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Introduction: Social media is increasingly used in many contexts within the 
healthcare sector. The improved prevalence of Internet use via computers 
or mobile devices presents an opportunity for social media to serve as a tool 
for the rapid and direct distribution of essential health information. Autism 
spectrum disorders (ASD) are a comprehensive neurodevelopmental syndrome 
with enduring effects. Twitter has become a platform for the ASD community, 
offering substantial assistance to its members by disseminating information 
on their beliefs and perspectives via language and emotional expression. 
Adults with ASD have considerable social and emotional challenges, while also 
demonstrating abilities and interests in screen-based technologies.
Methods: The novelty of this research lies in its use in the context of Twitter 
to analyze and identify ASD. This research used Twitter as the primary data 
source to examine the behavioral traits and immediate emotional expressions 
of persons with ASD. We  applied Convolutional Neural Networks with Long 
Short-Term Memory (CNN-LSTM), LSTM, and Double Deep Q-network (DDQN-
Inspired) using a standardized dataset including 172 tweets from the ASD class 
and 158 tweets from the non-ASD class. The dataset was processed to exclude 
lowercase text and special characters, followed by a tokenization approach 
to convert the text into integer word sequences. The encoding was used to 
transform the classes into binary labels. Following preprocessing, the proposed 
framework was implemented to identify ASD.
Results: The findings of the DDQN-inspired model demonstrate a high precision 
of 87% compared to the proposed model. This finding demonstrates the 
potential of the proposed approach for identifying ASD based on social media 
content.
Discussion: Ultimately, the proposed system was compared against the existing 
system that used the same dataset. The proposed approach is based on variations 
in the text of social media interactions, which can assist physicians and clinicians 
in performing symptom studies within digital footprint environments.
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1 Introduction

ASD is among the most prevalent neurodevelopmental disorders. 
ASD is often demonstrated in children by age three and is defined by 
impairments in social interactions and communication, repetitive 
sensory-motor activities, and stereotypical behavioral patterns (1). 
ASD is a congenital neurodevelopmental condition characterized by 
symptoms that are evident in early infancy. Autism, characterized by 
restricted interests, repetitive behaviors, and significant disparities in 
social communication and interaction, typically emerges during early 
developmental stages and presents challenges in various social 
functioning domains. A child with autism induces significant anxiety 
within the family due to several factors, including the ambiguity of the 
diagnosis, the intensity and persistence of the disease, and the child’s 
nonconformity to social norms. In opposition, social awareness of 
autism is markedly inadequate, often conflated with intellectual 
disability and seen as an incurable ailment (2, 3). The ASD concept is 
displayed in Figure 1.

Content on social media, particularly videos and text disseminated 
by parents and caregivers, has emerged as a significant resource for 

facilitating the early identification of ASD (4, 5). Social media are 
technological tools designed for sharing, enabling users to create 
networks or engage in existing ones. In that order, the Pew Research 
Center identified the most popular social media sites as YouTube, 
Facebook, Instagram, Pinterest, LinkedIn, Snapchat, Twitter, and 
WhatsApp (6). Most consumers use these networks daily. This 
research utilizes Twitter data to assess the stigmatization of autism and 
associated terminology, picked based on accessibility and popularity, 
with analysis conducted using artificial intelligence technologies (7).

Conventional diagnostic methods, which primarily rely on 
observational and behavioral evaluations, often encounter issues with 
accessibility, consistency, and timeliness. Recent technology 
breakthroughs, especially in artificial intelligence (AI), and sensor-
based techniques, provide novel opportunities for improving ASD 
identification. By developing more objective, accurate, and scalable 
approaches, these technologies transform diagnostic methodologies 
for autism spectrum disorder (ASD) (8–10). One new way to study 
the motor patterns, attentional processes, and physiological responses 
linked to ASD in real-time is wearable sensors, eye-tracking devices, 
and multimodal virtual reality settings. These technologies have the 

FIGURE 1

Displays the ASD concept.
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potential to give non-invasive, continuous monitoring, which might 
help with the early diagnosis of ASD and shed light on neurological 
and behavioral traits that have been hard to document reliably.

Nevertheless, advancements in contemporary research are 
required to substantiate their efficacy. Sensor-based techniques may 
facilitate the identification of stereotyped behaviors and motor 
patterns linked to ASD in realistic environments, potentially yielding 
data that could guide timely and customized therapies (11). 
Neuroimaging and microbiome analysis further advance this technical 
domain by indicating neurological and biological traits specific to 
ASD. AI-enhanced neuroimaging aids in identifying structural and 
functional brain connection patterns associated with ASD, thereby 
enhancing the understanding of its neuroanatomical foundation (12).

The research conducted by Neeharika and Riyazuddin et al. (13) 
aimed to enhance the accuracy of ASD screening by using feature 
selection methods in conjunction with sophisticated machine learning 
classifiers. Their research included several datasets spanning infants, 
children, adolescents, and adults, enabling a thorough assessment of 
ASD characteristics across different age demographics. Authors’ use 
of MLP model capacity to reliably and rapidly identify ASD, indicating 
a beneficial screening instrument suitable for various age groups, 
facilitating both clinical evaluations and extensive screenings. Wall 
et  al. (14) investigated machine learning (ML) algorithms for 
diagnosing ASD using a standard dataset. The researchers focused on 
the Alternating Decision Tree classifier to identify a limited yet 
efficient set of queries that optimize the diagnostic procedure. Alzakari 
et al. (15) proposed a novel two-phase methodology to tackle the 
variability in ASD features with ML approaches, including behavioral, 
linguistic, and physical data. The first step concentrates on identifying 
ASD, using feature engineering methodologies and ML algorithms, 
including a logistic regression (LR) and support vector machine 
(SVM) ensemble, attaining a classification with high accuracy. EEG 
assesses brain activity and may identify children predisposed to 
developing ASD, hence facilitating early diagnosis. EEG data is used 
to compare ASD and HC (16–18). In (19), the CNN model was used 
for classification after transforming the data into a two-dimensional 
format. While EEG may facilitate the diagnosis of ASD, it is 
constrained by other factors, such as signal noise.

The research has used social media to investigate ASD. However, 
exploiting these prevalent platforms and innovative online data 
sources may be  feasible to enhance the comprehension of these 
diseases. Previous research has utilized Twitter data to investigate 
discussions on ASD-related material, indicating that this subject is 
frequently addressed on this platform (20). Considering the use of 
social media for researching ASD is particularly significant, as a recent 
analysis indicated that around 80% of individuals with ASD engage 
with prominent social media platforms (21). This study aims to build 
upon previous research and enhance our comprehension of whether 
publicly accessible social media data from Twitter may provide 
insights into the existence of digital diagnostic indicators for ASD 
(22). Furthermore, we want to assess the viability of establishing a 
digital phenotype for ASD using social media.

Beykikhoshk et al. (20) examined Twitter’s potential as a data-
mining tool to comprehend the actions, challenges, and requirements 
of autistic individuals. The first finding pertained to the attributes of 
participants inside the autism subgroup of tweets, indicating that these 
tweets were highly informative and had considerable potential 
usefulness for public health experts and policymakers. Tomeny et al. 
(23) examined demographic correlations of autism-related 

anti-vaccine opinions on Twitter from 2009 to 2015. Their results 
indicated that the frequency of autism-related anti-vaccine views 
online was alarming, with anti-vaccine tweets connecting with news 
events and demonstrating geographical clustering. From 2015 to 2019, 
Tárraga-Mínguez et  al. (24) examined the phrases “autism” and 
“Asperger” in Spain in relation to Google search peaks. The public 
view of autism was significantly impacted by how the condition was 
portrayed in the news and on social media, and the authors found that 
social marketing campaigns had a significant role in normalizing 
autism. In this research (25), looked at how people sought assistance. 
The results showed a strong correlation in Google search interest 
between the terms “Asperger syndrome” and “Greta Thunberg,” 
reaching their highest point in 2019. Online traffic to the Asperger/
Autism Network and Autism Speaks websites increased steadily from 
June to December 2019, indicating a correlation between help-seeking 
behavior and Thunberg’s fame, according to the research. According 
to the results, the stigma associated with Asperger’s disorder may have 
been positively affected by Thunberg’s public exposure.

1.1 Contribution

The use of tweets from Twitter for the detection of ASD is 
substantial, since it offers extensive, real-time, user-generated data that 
facilitates the early identification of ASD-related behaviors, particularly 
via self-reported experiences and parental observations. This 
methodology promotes the advancement of suggested models, namely 
LSTM, CNN-LSTM, and inspired DDQN, for natural language 
processing to examine linguistic patterns, feelings, and keywords related 
to ASD. It provides insights into popular views, stigma, and 
misconceptions around autism, guiding awareness initiatives and public 
health measures. Twitter data is a powerful and accessible resource for 
enhancing early detection and understanding of ASD in diverse groups. 
Utilizing social media in this manner may offer more accessible and 
timely screening, particularly in regions with limited healthcare resources.

2 Materials and methods

Figure 2 shows the pipeline of the proposed system to provide a 
broader perspective to researchers and developers. The framework 
delineates the processing phases for the pipeline that utilizes social 
media content to diagnose ASD. Below, we present a comprehensive 
assessment of each step.

2.1 Dataset

To help with the early diagnosis of ASD by using proposed 
systems, the TASD-Dataset includes comprehensive textual sequences 
that depict the everyday lives of children with and without ASD. It 
offers new elements, including Noise Sensitivity, Sharing Interest, Sign 
Communication, and Tiptoe Flapping, It combines critical ASD 
assessment aspects like Attention Response, Word Repetition, and 
Emotional Empathy, as shown in Figure 3. Parents may get detailed 
insights and better identify signs of autism spectrum disorder (ASD) 
due to the deepening of certain behaviors. The dataset contains 172 
tweets from the ASD class and 158 non-ASD tweets. Figure 4 shows 
the class of the dataset.
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2.2 Preprocessing

Text preprocessing is an essential step in the text processing 
process. Words, sentences, and paragraphs can all be found in a text, 
which is defined as a meaningful sequence of characters. Preprocessing 
methods feed text data to a proposed algorithm in a better form than 
in its natural state. A tweet can contain different viewpoints on the 
data it represents. Tweets that have not been preprocessed are highly 
unstructured and contain redundant data. To address these issues, 

several steps are taken to preprocess tweets for detecting ASD, as 
shown in Figure 5.

2.3 Text cleaning

The clean text preprocessing method is a significant step in 
text datasets because the text contains several extra contexts to 
preprocess and normalize raw text data for analysis. In these 

FIGURE 2

Farmwork of ASD system.

FIGURE 3

Features of the dataset.
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steps, the use is transformed to lowercase to guarantee 
consistency and prevent differentiation between “ASD” and 
“Non-ASD.” Subsequently, any characters that are not letters, 
numerals, or spaces are eliminated by a regular expression, so 
punctuation and other symbols that might create extraneous 
noise are removed. This method is ultimately applied to the ‘Text’ 
column of the Data Frame, ensuring that all text elements are 
sanitized and prepared for feature extraction. Figure 6 displays 
the clean text process.

2.4 Label encoding

The LabelEncoder method converts text class (ASD and 
Non-ASD) into numbers, designating 0 for ASD and 1 for 

Non-ASD. This transformation updates the classification effort by 
enabling the model to see the labels as numerical values instead of 
text. Equations 1, 2 show the label encoding.

	 ( )∈ −,yclassification ASD Non ASD Then 	 (1)

	 ( ) { }= → ∈ 0,1y labelEncoder yclassifcation y 	 (2)

2.5 Tokenization and padding

Tokenization and padding are essential NLP preprocessing 
procedures that transform unprocessed text into a numerical 
representation appropriate for machine learning models, 

FIGURE 4

Label of the dataset.

FIGURE 5

Preprocessing ASD text analysis.
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particularly neural networks. Figure 7 shows the tokenization and 
padding Equation 3.

2.5.1 Tokenizer
Tokenizer procedures transform textual data into a numerical 

representation suitable for input into neural networks. They convert a 
text corpus into integer sequences, assigning a distinct index to each 
unique word according to its frequency, as shown in Equation 3. The 
tokenizer processing is shown in Figure 8.

	 ( ) ( ) ( )= ≤f findex w rank w if rank w V 	 (3)

Where ( )frank w is rank w frequency ( )f w  and V  is the 
maximum number of words.

2.5.2 Fit texts
This phase is crucial for transforming unprocessed text into 

numerical sequences suitable for input into the proposed system.

2.5.3 Texts_to_sequences
To convert unprocessed text input into sequences of word indices 

according to the mapping acquired via as shown in Equation 4.

	 ( ) ( ) ( ) ( ) = ……… 1 2, , ,i msequence T index w index w index w 	 (4)

Where is the iT  is the sentence of the text contained, and w is the 
words of the text, whereas the ( )1index w  is an index of the words in 
the context.

2.5.4 Padding_sequences
Normalize sequence lengths, which may differ post-tokenization, by 

padding shorter sequences and truncating larger ones to a predetermined 
length as shown in Equation 5. The padding and truncated b are fixed on 
the length. = 200L . The padding processing is shown in Figure 7.

	

= ∈

1

2
.
.
.
.

nxL

x
x

x

y



	

(5)

Where x  is features contain padding and are tokenized, L is the 
length of the vector. The number of texts is indicated n, and ∈ nxL  is 
matrix lues.

2.6 Proposed systems

2.6.1 Convolutional neural networks
The CNN model is at the core of all advanced machine learning and 

deep learning applications. They can successfully address text 
classification, image recognition, object identification, and semantic 
segmentation. Using the same method with a task as different as Natural 
Language Processing is counterintuitive (7). The structure is presented in 
Figure 9. Equation 6 presents the convolution layer of CNN.

	
( ) ( ) ( )

= =
= + + ∗ +∑∑

1 1
, , ,

H W

i j
O x y I x i y j K i j b

	
(6)

Where the features of text ( ),O x y The feature of the text is mapped 
by using. ( )+ +,I x i y j  is weighted by a neural network and b is biased 
to adjust the neural. The ReLU activation function is Equation 7, the 
max pooling function is presented in Equation 8. The Dense Layer is 
given in Equation 9.

	 ( ) ( )=max 0,f x x 	 (7)

FIGURE 6

Clean text.
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( ) ( ) ( )

= =
= + + ∗ +∑∑

1 1
, , ,

H W

i j
O x y I x i y j K i j b

	
(8)

	 = +O ·W X b	 (9)

2.6.2 Long short-term memory network
An LSTM network is an advanced form of a sequential neural 

network. It fixes the problem of RNN gradients fading over time. 
RNNs often handle long-term storage. At a high level, the 
operation of an LSTM is comparable to that of a single RNN 
neuron. The inner workings of the LSTM network are outlined in 
this section. The LSTM consists of three parts, each performing 
a particular function, as seen in Figure 10 below. In the first step, 
it is decided whether the information from the previous time 
stamp is significant enough to be saved or if it is harmless enough 
to be deleted. In the second step, the cell will try to acquire new 
information by analyzing the data that has been presented to it. 
In the third and final step, the cell incorporates the data from the 
most recent time stamp into the data stored in the next time 
stamp. These three components constitute what is referred to as 
a gate for an LSTM cell. The “Forget” gate comes first, followed 
by the “Input” section, and then the “Output” section is used to 
define the last portion as shown in Equations 10– 14.

	 ( )σ −= + +1Forget gate : . .t f t f t ff W X W h b 	 (10)

	 ( )σ −= + +1Input gate : . .t c t i t ii W X W h b 	 (11)

	 ( )( )−= ∗ 1Cell gate : . ,t f t t fC W h x b 	 (12)

	 ( )σ −= + + + +1Output gate : . .t o t o t o t oo W X W h V C b 	 (13)

	 ( )= +Hidden layer : tanht t th o C 	 (14)

In Figure 10, tC Represent the prior and current states of the cell, 
respectively. Both −1th and h Represents the cell output that was 
processed before the one now being processed. It is common practice 
to disregard tf  As a gate, even though it is the input gate. The output 
of a sigmoid gate is symbolized here by to . The cable that connects 
the cell gates is where all the data collected by the cell gates is sent to 
and from C . The tf  Layer decides to remember anything, and 
the tf The Output is multiplied by c to do so (t-1). After that, c (t-1) 
is multiplied by the product of the sigmoid layer gate and the tanh 
layer gate, and the output h t is generated by point-wise 
multiplication of to  and tanh.

The LSTM architecture is intended to capture long-term 
relationships in Twitter text data. The preprocessing converts input 

FIGURE 7

Sample of text tokenization and padding.
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words that start with an embedding layer into 128-dimensional 
dense vectors. The LSTM layer with 64 units is then used to 
mitigate overfitting, integrating dropout and recurrent dropout 
with 0.5. An L2 regularization term is further included in the 
LSTM and output dense layer. Table 1 shows parameters of the 
LSTM model.

2.6.3 CNN-LSTM model
The CNN-LSTM model is a hybrid architecture that combines 

convolutional neural networks (CNN) for spatial feature 
extraction and long short-term memory (LSTM) networks for 
sequential learning, making it highly effective for analyzing text 
data such as tweets. The model begins with an embedding layer 

FIGURE 8

Tokenizer analysis: word frequencies and sequence lengths.

FIGURE 9

Structure CNN.
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that transforms each word into a 256-dimensional dense vector, 
capturing the semantic meaning of words. This is followed by a 
1D convolutional layer with 64 filters and a kernel size of 5, 
which scans through the text to detect local patterns and n-gram 
features such as common word combinations or phrases often 
associated with ASD. A batch normalization layer is applied to 
stabilize and accelerate training, followed by a max pooling layer 
that reduces the dimensionality and computational load by 
selecting the most prominent features. A dropout layer with a rate 
of 0.5 is then used to prevent overfitting by randomly deactivating 
some neurons during training. The output is passed into a 64-unit 
LSTM layer that captures the temporal dependencies and 
contextual relationships across the tweet  sequence. Finally, a 
dense layer with sigmoid activation performs binary classification 
to predict whether the tweet indicates ASD-related content. The 
model is trained using the Adam optimizer, binary cross-entropy 
loss, class weights, and regularization to handle imbalanced data 
and improve generalization. The critical parameters of the 
CNN-LSTM model are displayed in Table 2.

2.6.4 Double deep Q-network (DDQN-inspired)
The Double Q-Learning model was introduced by H. van Hasselt in 

2010, addressing the issue of significant overestimations of action value 
(Q-value) inherent in traditional Q-Learning. In fundamental Q-learning, 
the Agent’s optimal strategy is consistently to select the most advantageous 
action in any specific state. This concept’s premise is that the optimal 
action corresponds to the highest expected or estimated Q-value. Initially, 
the Agent lacks any knowledge of the environment; it must first estimate 
Q(s, a) and subsequently update these estimates with each iteration. The 
Q-values exhibit considerable noise, leading to uncertainty about whether 
the action associated with the highest expected or estimated Q-value is 
genuinely the optimal choice.

Double Q-Learning employs two distinct action-value 
functions, Q and Q’, as estimators. Even if Q and Q’ exhibit noise, 
this noise can be interpreted as a uniform distribution as shown 
Figure 11 The update procedure exhibits some variations compared 
to the basic version. The action selection and action evaluation 
processes are separated into two distinct maximum function  
estimators. shown in Equations 15, 16.

FIGURE 10

LSTM model.

TABLE 1  LSTM parameters model.

Input Values

Embedding dimension 256

LSTM unit 64

Conv1D 64, K = 5

MaxPooling ID yes

Dropout_rate 0.5

Dense_Unites 32

Activation_function ReLU

L2 0.001

Optimizer Adam

Loss Binary

Epoch 30

Batch size 16

TABLE 2  CNN-LSTM parameters.

Input Values

Embedding dimension 128

LSTM unit 64

Conv1D No

MaxPooling ID No

Dropout_rate 0.5

Dense_Unites 32

Activation_function ReLU

L2 0.001

Optimizer Adam

Loss Binary

Epoch 30

Batch size 16
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Let the vector of a neural network’s weights be represented by θ. 
We establish two Q-networks: the online Q-network Q (s, a; θ(t)) and 
the target Q-network Q (s, a; θ (t)). To be more specific, the training 
of Q (s, a; Χ (t)) is done by modifying the weights (t) at time slot t in 
relation to the goal value y(t).

	
( ) ( ) ( )( ) ( )( )θ θ∗ ′= + ′ ′ ′,arg max , ; ;y t G t s Q s a t t

	
(15)

	
( ) ( ) ( )( )θ θ∗

−′= + ′ ′ 1,arg max , ; ; iy t G t s Q s a
	

(16)

The reinforcement learning mechanism integrates generative 
artificial intelligence for decision-making and prediction tasks, as 
shown in Equations 15, 16. This equation indicates the generative 
which produces the estimation or hypothesis at a given time t . 

−Double Q Learning Used next state, whereas the s’ is exit state and 
θ∗′ ′arg max ( , ; ( ))Q s a t  defined as the action of ∗a  to maximize the 

predicted Q-value based on the current parameters. To estimate the 
Q-value of this selected action in the next state, the outer Q-function 
Q’ employs the older parameters. θ −1i 1, which helps reduce 
overestimation bias. This combination makes applications for 
predicting ASD from social media content domains possible.

The DDQN model is used to classify ASD and non-ASD cases 
utilizing text data. The model utilizes a preprocessing step for 
text processing that encompasses data loading, cleaning 
(including lowercasing, removal of special characters, and 
normalization of spaces), and tokenization, constrained by a 

maximum vocabulary of 10,000 words and a sequence length of 
200. The model architecture, drawing from the Double Deep 
Q-Network (DDQN) model comprises an input layer, an 
embedding layer with 256 dimensions, and two parallel LSTM 
branches, each containing 64 units, a dropout rate of 0.5, and L2 
regularization to capture sequential patterns effectively. The 
model uses the Adam optimizer with a learning rate of 1e-4 and 
employs binary cross-entropy loss. It is trained for 30 epochs, 
incorporating early stopping and learning rate reduction 
callbacks to mitigate overfitting. Parameters of DDQN-Inspired 
are shown in Table 3.

3 Performance of the framework

3.1 Performance of LSTM

Figure 12 presents the accuracy and loss metrics used to train 
and validate an LSTM model over 30 epochs. The validation 
accuracy of the LSTM model, displayed in red, begins at a lower 
value and increases to about 81%. The blue line in the accuracy 
plot (a) shows the training accuracy of the LSTM model; it 
increases gradually from around 50% to almost 99%, showing 
that the model learns the training data well over time. The plot 
(b) shows the loss of the LSTM model; the blue line represents 
the training loss, which drops gradually from around 0.7 to less 
than 0.2, suggesting that the model is getting a better fit to the 
training data. Meanwhile, the red validation loss line declines 
from around 0.7 to about 0.3. While the training loss continues 

FIGURE 11

DDQN-inspired model.
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to grow, the validation loss reaches a level and exhibits small 
oscillations, suggesting that the model’s generalizability 
may stabilize.

The ROC curve illustrated in Figure 13 shows the efficacy of the 
LSTM model in differentiating between the classes. The graph 
illustrates the TP rate (sensitivity) in relation to the FP Rate across 
different threshold levels. The LSTM model attains an AUC of 0.95, 
demonstrating exceptional classification capability. The AUC of 1.0, 
but a result of 0.5 indicates random chance.

3.2 Performance of the CNN-LSTM model

Figure  14 presents plots illustrating the performance of a 
CNN-LSTM model over 25 epochs, showing its training and 
validation metrics for accuracy and loss. The accuracy plot (a) 
illustrates the training accuracy (blue line), which increases 
progressively from approximately 51.42% to nearly 99.53%, 
indicating effective learning from the training data. In contrast, 

the validation accuracy (red line) rises to about 83.02% with 
some variability, indicating satisfactory but imperfect 
generalization. The loss plot (b) shows the training loss (blue 
line) declining steadily from 0.7140 to below 0.0760, indicating 
enhanced model fit. In contrast, the validation loss (red line) 
decreases from 0.7130 to approximately 0.3530, with a slight 
decline toward the conclusion. This notification indicates that the 
CNN-LSTM model demonstrates efficient learning, as evidenced 
by the difference between the training and validation measures.

Figure 15 illustrates the ROC curve for the CNN-LSTM model, 
illustrating its classification performance at various thresholds. The 
graph illustrates the TP Rate (Sensitivity) in relation to the FP Rate, 
with the AUC recorded at 92%. The elevated AUC value indicates the 
model has robust discriminative capability in differentiating between 
the ASD and Non-ASD classes. The ROC ascends rapidly toward the 
top-left corner, as seen in the figure, indicating a high TP rate with few 
false positives.

3.3 Performance of DDQN-inspired model

Graphs 16 illustrate the performance of a DDQN throughout 30 
epochs. The accuracy plot (a) demonstrates that the training accuracy 
increases from around 58.02% to almost 98.58%, indicating the 
DDQN model successful learning from the training data over time. 
The validation accuracy of the DDQN is about 87, showing the best 
performance compared to different models like LSTM and 
CNN-LSTM. The plot (b) illustrates that the training loss decreases 
from about 0.8155 to around 0.1477, indicating a robust fit to the 
training data. The validation loss begins at 0.3831 with many 
fluctuations throughout (Figure 16).

Figure 17 shows the ROC curve for the DDQN model; it shows a 
visual representation of its classification capability, with the curve toward 
the top-left corner, indicating strong predictive power. The AUC value of 
the DDQN model is 96%, demonstrating that the model can distinguish 
between the positive and negative classes.

TABLE 3  Parameters of DDQN-inspired.

Input Values

Max-sequence length 200

Vocabulary 10,000

Embedding_dimension 256

Dropout_rate 0.5

Dense_Unites 32

Activation_function ReLU

LS 0.0001

Optimizer Adam

Loss Binary

Epoch 30

Batch size 16

FIGURE 12

Performance of the LSTM model.
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4 Experiment and discussion results

Both the Jupyter deep learning framework and the Windows 10 
operating system were utilized during the testing process. Experiments 
were conducted using a machine with 16 gigabytes of RAM and an Intel 
Core i7 central processing unit. The input dimensions of the experiment 
were a standard text dataset collected from the Twitter API related to 
ASD. The test was utilized in our database, while the remaining 20% was 
used as part of our validation set. The three DL models, namely LSTM, 
CNN-LSTM, and DDQN-Inspired, were proposed for detecting ASD 
from social media content.

4.1 Measuring the model’s performance

Sensitivity, specificity, accuracy, recall, and F1 scores are 
assessment measures used to determine how successfully the 
algorithms identify ASD. The related equations from 17 to 21:

	
+

= ×
+ + +

100%TP TNAccuracy
TP FP FN TN 	

(17)

	
= ×

+
100%TPSensitivity

TP FN 	
(18)

	
= ×

+
100%TPPrecision

TP FP 	
(19)

	
= ×

+
100TNspecificity

TN FP 	
(20)

	

×
− = ∗ ×

+
1 2 100precision SensitivityF score

precision Sensitivity 	
(21)

4.2 Result of the LSTM model

The classification LSTM model, presented in Table 4, summarizes its 
performance in differentiating between ASD and Non-ASD patients, 
attaining an overall accuracy of 81%. The LSTM model demonstrates in 
ASD class a precision of 91%, indicating a high accuracy in identifying 
predicted ASD cases. The LSTM with recall metric scored 77% and an 
F1-score of 82% for detecting the ASD class. The LSTM model with 
Non-ASD class demonstrates a precision of 71%, a recall of 89%, and an 
F1-score of 79%, to identify Non-ASD cases. The macro average of the 
LSTM model for all metrics is (precision: 81%, recall: 82%, F1-score: 

FIGURE 14

Performance of the LSTM model.

FIGURE 13

ROC of the LSTM model.
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81%). LSTM model is recognized for its efficiency and scalability as a 
model for social media content.

The confusion matrix for the LSTM model is provided in 
Figure 18. It is presented in a clear manner. Among the confirmed 
ASD cases, 29 were accurately identified as ASD, whereas 10 were 
incorrectly classified as Non-ASD, indicating strong performance 
with minor errors. In the true non-ASD cases, 25 were correctly 
identified, while 3 were misclassified as ASD, suggesting a 
generally effective detection process. The deep blue and light 
shades produce a tranquil visual, illustrating the model’s balanced 
approach in classifying the 67 total instances, demonstrating 
notable strength in identifying Non-ASD cases, while exhibiting 
marginally lower accuracy for ASD. This matrix effectively 
illustrates the LSTM model’s systematic approach to managing 

sequential data, such as text or time-series inputs, in a clear and 
comprehensible manner.

4.3 Result of the CNN-LSTM model

Table  5 displays the CNN-LSTM model’s performance in 
distinguishing between ASD and non-ASD classes. The CNN-LSTM 
model attained an overall accuracy of 85% across the dataset. In the ASD 
label, a precision of 91% was achieved, a high percentage for predicting 
ASD cases that were accurately recognized. The recall indicates that the 
model identified 82% of all genuine ASD cases, resulting in an F1 score 
of 86%, better than the recall metric. The CNN-LSTM model attained 
78% accuracy, 89% recall, and an 83% F1 score for the Non-ASD class. 
The macro average, representing the unweighted mean of precision, 
recall, and F1 score across both classes, was 85, 86, and 85%, respectively. 
The findings indicate that the CNN-LSTM model performs satisfactorily, 
exhibiting a marginally superior capacity to identify ASD cases relative 
to non-ASD cases accurately.

The confusion matrix of a CNN-LSTM model is presented in 
Figure 19, for classifying instances into ASD and Non-ASD. The 
matrix is structured with true labels on the vertical axis and 
predicted labels on the horizontal axis, providing a clear summary 
of the model’s classification outcomes. The matrix shows that out 
of the instances truly labeled as ASD, the model correctly 
predicted 32 as ASD TP while 7 were incorrectly classified as 
Non-ASD FN. For the instances truly labeled as Non-ASD, the 
model accurately identified 25 as Non-ASD TN but 3 were 
misclassified as ASD FP. This indicates that the model 
demonstrates a relatively strong ability to correctly identify ASD 
and Non-ASD cases, with higher accuracy for true positives (32 
out of 39 ASD cases) and true negatives (25 out of 28 Non-ASD 
cases). Overall, the model exhibits promising performance with 
minimal misclassification errors.

FIGURE 15

ROC of the CNN-LSTM model.

FIGURE 16

Performance of the DDQN-inspired model.
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FIGURE 18

LSTM model.

FIGURE 17

ROC DDQN-inspired model.

TABLE 4  LSTM results.

Class name Precision (%) Recall (%) F1 Score (%) Support

ASD 91 74 82 39

Non-ASD 71 89 79 28

Accuracy 81

Macro Avg 81 82 81 67
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4.4 Results of double deep Q-network

The findings of the DDQN model are shown in Table  6, 
achieving a high precision of 87% compared to the other models. 
This finding demonstrates the potential of the proposed DDQN 
approach for identifying ASD based on social media content. 
Ultimately, the proposed system was compared against the existing 
one using the same dataset. The proposed approach may assist 
physicians in detecting ASD and conducting symptomology research 
in a natural environment, attaining an overall accuracy of 87. The 
model for the ASD class shows a precision of 95%, a recall of 79%, 

and an F1-score of 87%, indicating robust efficacy in accurately 
identifying ASD patients. The Non-ASD class has a precision of 77%, 
a recall of 96%, and an F1-score of 86%, indicating somewhat 
reduced accuracy with robust recall. The macro average measures 
(precision 87%, recall 88%, F1-score 87%) indicate performance 
across both classes.

The confusion matrix of the DDQN model is shown in 
Figure 20 for the classification task between ASD and non-ASD 
cases. For correct classification of ASD cases, the model correctly 
classified 31 instances as ASD, represented by the top-left 
quadrant (TP). However, the DDQN model, misclassified 8 

TABLE 5  Results of the CNN-LSTM model.

Class name Precision (%) Recall (%) F1 Score (%) Support

ASD 91 82 86 39

Non-ASD 78 89 83 29

Accuracy 85

Macro Avg 85 86 85 67

FIGURE 19

Results of CNN-LSTM model.

TABLE 6  Result of DDQN-inspired.

Class name Precision (%) Recall (%) F1 Score (%) Support

ASD 95 79 87 39

Non-ASD 77 96 86 28

Accuracy 87 67

Macro Avg 87 88 87 67
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instances misclassifying true ASD cases as Non-ASD, shown in 
the top-right quadrant (FN). On the other hand, the DDQN 
showed the true Non-ASD cases, accurately identified 27 
instances as Non-ASD, depicted in the bottom-right quadrant 
(TN). At the same time, 1 instance was incorrectly labeled as 
ASD, as shown in the bottom-left quadrant (FP). The confusion 
matrix of DDQN model highlights that it performs well overall, 
with a strong ability to correctly identify both ASD and  
Non-ASD cases, as evidenced by the high counts of TP (31) and 
TN (27).

In the digital era, people frequently write content on social media 
to express their feelings, opinions, beliefs, and activities. This makes 
social media one of the most significant sources of data generation, 
allowing you to explore its opportunities and challenges. Today, social 
media has become a mediator between people and the healthcare 
sector, enabling them to search for information about any specific 
disease and methods for diagnosing it.

Individuals within the mental health community use social media 
platforms such as Twitter to seek information, exchange experiences, and 
get assistance about ASD in an environment that is seen as more 
approachable and informal than conventional medical contexts. They 
often seek immediate, relevant information—whether to understand 
symptoms, identify coping mechanisms, or connect with others facing 
similar difficulties. Figure  21 illustrates that Word clouds are visual 
representations of text that highlight key terms and their frequency of use. 
We used WordCloud to compare ASD and Non-ASD texts for instances 
of word repetition.

The deployment model based on the Deep Q-Network (DQN) 
model for diagnosing ASD is shown in Figure 22.

Step  1: Data Collections, including cleaning, normalization, 
and tokenization.

Step 2: Model Development: The preprocessed data is used to 
train and validate a Deep Q-Network (DQN) model for classifying 
tweets as indicative of ASD or non-ASD patterns.

Step 3: Application Interface: An application interface is developed 
once the model has been trained. It integrates with users’ Twitter 
accounts and continuously analyzes their tweets.

Step 4: Deployment: The proposed system is deployed in the cloud 
for storing tweets, enabling real-time monitoring of incoming tweets. 
Predictions are flagged for review by healthcare professionals, who 
validate the model’s output before categorizing individuals as 
potentially having ASD or non-ASD.

This digital imprint may serve as an ancillary resource for mental 
health practitioners, providing insights into an individual’s emotional state 
and social behaviors in a natural environment, potentially facilitating early 
detection or corroborating a diagnosis. This method is a non-invasive 
means of data collection, particularly beneficial for individuals who lack 
rapid access to clinical assessments due to financial constraints, stigma, or 
resource scarcity. However, it should not replace professional diagnoses 
and must be  conducted with ethical consideration to prevent 
misunderstanding. Table 7 shows the findings of the proposed framework 
on the Twitter dataset. It demonstrates that the suggested method 
outperforms the current systems in terms of accuracy, proving its efficacy 
and potential for performance improvements.

FIGURE 20

Result of DDQN-inspired model.
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FIGURE 21

ASD word cloud.

FIGURE 22

Deployment system-based text for detecting ASD.
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5 Conclusion

To assist people in identifying trends in their behavior, such as 
social challenges or sensory sensitivities, which may encourage 
them to pursue a formal diagnosis. The main objective of examining 
tweets for identifying ASD is its ability to provide behavioral and 
emotional indicators associated with the disorder. This research was 
used to analyze the textual analysis of tweets to detect the behaviors 
in self-identified autistic individuals relative to others. The 
suggested framework was evaluated using information from the 
social media platform “Twitter” collected from a public repository. 
Before examining the proposed system, several preprocessing steps 
must be implemented in the text. The ‘Text’ column is cleaned by 
converting it to lowercase, eliminating non-alphanumeric 
characters (excluding spaces) through regular expressions, 
normalizing whitespace to a single space, and removing any leading 
or trailing spaces. The ASD and Non-ASD labels are converted into 
a numerical format (0 or 1) with LabelEncoder to accommodate the 
binary classification requirement. Tokenization of the text data is 
performed using a tokenizer, restricting the vocabulary to 10,000 
words, and then transforming the text into sequences of numbers. 
The sequences are padded to a standardized length of 200 tokens to 
maintain consistency for the proposed model input. The proposed 
data is ultimately divided into an 80% training and 20% testing 
ratio, and class weights are calculated to resolve any class imbalance. 
This preparation pipeline efficiently converts raw text data into a 
structured numerical representation appropriate for the proposed 
framework, while preserving academic integrity. The output of 
these preprocessing steps was processed using three DL models, 
such as Short-Term Memory (CNN-LSTM) and a Double Deep 
Q-network (DDQN). The results of these proposals were proven, 
revealing that the DDQN model achieved a high accuracy score of 
87% with respect to the accuracy measure. The proposed 
framework, based on real textual data, can be helpful for real-time 
offering natural, behavioral, and emotional data that might indicate 
ASD-related characteristics. Finally, we have observed that social 
media (Twitter) postings include linguistic patterns, emotional 
expressions, and social interactions that can help official health 
officials detect ASD based on the thorough symptoms of ASD that 
are posted on the platform. This study utilized a conventional 
dataset sourced only from the Twitter network. We will emphasize 
the necessity of gathering datasets from many platforms to enhance 
the model’s generalizability in the future.
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TABLE 7  Compared with the proposed ASD system.

References Dataset Model ACC %

Rubio-Martín et al. (26) Twitters dataset BERT 84

Jaiswal and Washington (27) Twitters dataset ML 78
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