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Introduction: Social media is increasingly used in many contexts within the
healthcare sector. The improved prevalence of Internet use via computers
or mobile devices presents an opportunity for social media to serve as a tool
for the rapid and direct distribution of essential health information. Autism
spectrum disorders (ASD) are a comprehensive neurodevelopmental syndrome
with enduring effects. Twitter has become a platform for the ASD community,
offering substantial assistance to its members by disseminating information
on their beliefs and perspectives via language and emotional expression.
Adults with ASD have considerable social and emotional challenges, while also
demonstrating abilities and interests in screen-based technologies.

Methods: The novelty of this research lies in its use in the context of Twitter
to analyze and identify ASD. This research used Twitter as the primary data
source to examine the behavioral traits and immediate emotional expressions
of persons with ASD. We applied Convolutional Neural Networks with Long
Short-Term Memory (CNN-LSTM), LSTM, and Double Deep Q-network (DDQN-
Inspired) using a standardized dataset including 172 tweets from the ASD class
and 158 tweets from the non-ASD class. The dataset was processed to exclude
lowercase text and special characters, followed by a tokenization approach
to convert the text into integer word sequences. The encoding was used to
transform the classes into binary labels. Following preprocessing, the proposed
framework was implemented to identify ASD.

Results: The findings of the DDQN-inspired model demonstrate a high precision
of 87% compared to the proposed model. This finding demonstrates the
potential of the proposed approach for identifying ASD based on social media
content.

Discussion: Ultimately, the proposed system was compared against the existing
system that used the same dataset. The proposed approach is based on variations
in the text of social media interactions, which can assist physicians and clinicians
in performing symptom studies within digital footprint environments.
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1 Introduction

ASD is among the most prevalent neurodevelopmental disorders.
ASD is often demonstrated in children by age three and is defined by
impairments in social interactions and communication, repetitive
sensory-motor activities, and stereotypical behavioral patterns (1).
ASD is a congenital neurodevelopmental condition characterized by
symptoms that are evident in early infancy. Autism, characterized by
restricted interests, repetitive behaviors, and significant disparities in
social communication and interaction, typically emerges during early
developmental stages and presents challenges in various social
functioning domains. A child with autism induces significant anxiety
within the family due to several factors, including the ambiguity of the
diagnosis, the intensity and persistence of the disease, and the child’s
nonconformity to social norms. In opposition, social awareness of
autism is markedly inadequate, often conflated with intellectual
disability and seen as an incurable ailment (2, 3). The ASD concept is
displayed in Figure 1.

Content on social media, particularly videos and text disseminated
by parents and caregivers, has emerged as a significant resource for

10.3389/fmed.2025.1646249

facilitating the early identification of ASD (4, 5). Social media are
technological tools designed for sharing, enabling users to create
networks or engage in existing ones. In that order, the Pew Research
Center identified the most popular social media sites as YouTube,
Facebook, Instagram, Pinterest, LinkedIn, Snapchat, Twitter, and
WhatsApp (6). Most consumers use these networks daily. This
research utilizes Twitter data to assess the stigmatization of autism and
associated terminology, picked based on accessibility and popularity,
with analysis conducted using artificial intelligence technologies (7).

Conventional diagnostic methods, which primarily rely on
observational and behavioral evaluations, often encounter issues with
accessibility, consistency, and timeliness. Recent technology
breakthroughs, especially in artificial intelligence (AI), and sensor-
based techniques, provide novel opportunities for improving ASD
identification. By developing more objective, accurate, and scalable
approaches, these technologies transform diagnostic methodologies
for autism spectrum disorder (ASD) (8-10). One new way to study
the motor patterns, attentional processes, and physiological responses
linked to ASD in real-time is wearable sensors, eye-tracking devices,
and multimodal virtual reality settings. These technologies have the
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Displays the ASD concept.
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potential to give non-invasive, continuous monitoring, which might
help with the early diagnosis of ASD and shed light on neurological
and behavioral traits that have been hard to document reliably.

Nevertheless, advancements in contemporary research are
required to substantiate their efficacy. Sensor-based techniques may
facilitate the identification of stereotyped behaviors and motor
patterns linked to ASD in realistic environments, potentially yielding
data that could guide timely and customized therapies (11).
Neuroimaging and microbiome analysis further advance this technical
domain by indicating neurological and biological traits specific to
ASD. Al-enhanced neuroimaging aids in identifying structural and
functional brain connection patterns associated with ASD, thereby
enhancing the understanding of its neuroanatomical foundation (12).

The research conducted by Neeharika and Riyazuddin et al. (13)
aimed to enhance the accuracy of ASD screening by using feature
selection methods in conjunction with sophisticated machine learning
classifiers. Their research included several datasets spanning infants,
children, adolescents, and adults, enabling a thorough assessment of
ASD characteristics across different age demographics. Authors’ use
of MLP model capacity to reliably and rapidly identify ASD, indicating
a beneficial screening instrument suitable for various age groups,
facilitating both clinical evaluations and extensive screenings. Wall
et al. (14) investigated machine learning (ML) algorithms for
diagnosing ASD using a standard dataset. The researchers focused on
the Alternating Decision Tree classifier to identify a limited yet
efficient set of queries that optimize the diagnostic procedure. Alzakari
et al. (15) proposed a novel two-phase methodology to tackle the
variability in ASD features with ML approaches, including behavioral,
linguistic, and physical data. The first step concentrates on identifying
ASD, using feature engineering methodologies and ML algorithms,
including a logistic regression (LR) and support vector machine
(SVM) ensemble, attaining a classification with high accuracy. EEG
assesses brain activity and may identify children predisposed to
developing ASD, hence facilitating early diagnosis. EEG data is used
to compare ASD and HC (16-18). In (19), the CNN model was used
for classification after transforming the data into a two-dimensional
format. While EEG may facilitate the diagnosis of ASD, it is
constrained by other factors, such as signal noise.

The research has used social media to investigate ASD. However,
exploiting these prevalent platforms and innovative online data
sources may be feasible to enhance the comprehension of these
diseases. Previous research has utilized Twitter data to investigate
discussions on ASD-related material, indicating that this subject is
frequently addressed on this platform (20). Considering the use of
social media for researching ASD is particularly significant, as a recent
analysis indicated that around 80% of individuals with ASD engage
with prominent social media platforms (21). This study aims to build
upon previous research and enhance our comprehension of whether
publicly accessible social media data from Twitter may provide
insights into the existence of digital diagnostic indicators for ASD
(22). Furthermore, we want to assess the viability of establishing a
digital phenotype for ASD using social media.

Beykikhoshk et al. (20) examined Twitter’s potential as a data-
mining tool to comprehend the actions, challenges, and requirements
of autistic individuals. The first finding pertained to the attributes of
participants inside the autism subgroup of tweets, indicating that these
tweets were highly informative and had considerable potential
usefulness for public health experts and policymakers. Tomeny et al.
(23)

examined demographic correlations of autism-related

Frontiers in Medicine

10.3389/fmed.2025.1646249

anti-vaccine opinions on Twitter from 2009 to 2015. Their results
indicated that the frequency of autism-related anti-vaccine views
online was alarming, with anti-vaccine tweets connecting with news
events and demonstrating geographical clustering. From 2015 to 2019,
Tarraga-Minguez et al. (24) examined the phrases “autism” and
“Asperger” in Spain in relation to Google search peaks. The public
view of autism was significantly impacted by how the condition was
portrayed in the news and on social media, and the authors found that
social marketing campaigns had a significant role in normalizing
autism. In this research (25), looked at how people sought assistance.
The results showed a strong correlation in Google search interest
between the terms “Asperger syndrome” and “Greta Thunberg,’
reaching their highest point in 2019. Online traffic to the Asperger/
Autism Network and Autism Speaks websites increased steadily from
June to December 2019, indicating a correlation between help-seeking
behavior and Thunberg’s fame, according to the research. According
to the results, the stigma associated with Asperger’s disorder may have
been positively affected by Thunberg’s public exposure.

1.1 Contribution

The use of tweets from Twitter for the detection of ASD is
substantial, since it offers extensive, real-time, user-generated data that
facilitates the early identification of ASD-related behaviors, particularly
via self-reported experiences and parental observations. This
methodology promotes the advancement of suggested models, namely
LSTM, CNN-LSTM, and inspired DDQN, for natural language
processing to examine linguistic patterns, feelings, and keywords related
to ASD. It provides insights into popular views, stigma, and
misconceptions around autism, guiding awareness initiatives and public
health measures. Twitter data is a powerful and accessible resource for
enhancing early detection and understanding of ASD in diverse groups.
Utilizing social media in this manner may offer more accessible and
timely screening, particularly in regions with limited healthcare resources.

2 Materials and methods

Figure 2 shows the pipeline of the proposed system to provide a
broader perspective to researchers and developers. The framework
delineates the processing phases for the pipeline that utilizes social
media content to diagnose ASD. Below, we present a comprehensive
assessment of each step.

2.1 Dataset

To help with the early diagnosis of ASD by using proposed
systems, the TASD-Dataset includes comprehensive textual sequences
that depict the everyday lives of children with and without ASD. It
offers new elements, including Noise Sensitivity, Sharing Interest, Sign
Communication, and Tiptoe Flapping, It combines critical ASD
assessment aspects like Attention Response, Word Repetition, and
Emotional Empathy, as shown in Figure 3. Parents may get detailed
insights and better identify signs of autism spectrum disorder (ASD)
due to the deepening of certain behaviors. The dataset contains 172
tweets from the ASD class and 158 non-ASD tweets. Figure 4 shows
the class of the dataset.
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FIGURE 3
Features of the dataset.
2.2 Preprocessing several steps are taken to preprocess tweets for detecting ASD, as
shown in Figure 5.
Text preprocessing is an essential step in the text processing
process. Words, sentences, and paragraphs can all be found in a text,
which is defined as a meaningful sequence of characters. Preprocessing 2.3 Text cleani ng
methods feed text data to a proposed algorithm in a better form than
in its natural state. A tweet can contain different viewpoints on the The clean text preprocessing method is a significant step in

data it represents. Tweets that have not been preprocessed are highly ~ text datasets because the text contains several extra contexts to
unstructured and contain redundant data. To address these issues,  preprocess and normalize raw text data for analysis. In these
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steps, the use is transformed to lowercase to guarantee
consistency and prevent differentiation between “ASD” and
“Non-ASD.” Subsequently, any characters that are not letters,
numerals, or spaces are eliminated by a regular expression, so
punctuation and other symbols that might create extraneous
noise are removed. This method is ultimately applied to the “Text’
column of the Data Frame, ensuring that all text elements are
sanitized and prepared for feature extraction. Figure 6 displays
the clean text process.

2.4 Label encoding

The LabelEncoder method converts text class (ASD and
Non-ASD) into numbers, designating 0 for ASD and 1 for

Frontiers in Medicine

Non-ASD. This transformation updates the classification effort by
enabling the model to see the labels as numerical values instead of
text. Equations 1, 2 show the label encoding.

yclassification & (ASD,Non— ASD) Then (1)

y =labelEncoder ( yclassifcation) — y € {0,1} (2)

2.5 Tokenization and padding

Tokenization and padding are essential NLP preprocessing
procedures that transform unprocessed text into a numerical
representation appropriate for machine learning models,

frontiersin.org
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Clean text.
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particularly neural networks. Figure 7 shows the tokenization and
padding Equation 3.

2.5.1 Tokenizer

Tokenizer procedures transform textual data into a numerical
representation suitable for input into neural networks. They convert a
text corpus into integer sequences, assigning a distinct index to each
unique word according to its frequency, as shown in Equation 3. The
tokenizer processing is shown in Figure 8.

index(w):mnkf (W)zfmnkf(w)SV 3)

Where rankf(w) is rank w frequency f (w) and V is the
maximum number of words.

2.5.2 Fit texts
This phase is crucial for transforming unprocessed text into
numerical sequences suitable for input into the proposed system.

2.5.3 Texts_to_sequences
To convert unprocessed text input into sequences of word indices
according to the mapping acquired via as shown in Equation 4.

sequence(Ti ) = [index(wl),index (Wz ), ......... ,index (wm )} (4)

Where is the T; is the sentence of the text contained, and w is the
words of the text, whereas the index(wl) is an index of the words in
the context.

2.5.4 Padding_sequences

Normalize sequence lengths, which may differ post-tokenization, by
padding shorter sequences and truncating larger ones to a predetermined
length as shown in Equation 5. The padding and truncated b are fixed on
the length. L =200. The padding processing is shown in Figure 7.

Frontiers in Medicine

X1
X2

)

Where x is features contain padding and are tokenized, L is the
length of the vector. The number of texts is indicated n, and € R™L g
matrix lues.

2.6 Proposed systems

2.6.1 Convolutional neural networks

The CNN model is at the core of all advanced machine learning and
deep learning applications. They can successfully address text
classification, image recognition, object identification, and semantic
segmentation. Using the same method with a task as different as Natural
Language Processing is counterintuitive (7). The structure is presented in
Figure 9. Equation 6 presents the convolution layer of CNN.

H W
O(xy)=>>I(x+iy+j)*K(i,j)+b (6)

i=1j=1

Where the features of text O (x,y)The feature of the text is mapped
by using.] (x +iy+ ]) is weighted by a neural network and b is biased
to adjust the neural. The ReLU activation function is Equation 7, the
max pooling function is presented in Equation 8. The Dense Layer is
given in Equation 9.

f(x)zmaX(O,x) (7)
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qHW Forget gate: f; =0 (W;.X; + Wrhy_1 +b 10
O(x,y):ZZI(x+i)y+j)*K(j,j)+b (8) orget gate: f; O'( [t -1 f) (10)
i=1j=1
Input gate:i; = O'(WC.X, +W.h +b,-) (11)
O=W-X+b )]
Cell gate: C; = (W *(hy_1,x; ) by ) (12)
2.6.2 Long short-term memory network Output gate: 0 =0 (W, + Xy + Wohy 1 +V,.Cr+b,)  (13)
An LSTM network is an advanced form of a sequential neural
network. It fixes the problem of RNN gradients fading over time. Hidden layer : by = o; +tanh(Ct) (14)

RNNs often handle long-term storage. At a high level, the
operation of an LSTM is comparable to that of a single RNN
neuron. The inner workings of the LSTM network are outlined in
this section. The LSTM consists of three parts, each performing
a particular function, as seen in Figure 10 below. In the first step,
it is decided whether the information from the previous time
stamp is significant enough to be saved or if it is harmless enough
to be deleted. In the second step, the cell will try to acquire new
information by analyzing the data that has been presented to it.
In the third and final step, the cell incorporates the data from the
most recent time stamp into the data stored in the next time
stamp. These three components constitute what is referred to as
a gate for an LSTM cell. The “Forget” gate comes first, followed
by the “Input” section, and then the “Output” section is used to
define the last portion as shown in Equations 10— 14.

Frontiers in Medicine

In Figure 10, C;Represent the prior and current states of the cell,
respectively. Both h,_jand h Represents the cell output that was
processed before the one now being processed. It is common practice
to disregard f; As a gate, even though it is the input gate. The output
of a sigmoid gate is symbolized here by o;. The cable that connects
the cell gates is where all the data collected by the cell gates is sent to
and from C. The f; Layer decides to remember anything, and
the f;The Output is multiplied by c to do so (t-1). After that, c (t-1)
is multiplied by the product of the sigmoid layer gate and the tanh
layer gate, and the output h t is generated by point-wise
multiplication of o; and tanh.

The LSTM architecture is intended to capture long-term
relationships in Twitter text data. The preprocessing converts input
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words that start with an embedding layer into 128-dimensional ~ 2.6.3 CNN-LSTM model

dense vectors. The LSTM layer with 64 units is then used to The CNN-LSTM model is a hybrid architecture that combines
mitigate overfitting, integrating dropout and recurrent dropout  convolutional neural networks (CNN) for spatial feature
with 0.5. An L2 regularization term is further included in the  extraction and long short-term memory (LSTM) networks for
LSTM and output dense layer. Table 1 shows parameters of the  sequential learning, making it highly effective for analyzing text
LSTM model. data such as tweets. The model begins with an embedding layer
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FIGURE 10
LSTM model.

TABLE 1 LSTM parameters model.

TABLE 2 CNN-LSTM parameters.

Input Values Input Values

Embedding dimension 256 Embedding dimension 128
LSTM unit 64 LSTM unit 64
ConvlD 64,K=5 ConvlD No
MaxPooling ID yes MaxPooling ID No
Dropout_rate 0.5 Dropout_rate 0.5
Dense_Unites 32 Dense_Unites 32
Activation_function ReLU Activation_function ReLU
L2 0.001 L2 0.001
Optimizer Adam Optimizer Adam
Loss Binary Loss Binary
Epoch 30 Epoch 30
Batch size 16 Batch size 16

that transforms each word into a 256-dimensional dense vector,
capturing the semantic meaning of words. This is followed by a
1D convolutional layer with 64 filters and a kernel size of 5,
which scans through the text to detect local patterns and n-gram
features such as common word combinations or phrases often
associated with ASD. A batch normalization layer is applied to
stabilize and accelerate training, followed by a max pooling layer
that reduces the dimensionality and computational load by
selecting the most prominent features. A dropout layer with a rate
of 0.5 is then used to prevent overfitting by randomly deactivating
some neurons during training. The output is passed into a 64-unit
LSTM layer that captures the temporal dependencies and
contextual relationships across the tweet sequence. Finally, a
dense layer with sigmoid activation performs binary classification
to predict whether the tweet indicates ASD-related content. The
model is trained using the Adam optimizer, binary cross-entropy
loss, class weights, and regularization to handle imbalanced data
and improve generalization. The critical parameters of the
CNN-LSTM model are displayed in Table 2.

Frontiers in Medicine

2.6.4 Double deep Q-network (DDQN-inspired)

The Double Q-Learning model was introduced by H. van Hasselt in
2010, addressing the issue of significant overestimations of action value
(Q-value) inherent in traditional Q-Learning. In fundamental Q-learning,
the Agent’s optimal strategy is consistently to select the most advantageous
action in any specific state. This concept’s premise is that the optimal
action corresponds to the highest expected or estimated Q-value. Initially,
the Agent lacks any knowledge of the environment; it must first estimate
Q(s, a) and subsequently update these estimates with each iteration. The
Q-values exhibit considerable noise, leading to uncertainty about whether
the action associated with the highest expected or estimated Q-value is
genuinely the optimal choice.

Double Q-Learning employs two distinct action-value
functions, Q and Q), as estimators. Even if Q and Q’ exhibit noise,
this noise can be interpreted as a uniform distribution as shown
Figure 11 The update procedure exhibits some variations compared
to the basic version. The action selection and action evaluation
processes are separated into two distinct maximum function
estimators. shown in Equations 15, 16.
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https://doi.org/10.3389/fmed.2025.1646249
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Farhah et al. 10.3389/fmed.2025.1646249
Replay Memory ;
Mini batch
state s, action a, reward G, next state s’
s' 0 s'
l s' s | l
o
Target Q-
Online Q network —, — A
’ a’ -
l (s,a;0) (8,a%0)
G
A4
Loss function
FIGURE 11
DDQN-inspired model.

Let the vector of a neural network’s weights be represented by 6.
We establish two Q-networks: the online Q-network Q (s, a; 0(t)) and
the target Q-network Q (s, a; 0 (t)). To be more specific, the training
of Q (s, a; X (1)) is done by modifying the weights (t) at time slot t in
relation to the goal value y(t).

y(t) :G(t)+(s',argmaxQ(s',a*;gf(t));H,(t)) (15)

y(t):G(t)+(s’,argmaXQ(S',a*;H');Hi—l) (16)

The reinforcement learning mechanism integrates generative
artificial intelligence for decision-making and prediction tasks, as
shown in Equations 15, 16. This equation indicates the generative
which produces the estimation or hypothesis at a given time ¢.
Double Q — Learning Used next state, whereas the s’ is exit state and
arg maxQ(s,a";0'(t)) defined as the action of a* to maximize the
predicted Q-value based on the current parameters. To estimate the
Q-value of this selected action in the next state, the outer Q-function
Q employs the older parameters. €;_;1, which helps reduce
overestimation bias. This combination makes applications for
predicting ASD from social media content domains possible.

The DDQN model is used to classify ASD and non-ASD cases
utilizing text data. The model utilizes a preprocessing step for
text processing that encompasses data loading, cleaning
(including lowercasing, removal of special characters, and
normalization of spaces), and tokenization, constrained by a

Frontiers in Medicine

maximum vocabulary of 10,000 words and a sequence length of
200. The model architecture, drawing from the Double Deep
Q-Network (DDQN) model comprises an input layer, an
embedding layer with 256 dimensions, and two parallel LSTM
branches, each containing 64 units, a dropout rate of 0.5, and L2
regularization to capture sequential patterns effectively. The
model uses the Adam optimizer with a learning rate of le-4 and
employs binary cross-entropy loss. It is trained for 30 epochs,
incorporating early stopping and learning rate reduction
callbacks to mitigate overfitting. Parameters of DDQN-Inspired
are shown in Table 3.

3 Performance of the framework

3.1 Performance of LSTM

Figure 12 presents the accuracy and loss metrics used to train
and validate an LSTM model over 30 epochs. The validation
accuracy of the LSTM model, displayed in red, begins at a lower
value and increases to about 81%. The blue line in the accuracy
plot (a) shows the training accuracy of the LSTM model; it
increases gradually from around 50% to almost 99%, showing
that the model learns the training data well over time. The plot
(b) shows the loss of the LSTM model; the blue line represents
the training loss, which drops gradually from around 0.7 to less
than 0.2, suggesting that the model is getting a better fit to the
training data. Meanwhile, the red validation loss line declines
from around 0.7 to about 0.3. While the training loss continues

10 frontiersin.org
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to grow, the validation loss reaches a level and exhibits small
oscillations, suggesting that the model’s generalizability
may stabilize.

The ROC curve illustrated in Figure 13 shows the efficacy of the
LSTM model in differentiating between the classes. The graph
illustrates the TP rate (sensitivity) in relation to the FP Rate across
different threshold levels. The LSTM model attains an AUC of 0.95,
demonstrating exceptional classification capability. The AUC of 1.0,
but a result of 0.5 indicates random chance.

3.2 Performance of the CNN-LSTM model

Figure 14 presents plots illustrating the performance of a
CNN-LSTM model over 25 epochs, showing its training and
validation metrics for accuracy and loss. The accuracy plot (a)
illustrates the training accuracy (blue line), which increases
progressively from approximately 51.42% to nearly 99.53%,
indicating effective learning from the training data. In contrast,

TABLE 3 Parameters of DDQN-inspired.

Input Values

10.3389/fmed.2025.1646249

the validation accuracy (red line) rises to about 83.02% with

some variability, indicating satisfactory but imperfect
generalization. The loss plot (b) shows the training loss (blue
line) declining steadily from 0.7140 to below 0.0760, indicating
enhanced model fit. In contrast, the validation loss (red line)
decreases from 0.7130 to approximately 0.3530, with a slight
decline toward the conclusion. This notification indicates that the
CNN-LSTM model demonstrates efficient learning, as evidenced
by the difference between the training and validation measures.

Figure 15 illustrates the ROC curve for the CNN-LSTM model,
illustrating its classification performance at various thresholds. The
graph illustrates the TP Rate (Sensitivity) in relation to the FP Rate,
with the AUC recorded at 92%. The elevated AUC value indicates the
model has robust discriminative capability in differentiating between
the ASD and Non-ASD classes. The ROC ascends rapidly toward the
top-left corner, as seen in the figure, indicating a high TP rate with few

false positives.

3.3 Performance of DDQN-inspired model

Graphs 16 illustrate the performance of a DDQN throughout 30

Max-sequence length 200 epochs. The accuracy plot (a) demonstrates that the training accuracy
- increases from around 58.02% to almost 98.58%, indicating the
Ve 10,000 . . .
i DDQN model successful learning from the training data over time.
Embedding dimension 256 The validation accuracy of the DDQN is about 87, showing the best
Dropout_rate 0.5 performance compared to different models like LSTM and
Dense_Unites 3 CNN-LSTM. The plot (b) illustrates that the training loss decreases
from about 0.8155 to around 0.1477, indicating a robust fit to the
Activation_function ReLU L L i .
training data. The validation loss begins at 0.3831 with many
LS 00001 fluctuations throughout (Figure 16).
Optimizer Adam Figure 17 shows the ROC curve for the DDQN model; it shows a
Loss Binary visual representation of its classification capability, with the curve toward
Epoch 30 the top-left corner, indicating strong predictive power. The AUC value of
the DDQN model is 96%, demonstrating that the model can distinguish
Batch si 1 i .
atch size 6 between the positive and negative classes.
Lo LSTM_Model - Accuracy LSTM_Model - Loss
| -e- Training Accuracy a_o%e -@- Training Loss
—— Validation Accuracy Fes o0y ¥ 0.74 —— Validation Loss
0.9
0.8
>
@
g
<07
0.6
0.5
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs
FIGURE 12
Performance of the LSTM model.
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4 Experiment and discussion results

Both the Jupyter deep learning framework and the Windows 10
operating system were utilized during the testing process. Experiments
were conducted using a machine with 16 gigabytes of RAM and an Intel
Core i7 central processing unit. The input dimensions of the experiment

10.3389/fmed.2025.1646249

4.1 Measuring the model's performance

Sensitivity, specificity, accuracy, recall, and F1 scores are
assessment measures used to determine how successfully the
algorithms identify ASD. The related equations from 17 to 21:

TP+TN

were a standard text dataset collected from the Twitter API related to Accuracy=——————_x100% (17)
ASD. The test was utilized in our database, while the remaining 20% was TP+FP+FN+TN
used as part of our validation set. The three DL models, namely LSTM, P
CNN-LSTM, and DDQN-Inspired, were proposed for detecting ASD Sensitivity = —————x100% (18)
from social media content. TP+FN
.. P
Precision= » x100% (19)
TN
specificity = —————x100 20
pecificity TN P (20)
LSTM_Model - ROC Curve
10 Fl—score =2 % precision x Sensitivity %100 @1)
precision + Sensitivity
0.8
3
g 0.6
2 4.2 Result of the LSTM model
E 0.4 2
é : The classification LSTM model, presented in Table 4, summarizes its
- performance in differentiating between ASD and Non-ASD patients,
0.2 -
- attaining an overall accuracy of 81%. The LSTM model demonstrates in
ASD class a precision of 91%, indicating a high accuracy in identifying
0.0 = ROC Curve (AUC = 0.95)
- - - - - - predicted ASD cases. The LSTM with recall metric scored 77% and an
' ' False Positive Rate ' ' F1-score of 82% for detecting the ASD class. The LSTM model with
FIGURE 13 Non-ASD class demonstrates a precision of 71%, a recall of 89%, and an
ROC of the LSTM model. Fl1-score of 79%, to identify Non-ASD cases. The macro average of the
LSTM model for all metrics is (precision: 81%, recall: 82%, F1-score:
CNN_LSTM_Model - Accuracy CNN_LSTM_Model - Loss
-@- Training Accuracy KE T 0.7 -@- Training Loss
— Validation Accuracy P — Validation Loss
AN
0.9 1
0.8 1
>
@
\é 0.7
go
0.6 1
0.51
0 5 10 15 20 25 0 5 10 15 20 25
Epochs Epochs
FIGURE 14

Performance of the LSTM model.
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81%). LSTM model is recognized for its efficiency and scalability as a
model for social media content.

The confusion matrix for the LSTM model is provided in
Figure 18. It is presented in a clear manner. Among the confirmed
ASD cases, 29 were accurately identified as ASD, whereas 10 were
incorrectly classified as Non-ASD, indicating strong performance
with minor errors. In the true non-ASD cases, 25 were correctly
identified, while 3 were misclassified as ASD, suggesting a
generally effective detection process. The deep blue and light
shades produce a tranquil visual, illustrating the model’s balanced
approach in classifying the 67 total instances, demonstrating
notable strength in identifying Non-ASD cases, while exhibiting
marginally lower accuracy for ASD. This matrix effectively
illustrates the LSTM model’s systematic approach to managing

10.3389/fmed.2025.1646249

sequential data, such as text or time-series inputs, in a clear and
comprehensible manner.

4.3 Result of the CNN-LSTM model

Table 5 displays the CNN-LSTM models performance in
distinguishing between ASD and non-ASD classes. The CNN-LSTM
model attained an overall accuracy of 85% across the dataset. In the ASD
label, a precision of 91% was achieved, a high percentage for predicting
ASD cases that were accurately recognized. The recall indicates that the
model identified 82% of all genuine ASD cases, resulting in an F1 score
of 86%, better than the recall metric. The CNN-LSTM model attained
78% accuracy, 89% recall, and an 83% F1 score for the Non-ASD class.
The macro average, representing the unweighted mean of precision,
recall, and F1 score across both classes, was 85, 86, and 85%, respectively.
The findings indicate that the CNN-LSTM model performs satisfactorily,

CNN_LSTM Model - ROC Curve exhibiting a marginally superior capacity to identify ASD cases relative
1D to non-ASD cases accurately.
. The confusion matrix of a CNN-LSTM model is presented in
o8 L~ Figure 19, for classifying instances into ASD and Non-ASD. The
. matrix is structured with true labels on the vertical axis and
Q
s predicted labels on the horizontal axis, providing a clear summary
<06 £
2 of the model’s classification outcomes. The matrix shows that out
8 o of the instances truly labeled as ASD, the model correctly
é ' predicted 32 as ASD TP while 7 were incorrectly classified as
Non-ASD FN. For the instances truly labeled as Non-ASD, the
0.2
model accurately identified 25 as Non-ASD TN but 3 were
misclassified as ASD FP. This indicates that the model
0.0 —— ROC Curve (AUC = 0.92) . - . .
- - " - s - demonstrates a relatively strong ability to correctly identify ASD
' » False Positive Rate ' . and Non-ASD cases, with higher accuracy for true positives (32
FIGURE 15 out of 39 ASD cases) and true negatives (25 out of 28 Non-ASD
ROC of the CNN-LSTM model. cases). Overall, the model exhibits promising performance with
minimal misclassification errors.
DDQN_t Model - Accuracy DDQN_t Model - Loss
1.0 —] —
-@- Training Accuracy oo A ] -@- Training Loss
—— Validation Accuracy I.....-o-".‘.." . 08 —— Validation Loss
0.9 0.7
0.6
0.8
>
@ w 0.5
3
go7 4
0.4
0.6 1 0.3
0.2
0.5
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs
(a) (b)
FIGURE 16
Performance of the DDQN-inspired model.
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DDQN-Inspired Receiver Operating Characteristic (ROC)
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0.8
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0.0 4

- ROC Curve (AUC = 0.96)

FIGURE 17
ROC DDQN-inspired model.
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False Positive Rate

TABLE 4 LSTM results.

Class name Precision (%) Recall (%) F1 Score (%) Support
ASD 91 74 82 39
Non-ASD 71 89 79 28
Accuracy 81
Macro Avg 81 82 81 67
LSTM_Model - Confusion Matrix
25
ASD
T
Q
©
L
=
Non-ASD -
- 10
Non-ASD -5
Predicted label
FIGURE 18
LSTM model.

Frontiers in Medicine

frontiersin.org


https://doi.org/10.3389/fmed.2025.1646249
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Farhah et al.

TABLE 5 Results of the CNN-LSTM model.

10.3389/fmed.2025.1646249

Class name Precision (%) Recall (%) F1 Score (%) Support
ASD 91 82 86 39
Non-ASD 78 89 83 29
Accuracy 85
Macro Avg 85 86 85 67
CNN_LSTM_Model - Confusion Matrix 30
25
ASD
]
Qo
o
Y
=
Non-ASD -
- 10
ASD Non-ASD -5
Predicted label
FIGURE 19
Results of CNN-LSTM model.
TABLE 6 Result of DDQN-inspired.
Class name Precision (%) Recall (%) F1 Score (%) Support
ASD 95 79 87 39
Non-ASD 77 96 86 28
Accuracy 87 67
Macro Avg 87 88 87 67

4.4 Results of double deep Q-network

The findings of the DDQN model are shown in Table 6,
achieving a high precision of 87% compared to the other models.
This finding demonstrates the potential of the proposed DDQN
approach for identifying ASD based on social media content.
Ultimately, the proposed system was compared against the existing
one using the same dataset. The proposed approach may assist
physicians in detecting ASD and conducting symptomology research
in a natural environment, attaining an overall accuracy of 87. The
model for the ASD class shows a precision of 95%, a recall of 79%,

Frontiers in Medicine

and an Fl-score of 87%, indicating robust efficacy in accurately
identifying ASD patients. The Non-ASD class has a precision of 77%,
a recall of 96%, and an Fl-score of 86%, indicating somewhat
reduced accuracy with robust recall. The macro average measures
(precision 87%, recall 88%, F1-score 87%) indicate performance
across both classes.

The confusion matrix of the DDQN model is shown in
Figure 20 for the classification task between ASD and non-ASD
cases. For correct classification of ASD cases, the model correctly
classified 31 instances as ASD, represented by the top-left
quadrant (TP). However, the DDQN model, misclassified 8
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True label
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DDQN-Inspired Confusion Matrix

30

25

- 10

FIGURE 20
Result of DDQN-inspired model.

Predicted label

Non-ASD

instances misclassifying true ASD cases as Non-ASD, shown in
the top-right quadrant (FN). On the other hand, the DDQN
showed the true Non-ASD cases, accurately identified 27
instances as Non-ASD, depicted in the bottom-right quadrant
(TN). At the same time, 1 instance was incorrectly labeled as
ASD, as shown in the bottom-left quadrant (FP). The confusion
matrix of DDQN model highlights that it performs well overall,
with a strong ability to correctly identify both ASD and
Non-ASD cases, as evidenced by the high counts of TP (31) and
TN (27).

In the digital era, people frequently write content on social media
to express their feelings, opinions, beliefs, and activities. This makes
social media one of the most significant sources of data generation,
allowing you to explore its opportunities and challenges. Today, social
media has become a mediator between people and the healthcare
sector, enabling them to search for information about any specific
disease and methods for diagnosing it.

Individuals within the mental health community use social media
platforms such as Twitter to seek information, exchange experiences, and
get assistance about ASD in an environment that is seen as more
approachable and informal than conventional medical contexts. They
often seek immediate, relevant information—whether to understand
symptoms, identify coping mechanisms, or connect with others facing
similar difficulties. Figure 21 illustrates that Word clouds are visual
representations of text that highlight key terms and their frequency of use.
We used WordCloud to compare ASD and Non-ASD texts for instances
of word repetition.
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The deployment model based on the Deep Q-Network (DQN)
model for diagnosing ASD is shown in Figure 22.

Step 1: Data Collections, including cleaning, normalization,
and tokenization.

Step 2: Model Development: The preprocessed data is used to
train and validate a Deep Q-Network (DQN) model for classifying
tweets as indicative of ASD or non-ASD patterns.

Step 3: Application Interface: An application interface is developed
once the model has been trained. It integrates with users’ Twitter
accounts and continuously analyzes their tweets.

Step 4: Deployment: The proposed system is deployed in the cloud
for storing tweets, enabling real-time monitoring of incoming tweets.
Predictions are flagged for review by healthcare professionals, who
validate the model's output before categorizing individuals as
potentially having ASD or non-ASD.

This digital imprint may serve as an ancillary resource for mental
health practitioners, providing insights into an individual’s emotional state
and social behaviors in a natural environment, potentially facilitating early
detection or corroborating a diagnosis. This method is a non-invasive
means of data collection, particularly beneficial for individuals who lack
rapid access to clinical assessments due to financial constraints, stigma, or
resource scarcity. However, it should not replace professional diagnoses
and must be conducted with ethical consideration to prevent
misunderstanding. Table 7 shows the findings of the proposed framework
on the Twitter dataset. It demonstrates that the suggested method
outperforms the current systems in terms of accuracy, proving its efficacy
and potential for performance improvements.
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ASD word cloud.
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Deployment system-based text for detecting ASD.
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TABLE 7 Compared with the proposed ASD system.

10.3389/fmed.2025.1646249

References Dataset
Rubio-Martin et al. (26) Twitters dataset BERT 84
Jaiswal and Washington (27) Twitters dataset ML 78

5 Conclusion

To assist people in identifying trends in their behavior, such as
social challenges or sensory sensitivities, which may encourage
them to pursue a formal diagnosis. The main objective of examining
tweets for identifying ASD is its ability to provide behavioral and
emotional indicators associated with the disorder. This research was
used to analyze the textual analysis of tweets to detect the behaviors
The
suggested framework was evaluated using information from the

in self-identified autistic individuals relative to others.

social media platform “Twitter” collected from a public repository.
Before examining the proposed system, several preprocessing steps
must be implemented in the text. The “Text’ column is cleaned by
converting it to lowercase, eliminating non-alphanumeric
characters (excluding spaces) through regular expressions,
normalizing whitespace to a single space, and removing any leading
or trailing spaces. The ASD and Non-ASD labels are converted into
a numerical format (0 or 1) with LabelEncoder to accommodate the
binary classification requirement. Tokenization of the text data is
performed using a tokenizer, restricting the vocabulary to 10,000
words, and then transforming the text into sequences of numbers.
The sequences are padded to a standardized length of 200 tokens to
maintain consistency for the proposed model input. The proposed
data is ultimately divided into an 80% training and 20% testing
ratio, and class weights are calculated to resolve any class imbalance.
This preparation pipeline efficiently converts raw text data into a
structured numerical representation appropriate for the proposed
framework, while preserving academic integrity. The output of
these preprocessing steps was processed using three DL models,
such as Short-Term Memory (CNN-LSTM) and a Double Deep
Q-network (DDQN). The results of these proposals were proven,
revealing that the DDQN model achieved a high accuracy score of
87% with respect to the accuracy measure. The proposed
framework, based on real textual data, can be helpful for real-time
offering natural, behavioral, and emotional data that might indicate
ASD-related characteristics. Finally, we have observed that social
media (Twitter) postings include linguistic patterns, emotional
expressions, and social interactions that can help official health
officials detect ASD based on the thorough symptoms of ASD that
are posted on the platform. This study utilized a conventional
dataset sourced only from the Twitter network. We will emphasize
the necessity of gathering datasets from many platforms to enhance
the model’s generalizability in the future.
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