunity. Therefore, early diagnosis of breast cancer is very important, 
which is directly related to the patient’s survival rate and cure rate (3).

Traditional breast cancer diagnosis methods, such as CT, mammography, magnetic 
resonance imaging (MRI), ultrasound, and Fine Needle Aspiration (FNA), are widely used in 
clinical practice (4). However, these methods heavily rely on the doctor’s experience and 
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judgment, which are influenced by subjective factors (5). This is 
particularly problematic when the tumor boundary is unclear, or the 
lesion is in its early stages, where misdiagnosis or missed diagnosis 
can occur. Furthermore, long working hours and fatigue may lead to 
increased analysis errors. Despite their broad application, these 
methods face significant challenges in accuracy and reliability, 
particularly in complex cases or when early-stage detection is critical. 
This sets the stage for exploring more robust and objective diagnostic 
approaches, such as machine learning-based models (6). Nowadays, 
with the rapid development of machine learning technology, the field 
of breast cancer diagnosis has ushered in new breakthroughs. Machine 
learning can automatically extract hidden patterns and features 
through deep learning of large amounts of clinical data and imaging 
data, thereby achieving more accurate breast cancer prediction and 
classification (7). Compared with traditional diagnostic methods that 
rely on expert experience, machine learning improves the stability and 
consistency of diagnosis, reduces the impact of human factors, and 
significantly reduces the risk of misdiagnosis and missed diagnosis by 
doctors (8). Combining traditional methods with machine learning 
technology can improve diagnostic efficiency, help doctors make more 
objective and accurate judgments, and promote the realization of early 
diagnosis and personalized treatment.

In recent years, ensemble learning methods have evolved from 
traditional strategies such as Bagging and Boosting to more complex 
and efficient fusion models (9). Among these, the stacking method, 
also known as stacking generalization, has emerged as a popular 
research approach. However, many stacking models still rely on 
relatively simple algorithms and do not fully exploit the potential of 
multi-model fusion. While stacking methods improve the model’s 
ability to handle data features by integrating various algorithms [e.g., 
the linear discriminant of Logistic Regression (LR), the anti-
interference ability of Random Forest (RF), and the boundary 
demarcation ability of Support Vector Machine (SVM)], they often 
struggle to address issues like class imbalance and high-dimensional 
data interactions (10). Moreover, these models may fail to provide a 
robust solution in real-world clinical settings where the data is often 
noisy and imbalanced. At present, some breast cancer classification 
studies have integrated features, but they have not adopted the 
stacking method. Among them, the hybrid ensemble model has 
become a development trend (11, 12). For example, hybrid models 
such as the hybrid of traditional machine learning models and deep 
learning models, and the hybrid of traditional methods and machine 
learning, can improve the high-dimensional fusion and learning 
capabilities of data. This hybrid strategy can achieve more efficient and 
accurate predictions in practical applications while taking into 
account the advantages of different models. For example, the method 
proposed by Murat Karabatak et al. combines association rules and 
neural networks, which is a hybrid integration method of feature 
selection and classifier (13). The FS-WOA-Stacking model proposed 
by Shanshan Kong et al. integrates five mainstream machine learning 
models: SVM, ANN, RF, eXtreme Gradient Boosting (XGBoost) and 
Adaptive Boosting (AdaBoost), and combines feature selection and 
whale optimization algorithm (WOA) optimization for early diagnosis 
of breast cancer (14). The hybrid integration method has certain 
advantages in improving model performance, but it still lags behind 
the stacking method in the deep application of multi-model fusion 
and meta-learning strategies. However, machine learning methods 
have been widely applied in breast cancer diagnosis, many of these 

studies still rely on traditional models [such as SVM and K-Nearest 
Neighbors (KNN)] and identical datasets (e.g., WDBC and LBC), 
which limits their ability to generalize across different clinical settings 
and improve accuracy in complex cases (9, 15). Traditional single 
algorithms struggle to capture complex data patterns and feature 
interactions, often leading to overfitting or poor generalization (15). 
Furthermore, existing hybrid models often fail to fully leverage multi-
model fusion techniques or address critical issues like class imbalance 
and the high-dimensional nature of medical datasets. In existing 
studies, Maldonado et  al. (16) proposed REF-SVM, which 
simultaneously performs feature selection and classification using 
kernel-penalized support vector machines. While effective in reducing 
feature dimensionality, this model remains sensitive to class imbalance 
and relies heavily on kernel function selection. Kumar and Poonkodi 
(17) attempted a hybrid RF + KNN + SVM model, which simply 
combines multiple classifiers but lacks a meta-learning mechanism, 
making it difficult to optimize feature interactions and address class 
imbalance. Idri et al. (18) investigated Uniform Multilayer Perceptron 
(UMLP) and Evolutionary Parameter-tuned Multilayer Perceptron 
(EPMLP). Although these methods improve performance through 
structural adjustments and parameter evolution, they suffer from 
limited interpretability and high computational costs. None of these 
approaches systematically address the synergistic challenges of high-
dimensional feature interactions, class imbalance, and clinical 
interpretability in breast cancer diagnosis. To address these gaps, 
we propose StackANN, a multi-model stacking approach integrated 
with the SMOTE. This method combines multiple classical machine 
learning models and employs an ANN as a meta-learner. By effectively 
handling complex data patterns, feature interactions, and class 
imbalance, StackANN aims to improve classification accuracy and 
demonstrates stronger robustness and generalization ability compared 
to existing approaches.

2 Methods

2.1 Datasets

The LBC Dataset was provided by the Institute of Oncology, 
University Medical Center, Ljubljana, Yugoslavia (19). This dataset 
contains clinical sample information from 286 breast cancer patients. 
Each sample contains 9 clinical features related to breast cancer 
prognosis (such as tumor size, lymph node capsule, etc.) and a label 
that identifies the sample category (0 for benign and 1 for malignant). 
Among them, there are 201 benign samples and 85 malignant 
recurrence samples. In this paper, we  performed necessary data 
preprocessing on the LBC Dataset. The detailed process of data 
preprocessing is shown in the supporting materials.

The WDBC Dataset comes from the UCI Machine Learning 
Library and contains 569 breast cancer samples, including 212 benign 
samples and 357 malignant samples (20). Each sample consists of 30 
features and 1 label, with label value B indicating benign (0) and label 
value M indicating malignant (1). The features are obtained through 
FNA and mainly describe the morphological characteristics of tumor 
cell nuclei, including area, smoothness, and texture.

Prior to machine learning modeling, we  standardized both 
datasets using Z-score normalization to ensure all features were on a 
comparable scale. This preprocessing step centers the data to zero 
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mean and unit variance, facilitating stable and efficient model 
convergence. The standardized data was used for all subsequent 
training and evaluation processes of both base learners and the meta-
learner in our stacking ensemble framework. The datasets were 
randomly divided into training and test sets at a ratio of 80 and 20% 
(Table 1) for training and performance evaluation of the baseline 
model. The training set was used to train the model, and the test set 
was used to evaluate the performance of the final training model on 
unknown data.

In order to verify the generalization performance of the model, 
we  selected the WBCD dataset. The WBCD dataset is a dataset 
commonly used in breast cancer classification research (21). It 
contains 699 breast cancer samples from the University of Wisconsin 
Medical Center, of which 458 samples are benign (0) and 241 samples 
are malignant (1). Each sample consists of 9 features and 1 label. The 
features are obtained through fine FNA and mainly describe the 
morphological characteristics of tumor cell nuclei, including radius, 
texture, smoothness, perimeter, area, etc. To ensure data quality, 
samples containing missing values were removed, and the final dataset 
contains 683 valid samples. We  use this dataset as an external 
validation set.

2.2 Machine learning model

This paper studies various machine learning models for binary 
classification tasks (malignant and benign). KNN calculates the 
distance between samples, selects the K nearest neighbors, and uses a 
majority voting mechanism to determine the sample category (22, 23). 
SVM is a supervised learning method that achieves optimal 
classification of sample data by constructing a hyperplane that 
maximizes the interval between different categories (24). AdaBoost is 
an enhancement algorithm that repeatedly trains multiple weak 
classifiers and adjusts sample weights in each iteration to increase 
attention to misclassified samples, thereby effectively improving the 
overall classification performance of the model (25, 26). RF reduces 
overfitting and improves prediction stability by constructing multiple 
decision trees and outputting the final results by voting or averaging 
(27). XGBoost is an ensemble learning algorithm based on gradient 
boosting. It iteratively builds decision trees and corrects the previous 
round of prediction errors, while combining regularization techniques 
to improve the accuracy and generalization ability of the model (28, 
29). DT achieves classification by recursively splitting the feature space 
and selecting the optimal split point according to the sample 
characteristics (30).

This article uses these six machine learning models as baseline 
models and applies them to two datasets. The entire computational 
process uses the Python 3.11 environment, and the scikit-learn library 

is used to implement the training and evaluation of machine learning 
models. To ensure a fair comparison of model performance, all base 
learners were optimized using the same hyperparameters. The detailed 
optimal configurations for both datasets are shown in 
Supplementary Table S1 in the supporting materials.

2.3 Stacked ensemble method

The stacking method is a special ensemble learning method (31). 
The performance of a single model under different data distributions 
may be unstable, and the stacking method can effectively make up for 
the limitations of a single model by integrating the prediction results 
of multiple models (32).

The StackANN constructed in this paper has two layers, the first 
layer is the base learner, and the second layer is the meta learner. In 
the first layer, multiple base models are trained on the training data at 
the same time. Each base learner generates corresponding prediction 
results based on the training data. These prediction results have two 
forms: category labels or category probabilities. These prediction 
results have two forms: category labels or category probabilities. 
We choose category probabilities as the prediction results because they 
provide richer information about the model’s confidence, which can 
help the stacking ANN better integrate base learner outputs and 
improve overall predictive performance. In the second layer, the 
prediction results of the six base learners are used as six new features, 
and the corresponding true labels are used as target features to form a 
new dataset. However, we found that the generated new dataset has a 
serious class imbalance problem, which may cause the model to over-
rely on majority class samples and perform poorly on minority classes. 
Therefore, to address this issue and ensure methodological rigor, 
we implemented the following processing pipeline before training the 
base learners:

	(1)	 Applied the SMOTE (33) to the original dataset to generate a 
balanced dataset;

	(2)	 Split the balanced dataset into training and testing sets;
	(3)	 Trained all base learners using the training set and generated 

prediction probabilities on the testing set;
	(4)	 Combined the prediction probabilities from each base learner 

on the testing set with the true labels to construct a 
meta-dataset;

	(5)	 Performed an additional split on the meta-dataset and 
employed an ANN as the meta-learner for final training 
and prediction.

This approach effectively balances the distribution between 
benign and malignant cases while strictly preventing information 
leakage between training and testing phases (34). The consistent use 
of optimized splitting ratios ensures coherence across different 
model levels.

Compared to a single model, StackANN requires training 
multiple base learners and one meta-learner, thus incurring higher 
computational and time costs during the offline training phase. 
However, this cost is justified by a significant improvement in 
classification performance—particularly in Recall, a critical 
clinical metric for reducing missed diagnoses. During the online 
prediction stage after deployment, the computational overhead 

TABLE 1  Partitioning of LBC and WDBC datasets.

Datasets Category Malignant Benign Total 
number

LBC
Training 64 164 228

Test 21 37 58

WDBC
Training 286 169 455

Test 71 43 114
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remains comparable to that of a conventional single model, 
ensuring no practical impact on the efficiency of real-time 
clinical applications.

2.4 ANN as meta-learner

ANN is a computational model that simulates the biological 
nervous system. It processes data through multiple interconnected 
neuron hierarchies, imitating the information transmission and 
processing methods of biological neurons (35). In the second layer 
of the StackANN model, ANN is used as a meta-learner to integrate 
the prediction results of the base learners and make the final 
classification decision. We use an ANN consisting of an input layer, 
multiple hidden layers, and an output layer. The input layer contains 
6 nodes, corresponding to the prediction results of the 6 base 
learners in the first layer. The LBC dataset uses 4 hidden layers, 
while the WDBC dataset uses 3 hidden layers. Each hidden layer 
has several neurons and uses the ReLU activation function, as 
shown in Equation 1. Its function is to set the part of the input less 
than 0 to 0 and keep the part of the input greater than 0 unchanged, 
thereby enhancing the nonlinear expression ability of the 
model (36).

	 ( ) ( )=ReLU max 0,x x 	 (1)

The output layer uses the Softmax activation function to convert 
the output of the model into a probability distribution, that is, the 
sum of the predicted probabilities of each category is 1. In the binary 
classification task, the category with a higher probability is selected 
as the final prediction result of the model, thereby achieving 
classification judgment of the sample. As shown in Equation 2, where 

iz  denotes the input score of class i, and K  is the total number 
of classes.
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During the model training process, Binary Cross-Entropy Loss 
(also known as Log Loss) is selected as the loss function for supervised 
training to measure the difference between the model’s predicted 
probability and the true binary classification label. As shown in 
Equation 3, where N  is the number of samples, iy  is the true label of 
sample i, which can be either 0 or 1, and ip  is the predicted probability 
that sample i belongs to the positive class.

	
( ) ( ) ( )( )

=
= − ⋅ + − ⋅ −∑

1

1 log 1 log 1
N

i i i i
i

Loss y p y p
N 	

(3)

The optimizer used is Adaptive Moment Estimation (Adam) 
method, which combines Momentum and Root Mean Square 
Propagation (RMSProp) algorithms to improve training efficiency and 
accelerate model convergence. The update formula of Adam is as 
follows (see Equation 4).

	

ηθ θ −= −
+

1 ˆ
ˆt t t

t
m

v  	
(4)

In which, θt  is the parameter at the current moment, η  is the 
learning rate, ˆ tm  is the first moment estimate of the gradient (i.e., the 
momentum term), ˆtv  is the second moment estimate of the gradient 
(i.e., the weighted variance term), and  is a small constant that 
prevents division by zero.

All training processes were carried out in Python 3.11. The specific 
method framework is shown in Figure 1, which shows the hierarchical 
structure and information transmission process of the StackANN model. 

FIGURE 1

The design of StackANN.
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In order to optimize the model performance, we optimized the hidden 
layer structure, learning rate, maximum number of iterations and other 
hyperparameters during the setting process. The detailed 
hyperparameters are listed in Table 2. Here, Hidden Layer Sizes refers to 
the number of neurons in each hidden layer, reflecting the network 
architecture; Max Iterations is the maximum number of weight update 
iterations during training; Alpha is the L2 regularization parameter, used 
to prevent overfitting; Learning Rate Init represents the initial step size 
of the learning rate at the start of training. To ensure the reproducibility 
of experimental results, we fixed the random seed throughout the entire 
experimental workflow: the global random seed was set to 3,407 to 
control all major random processes (including SMOTE oversampling 
and model initialization); the data splitting process random seed was set 
to 42 to ensure consistent training-test splits. This two-level seeding 
strategy guarantees complete reproducibility of results while adhering to 
best practices in experimental design.

To address these gaps in existing methods, we propose StackANN, 
a novel classification method based on multi-model ensemble learning. 
While previous studies have relied on traditional classifiers and basic 
ensemble strategies, StackANN integrates six classical machine 
learning models [KNN, AdaBoost, SVM, RF, XGBoost, and Decision 
Tree (DT)] and uses an ANN as a meta-learner. This approach 
enhances classification performance by leveraging the complementary 
strengths of various base models and improving generalization ability, 
particularly in complex, high-dimensional, and imbalanced datasets. 
Unlike existing hybrid models, which fail to fully address class 
imbalance or complex feature interactions, StackANN captures higher-
order feature relationships through the meta-learning process with 
ANN, optimizing the decision boundary via nonlinear transformation. 
To demonstrate the effectiveness of StackANN, we  conducted 
experiments on the LBC and WDBC datasets, and also performed 
external validation on the WBCD datasets. The results demonstrate 
that StackANN significantly outperforms single models in classification 
accuracy and robustness. Furthermore, on the external validation set 
(WBCD), StackANN achieved excellent performance and 
demonstrated good generalization. This result further confirms that 
StackANN provides an efficient and robust solution for complex 
classification tasks, outperforming existing hybrid models in handling 
data complexity, class imbalance, and feature interactions. Our findings 
highlight the potential of StackANN as a clinically applicable, 
interpretable, and generalizable model for breast cancer diagnosis.

2.5 Evaluation metrics

In order to better evaluate the model performance and stability of 
the two datasets, this study used several common evaluation 
indicators: Accuracy (ACC) (37), Precision (Pre) (38), Recall (39), 
F1-score (F1) (40), Specificity (Sp) (41) and AUC (42), these indicators 
can reflect the performance of the model in classification tasks from 

different angles. We  define four basic classification results: True 
Positive (TP), True Negative (TN), False Positive (FP) and False 
Negative (FN). These four values constitute the Confusion Matrix, 
which provides the basis for various evaluation indicators (43). 
Specifically, we use the same evaluation indicators to evaluate the 
sample classification results of the two datasets and compare them 
with the original processing results. The specific evaluation indicators 
are as follows:

ACC is a common indicator for evaluating the overall performance 
of a model, indicating the proportion of correctly classified samples to 
the total number of samples. The value ranges from 0 to 1, and the 
closer it is to 1, the better the model performs in the classification task. 
The calculation formula is as shown in Equation 5.

	
+

=
+ + +

TP TNACC
TP TN FP FN 	

(5)

Pre measures the proportion of samples that are actually positive 
among those predicted by the model to be positive. The higher the 
value, the more accurate the model is in predicting positive classes. 
The calculation formula is as shown in Equation 6.

	
=

+
TPPre

TP FP 	
(6)

Recall measures the proportion of samples that are actually 
positive that are successfully classified as positive by the model. The 
higher the value, the stronger the model is in identifying positive 
samples. The calculation formula is as shown in Equation 7.

	
=

+
TPRecall

TP FN 	
(7)

F1 is the harmonic mean of Precision and Recall, which aims to 
measure the balance between the two. If one of the indicators is low, 
F1 will also decrease accordingly, thus avoiding the situation where 
the model is biased toward one category. The calculation formula is as 
shown in Equation 8.

	
=

+ +
21

2
TPF

TP FP FN 	
(8)

Sp reflects the proportion of samples that are correctly predicted 
as negative among all samples that are actually negative. The higher 
the Sp, the fewer FPs, and the better the model performs on negative 
samples. The calculation formula is as shown in Equation 9.

	
=

+
TNSp

TN FP 	
(9)

The Receiver Operating Characteristic (ROC) curve is a curve 
drawn with the False Positive Rate (FPR) (see Equation 10) as the 
horizontal axis and the True Positive Rate (TPR, i.e., Recall) as the 
vertical axis. The closer the ROC curve is to the upper left corner (i.e., 
high TPR and low FPR), the better the model performance.

	
=

+
FPFPR

FP TN 	
(10)

TABLE 2  Hyperparameter table for ANN.

Models.
Method

Hidden 
layer sizes

Max 
iterations

Alpha Learning 
rate

LBC (200,150,100,50) 400 0.0001 0.001

WDBC (100,50,25) 300 1.0000 0.001
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FIGURE 2

Variation of multiple evaluation metrics for different models on the LBC dataset.

AUC represents the area under the ROC curve. The calculation of 
the area is shown in Equation 11. AUC is a key indicator for measuring 
the performance of a binary classification model, which 
comprehensively reflects the performance of the model under different 
classification thresholds. Its value range is between 0 and 1. The closer 
the value is to 1, the better the classification performance of the model 
is, and it has a stronger ability to distinguish between positive and 
negative samples. Specifically, when the value is 1, the model can 
perfectly distinguish between positive and negative samples under all 
thresholds, while when the value is 0.5, it means that the performance 
of the model is equivalent to random guessing and lacks effective 
discrimination ability.

	
( ) ( )

−

+ +
=

= + × −∑
1

1 1
1

1
2

n

i i i i
i

AUC TPR TPR FPR FPR
	

(11)

3 Results and discussion

3.1 Model performance analysis

To verify the effectiveness of the model, this paper systematically 
compares and analyzes the proposed StackANN, six typical machine 

learning baseline models and existing research methods from multiple 
performance dimensions based on the LBC and WDBC datasets. For 
the specific evaluation indicators of each model on the LBC dataset, 
see Table 3. The ACC of the StackANN model reached 0.8824, and the 
AUC value was 0.9028, both of which were better than all the baseline 
models compared, indicating that the model showed stronger 
advantages in overall classification performance and the ability to 
distinguish between positive and negative samples. The Pre value of 
the model was 0.8750, which was higher than that of KNN, SVM and 
DT, but lower than that of AdaBoost, XGBooost and RF (1.0000), 
indicating that the ACC of the model in predicting malignant tumors 
was at a medium level compared with the baseline model, and there 
was a certain degree of false positives (slightly lower Sp value). 
However, its Recall and F1 are better than the baseline model, that is, 
the comprehensive ability of the model to identify malignant tumors 
is stronger than that of the baseline model. In particular, Recall has 
been significantly improved (see the broken line change of the Recall 
indicator in Figure 2). The Recall of the baseline model is lower than 
0.2000, while the Recall of the StackANN model is as high as 0.8750. 
In addition, the performance of the various indicators of the StackANN 
model is relatively balanced. Compared with the baseline model, the 
StackANN model has better capabilities in all aspects and does not 
overly ignore the optimization of other indicators. The performance 
change trends of different indicators of each model are shown in 

TABLE 3  Performance comparison of breast cancer classification models on the LBC dataset.

Method ACC Pre Recall F1 Sp AUC

KNN 0.6724 0.6667 0.1905 0.2963 0.9459 0.7278

AdaBoost 0.6897 1.0000 0.1429 0.2500 1.0000 0.6821

SVM 0.6379 0.5000 0.0952 0.1600 0.9459 0.5328

RF 0.6897 1.0000 0.1429 0.2500 1.0000 0.7349

XGBoost 0.6897 1.0000 0.1429 0.2500 1.0000 0.7207

DT 0.6897 0.8000 0.1905 0.3077 0.9730 0.6699

StackANN 0.8824 0.8750 0.8750 0.8750 0.8889 0.9028

https://doi.org/10.3389/fmed.2025.1644857
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al.� 10.3389/fmed.2025.1644857

Frontiers in Medicine 07 frontiersin.org

Figure 2. Further analysis shows that StackANN may focus more on 
the improvement of Recall during the training optimization process of 
the LBC dataset, that is, by accepting some false positives in exchange 
for higher positive Recall capabilities. Although Pre has not been 
improved, the overall performance of the model in positive recognition 
has been enhanced, showing stronger practicality and robustness. In 
medical scenarios, high Recall means that the model can identify most 
real malignant tumor samples. Even if some benign tumors are 
misclassified as malignant (false positives), it can avoid missed 
diagnoses to the greatest extent and has important clinical value.

Experimental results on the WDBC dataset demonstrate that the 
StackANN model exhibits significant advantages across multiple key 
classification metrics. The model achieves an ACC of 0.9847 and an 
AUC of 0.9934, reflecting its excellent overall classification 
performance and ability to distinguish between categories. Particularly 
noteworthy is its Recall of 1.0000, indicating that all malignant tumor 
samples were correctly identified with no missed diagnoses, 
significantly reducing medical risks. The Pre is 0.9697, showing that 
the vast majority of samples predicted as malignant are true positives. 
Similarly, the Sp is 0.9697, indicating high ACC in identifying benign 
tumors. The harmonic mean F1 score of Pre and Recall is 0.9847, 
further highlighting the model’s outstanding comprehensive 
performance in classifying positive samples. The performance change 
trends of different indicators of each model are shown in Figure 3.

Compared to traditional machine learning models, the StackANN 
ensemble model demonstrates comprehensive superiority. Both KNN 
and DT exhibit significantly lower Recall and F1 scores than 
StackANN. Although AdaBoost, XGBoost, and SVM perform 
similarly in terms of Pre, their Recall remains below 1.0000, indicating 
a risk of missed diagnoses. While Random Forest (RF) achieves a 
relatively high Recall (0.9859), its overall F1 score and Recall still fall 
short of StackANN. Compared with recently proposed hybrid and 
deep learning models, StackANN demonstrates superior overall 
performance in terms of ACC and F1. Specifically, StackANN achieves 
an ACC of 0.9846, significantly higher than UMLP (0.9578), and 
EPMLP (0.9701). In terms of F1, StackANN (0.9846) also outperforms 
UMLP (0.9580) and EPMLP (0.9705). Importantly, StackANN 

achieves a perfect Recall of 1.0000 while maintaining high ACC, 
indicating that the model can comprehensively identify all malignant 
samples, thereby substantially reducing the risk of missed diagnoses 
in clinical settings. In addition, the close alignment between its ACC 
and F1 indicates an optimal balance between Pre and Recall, a critical 
characteristic in medical diagnostic scenarios where both false 
positives and false negatives have significant clinical implications. 
These results fully demonstrate that StackANN possesses stronger 
generalization capability and stability. The specific evaluation 
indicators of each model are shown in Table 4.

3.2 SHAP-based multi-model feature 
attribution analysis for breast Cancer 
classification

To analyze the impact of features on the model’s prediction 
results, this study employs the SHAP method to interpret the feature 
importance of the StackANN model (44). Specifically, six baseline 
models are trained separately, and the KernelExplainer interpreter is 
used on the same test samples to calculate the SHAP value of each 
model. Then, the SHAP values output by all models are averaged 
element by element in the feature dimension to obtain the global 
average SHAP value of each feature, which is used as the basis for the 
comprehensive feature interpretation of the StackANN model, and a 
SHAP bee swarm diagram is drawn for visual analysis. In the bee 
swarm diagram, the X-axis represents the SHAP value of each feature, 
indicating the contribution of the feature to the prediction result. A 
single point represents the SHAP value of a sample on the feature. 
The Y-axis is the feature name, which is sorted from top to bottom by 
the absolute value of the average SHAP value (the more important, 
the higher the value). The color represents the original value of the 
feature, red means that the value of the feature is large, and blue 
means it is small. By fusing the interpretation results of multiple 
models, it helps to alleviate the bias that may be  caused by the 
interpretation of a single model and improves the credibility of the 
importance of the feature.

FIGURE 3

Variation of multiple evaluation metrics for different models on the WDBC dataset.
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As can be observed from Figure 4, in the LBC dataset, the model 
mainly relies on clinical features such as tumor malignancy, location, 
and size for prediction. Specifically, feature deg_malig3 (malignancy 
level 3) is the feature with the greatest impact on the model output, 
followed by feature pos_2 (position 2) and feature tumor_size (tumor 
size), while demographic features such as age and breast location 
have relatively small impacts. The points of top features such as deg_
malig3, pos_2, and tumor_size are widely distributed, indicating that 
they have significant effects on different samples to varying degrees. 
Feature deg_malig3 represents the highest level in histological 
grading. Grade 3 represents the most poorly differentiated and most 
malignant tumor, reflecting the high degree of atypia and poor 
differentiation of tumor cells. Clinically, it usually represents the most 
aggressive and worst prognostic pathological type (45). Therefore, it 

plays a decisive role in the prediction model. The feature pos_2 
reveals the specific location of the tumor in the breast, which affects 
its prognosis and malignancy. The feature tumor_size is a key 
indicator to measure the growth potential of the tumor, which 
directly affects the malignancy and prediction results. In summary, 
the model mainly relies on the biological behavior characteristics of 
the tumor for prediction, especially key factors such as histological 
grade, tumor location and size.

The analysis results of Figure 5 show that in the WDBC dataset, the 
morphological features of the most severe tumor area play a dominant 
role in model prediction. Among them, the feature “worst concave points” 
was identified as the most influential predictor, with the widest 
distribution of SHAP values and the highest contribution. This feature 
reflects the degree of concavity of the tumor contour. More or deeper 

FIGURE 4

SHAP feature importance beeswarm plot of the StackANN model on the LBC dataset.

TABLE 4  Performance comparison of breast cancer classification models on the WDBC dataset.

Method ACC Pre Recall F1 Sp AUC

KNN 0.9474 0.9577 0.9577 0.9577 0.9302 0.9802

AdaBoost 0.9561 0.9583 0.9718 0.9650 0.9302 0.9944

SVM 0.9561 0.9714 0.9577 0.9645 0.9535 0.9964

RF 0.9649 0.9589 0.9859 0.9722 0.9302 0.9953

XGBoost 0.9561 0.9583 0.9718 0.9650 0.9302 0.9908

DT 0.9474 0.9577 0.9577 0.9577 0.9302 0.9440

UMLP (18) 0.9578 0.9580 0.9580 0.9580

EPMLP (18) 0.9701 0.9710 0.9700 0.9705

StackANN 0.9846 0.9697 1.0000 0.9846 0.9697 0.9934
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concavities usually mean irregular tumor boundaries, suggesting stronger 
invasive growth potential and higher risk of malignancy. The important 
features that follow closely include: “worst radius,” “worst texture” and 
“worst area.” Among them, the feature “worst radius” reflects the 

maximum size of the tumor and is closely related to the volume of the 
lesion; the feature “worst texture” measures the complexity of the texture 
of the tumor area, and uneven grayscale indicates enhanced tissue 
structural heterogeneity; and the feature “worst area” represents the 

FIGURE 5

SHAP feature importance beeswarm plot for the StackANN model on the WDBC dataset.
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maximum projection area of the lesion in the image, which can also 
be regarded as an intuitive indicator of the extension range of the tumor. 
It is worth noting that all features prefixed with “worst” (representing the 
most extreme state of the tumor) generally contribute more to the model 
than the average features prefixed with “mean,” indicating that the model 
relies more on identifying the most malignant areas of the tumor. This 
trend is highly consistent with the clinical diagnostic strategy of focusing 
on the most invasive and malignant areas (45). In addition, various error 
features (such as area error, etc.) contribute relatively little to model 
prediction, suggesting that the absolute level of features (such as 
maximum value) is more valuable for clinical judgment than its volatility 
(error). The above feature importance ranking provides a valuable 
reference for clinical practice and an important reference for intelligent 
diagnosis of breast cancer, indicating that in the actual judgment process, 
we should focus on indicators such as tumor edge morphology, size and 
structural heterogeneity.

3.3 Analysis of model classification effect

The confusion matrix is an important tool for evaluating the 
classification performance of a model (46), it visually shows how the 
model’s predictions for both positive and negative classes compare to 
the true labels. To more comprehensively analyze the classification 
effects of each model, we plotted confusion matrices for the LBC and 
WDBC datasets, respectively, to further reveal the recognition 
capabilities and classification biases of the models on different types 
of samples.

In the experiment of LBC dataset, StackANN was used as a 
stacking model to compare the classification results with those of the 
baseline models. From the results in Figure 6, among the six baseline 
models, XGBoost, AdaBoost and RF performed consistently in the 
classification results. Their confusion matrices showed that the models 
successfully identified 37 negative examples (TN = 37) and did not 

FIGURE 6

Confusion matrix comparison of StackANN model and baseline model on LBC dataset.
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misjudge any negative examples as positive examples (FP = 0), 
indicating that these three models have high accuracy in the 
classification of benign samples. However, the performance in the 
identification of malignant samples was very weak, with only 3 positive 
examples correctly predicted (TP = 3) and 18 missed (FN = 18), 
showing a high risk of missed diagnosis. In contrast, KNN was slightly 
inferior in the classification of negative examples, with only 35 negative 
examples (TN = 35) identified and 2 false positives (FP = 2), but it was 
slightly improved in the classification of positive examples, with 4 
positive examples correctly identified (TP = 4) and 17 missed 
(FN = 17), but the ability to identify malignant samples was still weak. 
SVM performs the same as KNN in negative example recognition 
(TN = 35, FP = 2), but is more insufficient in positive example 
recognition, with only 2 positive examples correctly classified (TP = 2) 
and 19 missed (FN = 19), making it the least sensitive to malignant 
samples among the six models. DT is slightly better than KNN and 
SVM in negative example recognition (TN = 36, FP = 1), and is on par 
with KNN in positive example recognition (TP = 4, FN = 17). In 
general, the six baseline models perform well in the recognition of 
benign tumors and have high classification ACC; however, there is a 
common problem of missed diagnosis in the recognition of malignant 
tumors. This will lead to the failure of key disease warnings and 
seriously affect clinical decision-making. In addition, the dataset of the 
baseline model has a sample imbalance problem, with more benign 
samples than malignant samples, which will affect the model’s tendency 
to learn the features of the majority class (negative examples), resulting 
in poor performance in the recognition of the minority class (positive 
examples), resulting in a high missed diagnosis rate.

Compared with the above baseline model, the optimized 
StackANN model showed obvious advantages in positive example 
recognition ability, identifying a total of 6 positive examples (TP = 7) 
and missing only 1 positive example (FN = 1), significantly reducing 
the missed detection rate of malignant tumors. At the same time, the 
negative example recognition performance was TN = 8 and FP = 1. 
Although the Sp decreased, the overall improvement in the positive 
example Recall rate was more clinically valuable. This result shows that 
the StackANN model can effectively alleviate the shortcomings of the 
traditional baseline model in positive example recognition while 
improving the model Recall, and has stronger practical application 
potential. In addition, the relative balance of samples (the number of 
positive samples is 8 and the number of negative samples is 9) helps 
to optimize the performance of the StackANN model, further 
supporting its advantage in positive example classification.

The experimental results on the WDBC dataset are shown in 
Figure 7, which shows the confusion matrix comparison between the 
StackANN model and the six baseline models. Overall, the baseline 
models performed well in the identification of both positive and negative 
examples, with generally low numbers of FP and FN. Among them, 
KNN and DT had relatively high numbers of errors in both categories, 
both FP = 3 and FN = 3. However, in comparison, the StackANN model 
only missed one positive example (FN = 0) while keeping the false 
positive zero (FP = 1), showing better classification performance, 
especially in reducing missed diagnoses. In addition, the sample 
distribution of the optimized StackANN model is more balanced, with 
32 positive samples and 33 negative samples, while the data used by the 
baseline model has 71 positive samples and 43 negative samples, which 
is imbalanced to a certain extent. In summary, the StackANN model 
shows higher classification ACC and lower misclassification rate when 

processing imbalanced datasets, especially in reducing missed diagnoses, 
proving its potential and effectiveness in practical applications.

3.4 External validation and cross-dataset 
generalization evaluation

To further assess the robustness and generalization of the proposed 
StackANN model in real-world clinical applications, we employed the 
WBCD as an independent external validation set and ensured 
comparability by strictly following the same preprocessing and 
normalization pipeline as applied to the WDBC dataset. As illustrated 
in Figure  8, StackANN delivered consistently strong performance 
across all key metrics on the WBCD dataset, achieving ACC, Pre, 
Recall, F1, and Sp values of 0.9630, with an outstanding AUC of 0.9959. 
The high consistency among these indicators highlights the model’s 
desirable balance between sensitivity and specificity, which is critical 
in minimizing both false positives and false negatives in medical 
diagnosis. Importantly, the exceptionally high AUC underscores 
StackANN’s strong discriminative capacity in distinguishing malignant 
from benign breast cancer cases, even under different feature spaces 
and sample distributions. These findings confirm that StackANN not 
only preserves superior diagnostic capability across multiple datasets 
but also exhibits resilience to variations in data characteristics, with 
results on the WBCD dataset remaining stable and consistent with 
those on the WDBC dataset. Clinically, this external validation 
underscores the practical applicability of StackANN, as its ability to 
generalize across datasets collected under diverse conditions and 
feature sets is essential for reliable deployment in multi-center and real-
world hospital environments (47). Moreover, its stable performance 
indicates reduced risk of model degradation in new patient populations, 
which is a key prerequisite for safe clinical adoption. In conclusion, the 
external validation experiments demonstrate that StackANN achieves 
excellent generalization and stability, reinforcing its potential as a 
clinically valuable tool for breast cancer diagnosis and providing strong 
evidence to support its future large-scale, multi-institutional application.

3.5 Multiclassification assessment of breast 
Cancer subtypes

In breast cancer diagnosis, beyond the traditional binary 
classification of benign versus malignant, finer-grained classifications 
such as Basal-like, HER2-enriched, Luminal A, Luminal B, Normal-like, 
and Claudin-low subtypes hold significant clinical value and can guide 
personalized treatment (48). To extend the original StackANN model, 
which was designed for binary classification, to a multi-class setting, the 
following adjustments are required: first, use a LabelEncoder to encode 
each subtype label as an integer so that the model can handle multiple 
class outputs; second, each base model (KNN, AdaBoost, SVM, RF, 
XGBoost, DT) predicts the probability of each sample belonging to each 
class, and these probabilities are concatenated to form new feature 
vectors, which serve as inputs to the ANN meta-learner; finally, the 
ANN output layer is configured with a number of nodes equal to the 
number of classes, with each node corresponding to the predicted 
probability of a subtype, thereby enabling multi-class prediction.

We conducted experiments on the METABRIC2 dataset, which 
includes six breast cancer subtypes (49). This dataset was jointly 
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constructed and provided by the Canadian Cancer Society Research 
Institute and its international collaborators. It contains comprehensive 
data from 1,980 patients with primary breast cancer, including gene 
expression data, clinical pathological features, and long-term survival 
information for each sample. For our breast cancer subtype 
classification study, we extracted gene expression profiles and clinical 
features, totaling 505 features. To meet the input requirements of 
machine learning algorithms, we  performed digital encoding of 
categorical variables. For example, ER and PR statuses were mapped 
from “Positive/Negative” to numeric values of 1/0. In addition, 
we processed missing values to ensure the integrity and quality of the 
data. Based on the predictions of the StackANN model, we calculated 
multiple performance metrics for each subtype, including overall 
ACC, Pre, Recall, F1, Sp, and AUC. Here, ACC represents the overall 
correctness of the model across all samples; Pre, Recall, and F1 are 
calculated for each class, reflecting the model’s performance on 
individual subtypes; Sp and AUC are computed using a one-vs-rest 
(OvR) strategy to evaluate the model’s ability to distinguish a specific 

FIGURE 8

Confusion matrix comparison of StackANN model and baseline 
model on WDBC dataset.

FIGURE 7

Confusion matrix comparison of StackANN model and baseline model on WDBC dataset.
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subtype from all others. The results of these metrics are summarized 
in the Table 5.

The experimental results on the METABRIC2 dataset 
demonstrate that the StackANN model performs excellently in 
classifying six breast cancer subtypes. The overall ACC is 
consistently 0.9266 across all subtypes, indicating stable general 
classification capability. Specifically, the LumA subtype shows a Pre 
of 0.8667, Recall of 0.8966, and F1 of 0.8814, suggesting a good 
balance between Pre and Recall for LumA samples. LumB achieves 
a high Pre of 0.9600 but a relatively lower Recall of 0.8000, 
indicating that some LumB samples may be misclassified. Her2 and 
Basal subtypes have Recalls of 0.9655 and 1.0000, and F1 of 0.9333 
and 0.9677, showing the model effectively identifies high-risk 
subtypes, especially Basal samples, which are almost perfectly 
captured. Normal and Claudin-low subtypes also demonstrate 
robust performance, with Pre of 0.9355 and 0.9643, F1 of 0.9508 
and 0.9474, Sp above 0.98, and AUC close to 1, indicating strong 
capability in distinguishing these subtypes from others. Overall, 
StackANN exhibits high ACC, Recall, and Sp in multi-class breast 
cancer subtype classification, with particularly strong performance 
on critical high-risk subtypes (Basal and Claudin-low), 
highlighting its potential clinical utility for multi-subtype diagnosis.

3.6 Discussion on deployment and 
computing efficiency optimization

Although StackANN demonstrates excellent accuracy and 
robustness in breast cancer diagnosis, its relatively complex model 
structure may impose a computational burden in real-world hospital 
environments, particularly in primary healthcare settings or scenarios 
with limited computational resources. In our experiments, we verified 
that StackANN can perform inference on standard CPU environments, 
indicating that the model remains feasible under resource-constrained 
conditions. However, to further enhance efficiency and response speed 
in real-time clinical applications, multiple optimization strategies 
should be considered.

First, model pruning and quantization techniques can reduce 
the number of model parameters and storage requirements, 
thereby significantly shortening inference latency while 
maintaining performance close to the original model (50). Second, 
knowledge distillation can be  employed to train a lightweight 
student model, achieving faster inference speed while preserving 
StackANN’s classification performance as much as possible (51). 
In addition, feature selection and dimensionality reduction 
methods (e.g., Principal Component Analysis (PCA), LASSO) can 
lower the input feature dimensions, reducing computational load 

and improving model interpretability, which provides clinicians 
with more intuitive decision support. Finally, deploying the model 
on optimized inference frameworks (e.g., TensorRT or ONNX 
Runtime), combined with hardware acceleration via GPU, FPGA, 
or other devices, can further reduce response time to meet real-
time diagnostic requirements (52).

Future work should systematically evaluate these optimization 
strategies to balance StackANN’s diagnostic accuracy with real-time 
performance, ensuring that the model provides high-precision 
predictions while adapting to diverse hardware conditions and 
resource constraints in clinical applications.

4 Conclusion

This study proposes StackANN, a stacking ensemble framework 
that integrates multiple classical machine learning models with an 
ANN meta-learner, achieving superior performance in breast 
cancer classification. Experiments on the LBC, WDBC, and WBCD 
datasets demonstrated that StackANN consistently outperforms 
single models and recent hybrid approaches, particularly in 
identifying malignant cases with high Recall and balanced overall 
metrics. SHAP-based feature analysis further confirmed that the 
model’s decisions align with key clinical indicators such as tumor 
malignancy, size, and morphology. These results highlight 
StackANN’s robustness, generalization ability, and clinical 
relevance. While current validation remains limited, future work 
will focus on large-scale, multi-center external datasets and 
advanced techniques such as transfer learning to further enhance 
its clinical applicability. Overall, StackANN shows strong potential 
as a reliable, interpretable, and practical tool to support early breast 
cancer screening and diagnosis.
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