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Renal fibrosis is the central pathological pathway by which various primary and 
secondary kidney diseases progress to end-stage renal disease. It is characterized 
by excessive extracellular matrix deposition and destruction of the native renal 
parenchyma, ultimately leading to irreversible loss of nephrons. Currently, 
percutaneous renal biopsy with histopathological evaluation remains the 
diagnostic gold standard for renal fibrosis, allowing semiquantitative scoring of 
renal interstitial fibrosis and glomerulosclerosis (e.g., Banff grading). However, this 
invasive procedure carries a risk of bleeding and is limited by sampling error and 
inter-observer variability, making it impractical for dynamic disease monitoring. 
In recent years, significant advances have been made in noninvasive diagnostic 
techniques. These include: (1) blood and urine biomarkers such as markers of 
ECM metabolism, inflammatory factors, tubular injury markers, and extracellular 
vesicles; (2) imaging modalities including novel ultrasound techniques, shear 
wave elastography, functional magnetic resonance imaging (MRI) methods such 
as diffusion-weighted imaging, blood oxygen level-dependent MRI, magnetic 
resonance elastography, and positron emission tomography/computed tomography 
using radiotracers targeting fibrosis-associated molecules such as 68Ga-FAPI. This 
review systematically summarizes the latest evidence on the above biomarkers and 
advanced imaging modalities, with an emphasis on their diagnostic performance 
(sensitivity/specificity), utility for dynamic monitoring, and bottlenecks in clinical 
translation. The aim is to develop a multimodal, noninvasive assessment system 
to enable earlier fibrosis detection, stratified disease management, and precise 
intervention targeting fibrogenic pathways, ultimately improving renal disease 
outcomes.
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1 Introduction

Chronic kidney disease (CKD) is defined as structural or functional kidney damage, 
manifesting as an estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73 m2 or 
urinary protein ≥30 mg/day for over 3 months (1, 2), in 2017, approximately 843.6 million 
people worldwide were affected by CKD. Although the mortality of patients with end-stage 
renal disease has declined, the Global Burden of Disease study showed that CKD has become 
one of the leading global causes of death (3).

Renal fibrosis (RF) is characterized by excessive extracellular matrix (ECM) deposition 
leading to scar formation, representing the common outcome of various CKD (4–6) (Figure 1). 
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Currently, clinical evaluation of CKD relies mainly on eGFR and 
proteinuria. However, these indicators have significant limitations: due 
to the kidney’s functional reserve, eGFR cannot detect early renal 
fibrosis and cannot assess the extent of interstitial fibrosis (7). In 
addition, kidney biopsy is the diagnostic gold standard for renal 
fibrosis, but its clinical use faces many challenges: it is invasive, allows 
only limited tissue sampling, has low repeatability, and provides limited 
accuracy in grading fibrosis severity. In recent years, blood and urine 
biomarker assays combined with advanced imaging techniques-such 
as ultrasound and magnetic resonance imaging (MRI), and especially 
positron emission tomography/computed tomography (PET/CT) 
(Figure 2) have emerged as important noninvasive means to evaluate 
renal fibrosis. These technologies offer the promise of early and 
accurate fibrosis detection, and they support dynamic monitoring of 
disease progression and timely interventions to slow CKD progression.

We reviewed the literature on blood/urine biomarkers and 
imaging modalities for the noninvasive diagnosis of renal fibrosis in 
the past 5 years, to evaluate CKD progression and fibrosis severity in 
comparison with traditional indicators like eGFR and proteinuria, 
with a focus on clinical applicability.

2 Blood and urine biomarkers of renal 
fibrosis

Persistent tubular injury, inflammatory activation, and collagen/
ECM deposition are considered major drivers of renal fibrosis. Based 
on these key pathological events, an increasing number of serum and 
urine biomarkers have been identified, providing new avenues for the 
clinical assessment of renal fibrosis.

2.1 Extracellular matrix

2.1.1 Procollagen type III N-terminal propeptide 
and procollagen type VI N-terminal propeptide; 
C1M and C3M

Procollagen type III N-terminal propeptide (PRO-C3) and 
procollagen type VI N-terminal propeptide (PRO-C6) are biomarkers 

reflecting the formation of type III and VI collagen, whereas C1M and 
C3M are fragments generated by matrix metalloproteinase (MMP) 
degradation of type I  and III collagen during ECM remodelling. 
Studies have found, for example, that ELISA measurement of urinary 
DKK-3, PRO-C6, and C3M levels in patients with ANCA-associated 
vasculitis (AAV) versus healthy controls showed that uPRO-C6, 
uC3M, and uDKK-3 were elevated in AAV patients, and uPRO-C6 
and uDKK-3 levels were significantly correlated with the degree of 
renal fibrosis (8); in patients with lupus nephritis (LN), serum and 
urine PRO-C3 and PRO-C6 are significantly elevated and associate 
with interstitial fibrosis and tubular atrophy (9). Among IgA 
nephropathy (IgAN) patients, sPRO-C3 and sC3M correlate with 
fibrosis extent on biopsy, while urinary C3M/creatinine is inversely 
correlated with fibrosis. Another study found that uC3M levels decline 
with increasing CKD stage and are independently and negatively 
associated with 12-month and 30-month CKD progression and 

FIGURE 1

Renal fibrosis is the final common pathophysiological pathway of CKD.

FIGURE 2

Schematic of methodological approaches for renal fibrosis (RF) 
assessment.
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development of end-stage renal disease (10). However, a separate 
prospective observational study reported that in type 2 diabetic 
(T2DM) patients with microalbuminuria, higher sC3M was a risk 
factor for CKD progression and was associated with inflammatory 
markers (11). Therefore, molecules related to collagen synthesis and 
degradation are potential biomarkers of renal fibrosis (Table  1). 
Notably, some studies indicate that blood biomarkers lack specificity, 
whereas urinary C3M and C1M may have greater diagnostic and 
prognostic value (12).

2.1.2 Matrix metalloproteinases
Matrix metalloproteinases (MMPs) are secreted by glomerular 

cells, renal tubular epithelial cells, and macrophages to degrade the 
ECM, while TIMPs (tissue inhibitors of metalloproteinases) 
specifically inhibit MMPs by forming complexes, thus regulating ECM 
degradation and remodelling (13). Enoksen et  al. (14) measured 
baseline serum levels of eGFR, MMP-2, MMP-7 and TIMP-1 in 1,627 
subjects without diabetes, kidney, or cardiovascular disease and 
re-evaluated them after a median of 5.6 years; they found that the 
profibrotic biomarker sMMP-7 was associated with accelerated GFR 
decline and increased risk of incident CKD in middle-aged individuals 
from the general population. Similarly, in a cohort of 1,181 T2DM 
patients followed over time, the risk of renal function decline 
increased with higher baseline sMMP-7 levels (15), in hypertensive 
patients, those with CKD had significantly elevated urinary MMP-7 
(16). Multiple studies have demonstrated that CKD patients, including 
those with diabetic kidney disease (DKD) and IgAN, have significantly 
higher MMP-7 levels in blood and urine compared to healthy 
individuals, and that urinary MMP-7 is an independent predictor of 
IgAN progression and correlates with RF (17, 18). These findings 
suggest that elevated MMP-7 in blood or urine is associated not only 
with current renal function but also with future decline, and that 
increases in MMP-7 could serve as a potential early noninvasive 
indicator of CKD development in the context of hypertension and 
diabetes, enabling earlier therapeutic intervention.

2.2 Biomarkers associated with 
inflammatory activation

2.2.1 Transforming growth factor-β1
Transforming growth factor-β1 (TGF-β1) is a growth factor 

secreted by many cell types, including inflammatory cells, tubular 
epithelial cells, and fibroblasts (19). TGF-β1 is considered the most 
potent profibrotic cytokine and a central mediator of RF, involved in 
fibroblast transdifferentiation and activation (20, 21). In patients with 
IgAN, serum TGF-β1 levels are elevated and associate with lower 
eGFR and higher tubular atrophy/interstitial fibrosis (T) scores on 
biopsy (22). DKD leads 40% of patients who are diabetic and is the 

leading cause of CKD worldwide (23, 24). Likewise, patients with 
DKD show significantly increased TGF-β1 levels (25). Furthermore, 
in LN patients, urinary TGF-β1 correlates positively with the degree 
of tubulointerstitial fibrosis (12), suggesting that TGF-β1 in blood or 
urine may serve as a noninvasive biomarker of renal fibrosis. However, 
since TGFβ1 broadly participates in fibrosis of other organs and lacks 
kidney-specificity, further large-scale clinical validation is necessary.

2.2.2 Monocyte chemoattractant protein-1
Monocyte chemoattractant protein-1 (MCP-1), also known as 

C-C motif chemokine ligand 2 (CCL2), is a chemokine produced by 
injured tubular epithelial cells and monocytes/macrophages. By 
inducing inflammatory cell activation and recruiting monocytes/
macrophages, MCP-1 mediates and promotes RF (26). Research 
shows that the measurement of MCP-1 in the urine of DKD patients 
is higher compared to healthy controls, and it is significantly associated 
with the progression of CKD, as well as related to changes in urinary 
albumin levels and eGFR, indicating that uMCP-1 is an important 
biomarker for assessing the progression of DKD (27, 28). In the 
SPRINT trial of 2,253 CKD patients, Miller et al. (29) found that 
uMCP-1 was a marker of tubulointerstitial fibrosis. Research in LN 
patients likewise showed that uMCP-1 levels are significantly elevated, 
with biopsy samples revealing marked RF (30). Thus, although MCP-1 
is an inflammatory marker, its significant increase at the initiation 
stage of fibrosis and its correlation with TIF in CKD suggests it has 
potential utility as a fibrosis biomarker.

2.2.3 Interleukins
Interleukins (ILs) are a group of cytokine proteins produced by 

various cells (including immune cells) in the body. They can 
be classified as pro-inflammatory, anti-inflammatory, or dual-effect 
cytokines based on their biological roles in inflammation (31).

Single-cell RNA sequencing of kidney tissues from CKD 
patients versus healthy controls found that IL-6, IL-18, and IL-33 
expression levels positively correlated with fibrosis severity and 
negatively with eGFR (32). In patients with DKD, plasma IL-6 
concentrations were significantly higher than in controls and were 
associated with higher proteinuria (33). A cross-sectional study of 
renal transplant recipients showed that urinary IL-8 was elevated in 
patients with rejection; thus, urinary IL-8 mRNA may be used as a 
diagnostic tool for fibrosis (34).

Deng et  al. (35) measured plasma IL-7  in IgAN patients and 
controls, finding that IgAN patients had significantly lower IL-7 levels; 
IL-7 levels differed between presentation and follow-up, suggesting 
that sIL-7 may be a noninvasive biomarker for predicting IgAN.

In summary, the interleukin family plays a key role in both 
promoting and alleviating fibrosis. Interleukins may be  potential 
therapeutic targets and biomarkers, but factors such as IL-6 increase 
in autoimmune diseases and infections, showing low specificity and 

TABLE 1  The key biomarkers reflecting the synthesis and degradation of ECM during the process of renal fibrosis.

Marker Secretory cells/mechanism Type of molecule Function association

PRO-C3 Fibroblast; myofibroblast Protein fragment Metabolites of type III collagen precursors

PRO-C6 Mesangial cells; fibroblasts Protein fragment VI type collagen synthesis marker

C1M MMPs degrade type I collagen Polypeptide Degradation marker of type I collagen

C3M MMPs degrade type III collagen Polypeptide Type III collagen degradation marker

https://doi.org/10.3389/fmed.2025.1646412
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yuan et al.� 10.3389/fmed.2025.1646412

Frontiers in Medicine 04 frontiersin.org

making it difficult to distinguish RF from other inflammations. 
Therefore, there is insufficient evidence for using inflammatory factors 
in the clinical diagnosis of renal fibrosis.

2.3 Tubular injury biomarkers

2.3.1 Kidney injury molecule-1
Kidney injury molecule-1 (KIM-1) is a transmembrane glycoprotein 

that is highly expressed in injured proximal tubular epithelial cells and can 
be  detected in plasma and urine (36, 37). Studies show that KIM-1 
expression in renal tubules correlates with kidney inflammation and 
fibrosis, and it is considered an early, sensitive, and specific urinary 
biomarker of kidney injury. KIM-1 can also be used to quantify the 
severity of tubular cell injury (28, 38). Birnlland et al. (39) evaluated 
KIM-1 levels in patients with ANCA-associated vasculitis and 
glomerulonephritis (ANCA-GN) at diagnosis and after treatment. They 
found that KIM-1 was elevated at diagnosis but decreased after induction 
of remission therapy, suggesting that KIM-1 may be a biomarker of acute 
kidney injury (AKI) and tubulointerstitial damage in ANCA-GN. These 
findings indicate that persistently elevated KIM-1 could serve as an 
indicator of ongoing renal fibrosis.

2.3.2 Neutrophil gelatinase-associated lipocalin
Neutrophil gelatinase-associated lipocalin (NGAL), also known 

as lipocalin-2 (LCN-2), is a 25 kDa protein of the lipocalin family. 
During kidney injury, NGAL is specifically released into the 
bloodstream and urine (40). In a population-based cohort, higher 
plasma NGAL concentrations were associated with an increased risk 
of developing CKD, indicating the potential utility of NGAL as a 
biomarker for incident CKD risk (41). Research findings indicate that 
urinary NGAL levels are elevated in T2DM patients compared to 
healthy controls, and are associated with urine protein levels (36). 
Using ELISA to quantify urinary NGAL, patients with chronic 
tubulointerstitial nephritis (D-CTIN), primary membranous 
nephropathy (PMN), and membranoproliferative glomerulonephritis 
(MPGN) all showed significantly higher uNGAL levels than healthy 
controls, and uNGAL was directly proportional to the degree of 
proteinuria and inversely proportional to residual renal function (42) 
(Table 1).

2.3.3 N-acetyl-β-D-glucosaminidase
N-acetyl-β-D-glucosaminidase (NAG) is a lysosomal enzyme 

predominantly present in proximal tubular cells of the kidney; it is not 
filtered by the glomerulus. Increased urinary NAG excretion is caused 
entirely by proximal tubular cell injury (43). One study found that 
uNAG levels were higher in DN patients than in T2DM patients, 
suggesting that urinary NAG may be an early indicator of disease 
progression from T2DM to DN (44), KIM-1, MCP-1, and NAG have 
been identified as the most promising urinary biomarkers for early 
diagnosis of renal involvement in IgA vasculitis (45).

Nevertheless, Hsu et al. (46) conducted a prospective cohort study 
and found that after adjusting for known CKD progression risk factors 
including eGFR and ACR, tubular injury biomarkers such as KIM-1, 
NGAL, and NAG did not improve prediction of CKD progression. 
These markers can also be influenced by non-fibrotic conditions like 
infections; hence, their role as specific indicators of renal fibrosis 
remains controversial.

2.3.4 Dickkopf-related protein 3
Dickkopf-related protein 3 (DKK-3) is a secreted glycoprotein 

synthesized by renal tubular epithelial cells under stress conditions 
(47). ELISA-based measurement of DKK-3 in serum and urine of 
CKD patients revealed that urinary DKK-3 (uDKK-3) levels were 
closely correlated with the severity of tubular atrophy (TA) and 
interstitial fibrosis (IF) observed on kidney biopsy (48). Urinary 
DKK-3 levels are significantly elevated in renal transplant recipients 
compared to healthy controls (49). Moreover, uDKK-3 levels increase 
progressively with advancing CKD stage and correlate inversely with 
eGFR (47, 50). Elevated DKK-3 also helps identify patients on 
peritoneal dialysis who are at risk of faster decline in residual renal 
function (51). Therefore, uDKK-3 has great potential as a biomarker 
for monitoring renal disease progression, large-scale cohort validation 
remains necessary.

2.3.5 Vascular cell adhesion molecule 1
Vascular cell adhesion molecule 1 (VCAM1), mainly expressed by 

activated endothelial cells, shows minimal expression in normal tissue 
but is highly expressed in fibrotic tissue and involved in cell adhesion 
(52). Single-cell transcriptomic and LC-MS proteomic analyses 
revealed significantly elevated VCAM-1 expression in CKD tissues, 
with higher levels in proliferative LN (PLN) compared to membranous 
LN (MLN) (53, 54). Serum VCAM-1 measured by ELISA showed 
significant elevation in CKD patients, correlating with CKD risk in 
T2DM patients, suggesting its potential for CKD risk stratification in 
this population (55). Similarly, elevated serum VCAM-1 levels 
effectively distinguished active LN from healthy controls, remission-
phase LN, active non-renal SLE, and non-lupus CKD, correlating 
positively with proteinuria, Scr, anti-dsDNA antibodies, and negatively 
with complement C3. Thus, serum VCAM-1 may aid in early 
detection of LN flares (56). Additionally, integrated GEO database 
analysis using ML identified VCAM1 as a promising biomarker for 
renal fibrosis in tissues and serum (57). However, its elevation in 
conditions such as atherosclerosis and infection reduces 
kidney-specificity.

2.4 Biomarkers in the urine

2.4.1 Extracellular vesicles
Extracellular vesicles (EVs) are membrane-bound vesicles released 

by cells, mainly originating from renal and other urinary tract cells; 
they include exosomes, microvesicles, and apoptotic bodies. These 
vesicles contain proteins, lipids, DNA, mRNA, and microRNAs 
(miRNAs), reflecting the physiological state of the source cells. EVs 
thus have potential as novel diagnostic biomarkers (58). Research 
indicates that urinary release of podocyte-derived exosomal CD2AP 
mRNA is negatively correlated with the extent of renal fibrosis and 
glomerulosclerosis, suggesting that CD2AP mRNA could serve as a 
noninvasive tool to detect renal fibrosis (59). Proteomic analysis of 
urinary EVs from kidney transplant recipients identified urinary 
vitronectin (VTN) as a potential independent biomarker for 
monitoring fibrotic changes in allograft kidneys (60).

miRNAs are small non-coding single-stranded RNAs that regulate 
gene expression by mRNA degradation or translational inhibition. 
Cao et  al. (61) compared the expression of hsa_circ_0036649  in 
exosomes from fibrotic versus non-fibrotic patients and found it was 
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correlated with the tubulointerstitial fibrosis (TIF) score and 
glomerulosclerosis score. Urinary exosomal miRNAs (including 
miR-21, miR-29, miR-146, and miR-200) may serve as potential 
biomarkers for early detection of renal fibrosis (62). Zhang et al. (63) 
measured miR-451a in 40 IgAN patients and found it significantly 
upregulated, distinguishing patients with mild versus severe tubular 
atrophy/interstitial fibrosis. Although EVs originate from renal and 
urinary tract cells and offer advantages in diagnosing and treating 
renal fibrosis, the lack of standardization in urine collection, 
processing, and storage for EV analysis, as well as the high inter-
individual variability in EV profiles, has hindered the discovery of 
reliable biomarker candidates (64).

2.4.2 Urine sediment and urinary exfoliated cell
Increasing evidence supports non-invasive urine sediment and 

urinary exfoliated cell detection for early CKD diagnosis and 
prognosis (65). Urine sediment examination in DKD patients 
revealing renal tubular epithelial cells or casts correlated significantly 
with higher proteinuria and Scr, indicating more severe kidney 
damage and worse renal outcomes, thus offering potential 
non-invasive prognostic biomarkers (66). Additionally, presence of 
urinary isomorphic erythrocytes in ANCA-MPO vasculitis correlated 
with lower eGFR and more severe clinical presentations, suggesting 
utility as biomarkers for severity and progression (67). Single-cell 
sequencing or transcriptomics of urine sediment also shows diagnostic 
potential in CKD, though large prospective studies are required for 
validation (68, 69). Nevertheless, increased urinary tubular epithelial 
cells occur in acute tubular necrosis and interstitial nephritis as well, 
limiting specificity for renal fibrosis diagnosis.

2.5 Metabolites from the gut

Notably, the kidney and the gut microbiota have a complex 
bidirectional relationship. In CKD, dysbiosis is characterized by a 
decrease in beneficial bacteria (e.g., Lactobacillus, Prevotella, and 
Bifidobacterium) and an increase in pathogenic or opportunistic 
bacteria (including Proteobacteria and Enterococcus). Therefore, 
gut-derived metabolites can serve as biomarkers for CKD (70, 71). For 
example, measurement of p-cresyl sulfate (pCS) and indoxyl sulfate 
(IXS) in the plasma of CKD patients by LC/MS/MS showed that CKD 
patients had significantly higher plasma pCS and IXS, and levels were 
inversely correlated with eGFR. This indicates that both protein-
bound solutes could serve as surrogate markers of renal function (72, 
73). In a mouse model of membranous nephropathy (MN), the 
relative abundances of five probiotic strains (Lactobacillus johnsonii, 
L. murinus, L. vaginalis, L. reuteri, and Bifidobacterium animalis) in 
feces were reduced, and serum levels of indole-3-propionic acid, 
indole-3-aldehyde, and tryptamine were decreased (74); additionally, 
Cao et  al. found that CKD (stages 1–5) patients exhibited gut 
microbiome dysbiosis, with L. johnsonii abundance positively 
correlated with eGFR, and significantly lower serum levels of indole-
3-aldehyde (IAld) and 5-methoxytryptophan. Treatment of an 
adenine-induced CKD rat model with L. johnsonii and IAld improved 
renal injury and fibrosis, suggesting that tryptophan-derived indole 
metabolites may serve as predictive biomarkers in CKD (75).

Trimethylamine N-oxide (TMAO) is a dietary metabolite from 
choline, L-carnitine, and betaine, and the majority (>95%) of TMAO 

is excreted in urine (76). Multiple studies have found that when 
plasma TMAO levels are measured by UPLC-MS/MS or LC-MS/MS 
in healthy controls versus CKD patients (including DKD), CKD 
patients have significantly higher plasma TMAO than healthy 
individuals or T2DM patients. Patients on hemodialysis (HD) or 
peritoneal dialysis (PD) have higher TMAO levels than non-dialysis 
CKD patients (stages 3–5). TMAO levels correlate positively with 
serum creatinine, blood urea nitrogen (BUN), and uACR, and 
negatively with eGFR (77–81). Moreover, higher circulating TMAO 
levels are associated with increased mortality risk in CKD patients (82, 
83). In a large 2-year cross-sectional study of healthy individuals and 
CKD patients, those with elevated TMAO had a higher risk of CKD, 
and TMAO showed moderate ability to distinguish CKD cases from 
non-CKD (84), therefore, TMAO has been identified as a promising 
biomarker; however, age, sex, body mass index (BMI), and diet may 
influence TMAO levels (85), and a lack of studies in CKD stages 1–3 
means its sensitivity in early CKD is unclear. Large-scale studies in 
diverse populations are needed for validation. Additionally, plasma 
TMAO correlates with atherosclerosis risk (86), hence lacking 
specificity for renal fibrosis diagnosis.

2.6 Emerging technologies in noninvasive 
diagnosis of renal fibrosis

Advances in multi-omics approaches (including genomics, 
proteomics, and metabolomics) have provided new insights for the 
noninvasive diagnosis of renal fibrosis. Metabolomics, the study of 
metabolites (such as lipids, amino acids, and sugars), can reflect the 
metabolic state of the body at a given time, enabling early diagnosis 
and risk stratification (87, 88). CKD animal models induced by 
adenine and by unilateral ureteral obstruction (UUO), ultra-
performance liquid chromatography coupled to high-definition mass 
spectrometry (UPLC-HDMS) revealed dysregulation of 
phosphatidylcholine (PC) metabolism and identified 
1-methoxyphenanthrene (MP) as being associated with CKD (89), 
targeted analysis of blood and urine samples from healthy controls 
and CKD patients found that serum L-phenylalanine, L-methionine, 
arginine, kynurenic acid, and indoxyl sulfate, as well as urinary 
L-acetylcarnitine, could serve as potential biomarkers for early CKD 
diagnosis (90). Hong et al. (91) performed liquid chromatography-
mass spectrometry (LC-MS) analysis on plasma samples from CKD 
stages 1–4 patients and healthy controls, and found that asymmetric 
dimethylarginine (ADMA), D-ornithine, L-kynurenine, kynurenic 
acid, 5-hydroxyindoleacetic acid, and gluconic acid were potential 
early biomarkers for CKD progression. Wu et  al. (92) used gas 
chromatography-mass spectrometry (GC-MS) to analyze urinary 
metabolites in patients with different IgAN grades. The study found 
that, compared to IgAN grade 0, four volatile organic compounds 
(VOCs) were significantly elevated in grade 1; and compared to grade 
1, two additional VOCs were upregulated in grades ≥2. These results 
suggest that urinary VOCs might serve as noninvasive biomarkers 
reflecting the dynamic progression of CKD via fibrotic changes. 
Additionally, Peters et al. (93) conducted proteomic analysis of urine 
samples from IgAN patients and identified a proteomic classifier 
called “IgAN237” that has predictive value for disease progression. 
This classifier provides a promising biomarker for risk stratification 
and longitudinal monitoring in IgAN.
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Furthermore, Doke et  al. (32) applied single-cell RNA 
sequencing (scRNA-seq) to kidney tissues from CKD patients and 
healthy controls, finding increased basophil infiltration in fibrotic 
kidneys and showing that IL-6, IL-18, and IL-33 expression in the 
kidney correlated with CKD severity. At the same time, 
comparative serum proteomic analysis showed that levels of heat 
shock protein 90β family member 2 (HSP90B2) and α1-antitrypsin 
(AAT) were elevated in CKD patients compared to healthy 
individuals, and these levels correlated positively with known 
clinical markers, suggesting that they could serve as novel CKD 
biomarkers (94).

Machine learning (ML) has become a key artificial intelligence 
tool in microbiome research. Metabolomic analysis combined 
with ML can reveal metabolic differences between CKD patients 
and healthy controls and validate those differences, providing new 
possibilities for CKD management (95). Chen et  al. (96) 
performed metabolomic profiling on serum samples from 703 
CKD stages 1–5 patients. They found that 5-methoxytryptophan 
(5-MTP), adrenosterol succinate, tiglylcarnitine, and taurine were 
negatively correlated with CKD progression, whereas 
acetylcarnitine was positively correlated. Validation with ML 
showed that this panel of five metabolites could effectively 
distinguish CKD stages 1–5 patients, indicating that these 
metabolites could serve as early CKD biomarkers. In a 
retrospective cross-sectional study using LC-MS/MS-based 
metabolomics, plasma levels of tryptophan (Trp) derivatives were 
quantified in healthy controls and CKD patients (including 
IgAN). The study found that plasma melatonin had >95% 
accuracy in diagnosing early-stage CKD (stages I–II); furthermore, 
indole-3-lactic acid showed excellent ability to distinguish IgAN 
among CKD patients (97). Wu et al. (98) performed full-length 
16S rRNA gene sequencing on fecal samples from healthy controls, 
T2DM patients, CKD patients, and diabetic kidney disease (DKD) 
patients, combined with ML analysis. They found that levels of 
L-valine, L-leucine, and L-isoleucine, and their precursor 
L-glutamate, were significantly increased in DM and DKD 
patients, suggesting these may serve as potential diagnostic 
biomarkers for DKD. Hirakawa et al. (99) integrated untargeted 
metabolomic profiles of plasma and urine from DKD patients 
with ML and found that systolic blood pressure, urine albumin-
to-creatinine ratio (uACR), and certain metabolites (such as 
urinary N-methylproline, NMP) could serve as candidate 
biomarkers; however, these metabolites still require 
external validation.

2.7 Combined use of biomarkers

In CKD stages 2–5, simultaneous measurement of an 
inflammatory marker (IL-6), lipid markers, and kidney injury 
indices revealed that IL-6, BUN, and hemoglobin (Hb) levels 
differed significantly across stages, and these markers were risk 
factors for disease progression. This suggests that combining 
serum biomarkers can enable dynamic monitoring of CKD 
progression, aid in risk stratification, and guide early therapeutic 
intervention (100). Using a combination of serum and urinary 
biomarkers can improve diagnostic accuracy, provide a more 

comprehensive overview of renal health, and allow better risk 
stratification and personalized treatment planning.

2.8 Other biomarkers

Studies have shown that angiopoietin-like protein 4 (ANGPTL4) 
expression is significantly upregulated in CKD rats and patients, 
suggesting ANGPTL4 may be a novel noninvasive marker of renal 
fibrosis (101, 102). In one cohort study, plasma TNFR-1, YKL-40, and 
KIM-1 were associated with the risk of requiring kidney failure 
replacement therapy (KFRT) in diabetic patients (103).

Additionally, other molecules—including CDH11, SERPINF1 
(also known as PEDF), SMOC2, HNF4A, NELL1; soluble lymphatic 
endothelial hyaluronan receptor 1 (sLYVE1); and markers such as 
CD44, nicotinamide N-methyltransferase (NNMT), and 
galactosylceramidase A-9—have shown significant associations with 
interstitial fibrosis/tubular atrophy (IFTA). These molecules have been 
identified as biomarkers of renal fibrosis (104–109). However, more 
and larger clinical sample data are needed to support these findings. 
Creatinine measured in fingernails correlates with serum creatinine 
in CKD patients (110). Retinal fundus examination (111) and retinal 
imaging combined with deep learning (112, 113) have been applied to 
CKD and T2DM detection and risk stratification. However, these 
methods also require larger clinical samples and external validation.

3 Imaging techniques

3.1 Ultrasound

Conventional renal ultrasound is primarily used to evaluate 
nephrolithiasis and mass lesions. However, due to factors such as 
anatomical position, respiratory motion, and limited resolution, 
traditional ultrasound is not sensitive for detecting renal fibrosis. With 
advances in ultrasound imaging, techniques like elastography and 
photoacoustic imaging have emerged, providing new methods for 
diagnosing renal fibrosis.

3.1.1 Ultrasound elastography
Ultrasound elastography (USE) assesses renal fibrosis by 

measuring changes in tissue elasticity. There are two main approaches: 
(1) strain elastography (SE), which analyzes tissue deformation 
(strain) under external pressure; and (2) shear wave elastography 
(SWE), which evaluates tissue stiffness by measuring the velocity of 
ultrasound-induced shear waves (shear wave velocity, SWV) (114). 
The measurement of SWE between CKD patients and health showed 
that the cortical hardness of CKD patients was significantly increased, 
which was positively correlated with serum urea/creatinine levels and 
negatively correlated with GFR (115). A prospective study 
demonstrated that SWE-based Young’s modulus measurements had 
high sensitivity and specificity for diagnosing interstitial fibrosis in 
IgAN patients (116). In 162 CKD patients who underwent 2D-SWE 
and kidney biopsy, the use of machine learning algorithms (XGBoost 
and MLP models) enabled differentiation between severe and mild 
renal fibrosis (117, 118). Logistic regression analysis showed that 
combining eGFR with SWE values improved diagnostic accuracy for 
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mild, moderate, and severe fibrosis in CKD patients (118). Similarly, 
Zhu et al. (119) found that combining SWE with a support vector 
machine (SVM) model enhanced the ultrasound diagnosis of different 
grades of tubulointerstitial fibrosis in CKD patients.

3.1.2 Photoacoustic imaging
Photoacoustic imaging (PAI) is a noninvasive technique that 

combines ultrasound and laser light, using optical absorption to 
generate image contrast. Because different tissue components have 
distinct optical absorption properties, PAI can quantify renal collagen 
content and reflect the progression of fibrosis (120). Photoacoustic 
collagen imaging has been used to rapidly and noninvasively quantify 
renal fibrosis burden in isolated mouse and pig kidneys, as well as 
cortical fibrosis in ex vivo human kidneys (121). Multiple studies in 
animal models of renal fibrosis have shown that the use of nanoparticles 
in conjunction with PAI provides potential for longitudinal staging in 
clinical fibrosis assessment (122, 123). Although PAI is very promising 
for quantifying collagen content and evaluating fibrosis, its application 
in human renal fibrosis has been seldom studied due to issues such as 
suboptimal biocompatibility, limited penetration depth, and 
low resolution.

3.1.3 Contrast-enhanced ultrasound and 
super-resolution ultrasound

Microbubble contrast agents, not excreted through kidneys, can 
safely be used in renal impairment. Contrast-enhanced ultrasound 
(CEUS) monitors arterial microbubble arrival, cortical enhancement, 
and subsequent medullary filling, while super-resolution ultrasound 
(SRUS) reveals microvasculature with high-resolution imaging of 
microbubble trajectories (124–126). Studies using CEUS in CKD 
found significantly reduced cortical microperfusion correlating with 
eGFR, although differences among CKD subgroups were not observed 
(127–129). SRUS precisely quantified progressive pathological 
changes, including reduced renal size, cortical thickness, and altered 
microvascular structure in mouse models (130). SRUS also identified 
decreased vascular density in CKD patients and accurately depicted 
renal transplant microvasculature (131–133). Zhao et al. (134, 135) 
developed a hybrid PA/SRUS imaging method for simultaneous 
monitoring of renal oxygenation and hemodynamics. Both CEUS and 
SRUS have potential as diagnostic tools for progressive kidney disease 
monitoring but face clinical limitations such as motion artifacts and 
imaging speed, requiring further validation.

3.1.4 Superb microvascular imaging
Superb microvascular imaging (SMI), a novel vascular imaging 

technique without contrast agents, detects slow blood flow in small 
vessels with high frame rate, reduced motion artifacts, and high 
resolution. CKD stage 2–5 patients (including T2DM and 
hypertension) exhibited significantly lower SMI vascular indices 
compared to controls, correlating moderately with SCr and eGFR and 
aligning with histological changes and CKD stages (136). Thus, SMI 
can assess morphological renal changes and stage differentiation in 
CKD patients.

3.1.5 Artificial intelligence and ultrasound
Artificial intelligence (AI) leverages non-invasive data to predict 

pathological outcomes. Chang et  al. (137) integrated ultrasound 
images and biomarkers (creatinine, age, gender, and proteinuria) of 

CKD patients into ML models, accurately predicting IFTA and 
providing a powerful non-invasive early CKD assessment tool. DL 
models based on SMI were superior to ultrasound radiomics and 
CDUS models in determining IF severity in CKD (138). Qin et al. 
(139) demonstrated excellent accuracy of a DL model combining 
grayscale US, SMI, and SE for early prediction of chronic renal fibrosis.

Ultrasound, widely utilized for non-invasive CKD assessment, has 
yet to clinically integrate CEUS and SMI fully due to renal position, 
motion artifacts, and cost. Nevertheless, SMI and ultrasound 
combined with AI exhibit substantial potential for renal 
fibrosis diagnosis.

3.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a powerful tool for assessing 
the structure and function of both kidneys. Renal fibrosis alters water 
diffusion patterns, oxygenation, perfusion, and tissue stiffness. 
Accordingly, MRI can evaluate renal fibrosis through various imaging 
techniques. Functional MRI modalities such as diffusion-weighted 
imaging (DWI), diffusion tensor imaging (DTI), intravoxel incoherent 
motion (IVIM) imaging, diffusion kurtosis imaging (DKI), blood 
oxygen level-dependent MRI (BOLD-MRI), and arterial spin labeling 
(ASL) have garnered increasing attention in CKD research. These 
methods allow dynamic monitoring of microstructural and functional 
changes in the kidneys and can quantitatively assess diffusion, fibrosis, 
and oxygenation without the need for exogenous contrast agents (140).

3.2.1 Diffusion MRI
In fibrotic kidneys, ECM deposition and tubular atrophy limit 

water diffusion, so diffusion MRI based on the pattern of water 
molecule diffusion in renal tissue can reflect the structure and spatial 
organization of the kidney.

3.2.1.1 DWI
DWI detects the random diffusional motion of water molecules 

and quantifies this process via the apparent diffusion coefficient 
(ADC). Renal fibrosis restricts water molecule diffusion, leading to a 
decrease in ADC values in the kidney (120, 141). Some studies have 
noted that in animal models of diabetic nephropathy and in patients 
with renal artery stenosis, renal ADC values are reduced and show a 
negative correlation with the degree of interstitial fibrosis (142–144).

3.2.1.2 DTI
DTI is an extension of DWI that evaluates the directional 

movement of water molecules and quantifies it using fractional 
anisotropy (FA). Renal fibrosis can lead to interstitial fibrosis, 
glomerulosclerosis, and inflammatory infiltrates, all of which can 
affect FA values. Studies in transplant kidneys have shown that 
medullary FA and ADC are significantly reduced, with both FA and 
ADC correlating positively with eGFR and negatively with fibrosis 
extent (145).

Moreover, the AUC of DTI was greater than that of ASL in accurately 
identifying allograft fibrosis (146). Other research has shown that in 
CKD patients of various etiologies (such as lupus nephritis) versus 
healthy controls, cortical FA values are significantly higher while ADC 
values are significantly lower in the patient group, indicating that DTI is 
a valuable noninvasive tool for assessing renal dysfunction and fibrosis 
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(147). In addition, in CKD patients, cortical FA and ADC may help 
distinguish DN patients from healthy individuals and assess fibrosis 
severity (148). Therefore, DTI is a promising noninvasive method for 
evaluating renal dysfunction and fibrosis.

3.2.1.3 IVIM
IVIM-DWI can simultaneously assess the diffusion coefficient (D) 

of water molecules, the perfusion-related pseudo-diffusion coefficient 
(D*), and the perfusion fraction (f) (149). Mao et al. (149) compared 
IVIM parameters (D, D*, f) between CKD patients and healthy 
volunteers and found that all IVIM parameters were significantly lower 
in CKD patients than in controls. Additionally, renal parenchymal IVIM 
parameters were negatively correlated with fibrosis scores. In patients 
with DN, IgAN, and non-diabetic renal disease (NDRD), MRI 
parameters were significantly associated with interstitial fibrosis/tubular 
atrophy scores, suggesting that IVIM-DWI can aid in noninvasively 
evaluating renal function, fibrosis extent, and prognostic risk in DN and 
IgAN (150, 151), however, in a study by Ichikawa of CKD patients with 
varying disease severity, cortical D* values were lower in moderate-to-
severe CKD than in mild CKD, whereas cortical f did not differ 
significantly between groups (152). Thus, IVIM shows promise for 
noninvasive assessment, but its utility in grading fibrosis severity requires 
further validation.

3.2.1.4 DKI
DKI is an extension of DTI that quantifies the non-Gaussian 

distribution of water molecule diffusion in tissue; it provides metrics 
such as the kurtosis (K) index, an apparent kurtosis coefficient (K), and 
a diffusion coefficient (D) analogous to ADC. Liu et al. (153) used DKI 
to evaluate renal fibrosis in IgAN and CKD patients and found that the 
kurtosis (K) value was significantly correlated with fibrosis scores, and it 
performed better in identifying severe IF/TA. This suggests that DKI can 
serve as a noninvasive method for detecting renal fibrosis in IgAN and 
CKD patients. In CKD patients, a histogram analysis of DKI-derived D 
and K values showed that the 90th percentile of cortical K and D had the 
strongest correlations with fibrosis scores. This histogram analysis 
demonstrated feasibility in assessing changes in renal function and 
fibrosis in CKD patients (154). Furthermore, in patients with primary 
kidney diseases, hypertension, or diabetes, DKI metrics such as mean 
diffusivity (MD) and interstitial fibrosis are negatively correlated, while 
axial kurtosis (K_a) is positively correlated with interstitial fibrosis. This 
suggests that DKI has potential applications in monitoring renal 
interstitial fibrosis (155).

3.2.2 BOLD-MRI
BOLD imaging uses the transverse relaxation time (T2* = 1/R2*) to 

assess tissue oxygenation. In fibrotic kidneys, deoxyhemoglobin levels 
are elevated and T2* relaxation time is shortened (156). In CKD patients, 
including those with non-diabetic renal disease (NDRD), the rate of 
eGFR decline is significantly associated with both cortical and medullary 
T2* values, suggesting that BOLD-MRI may provide a noninvasive 
method to assess the severity of renal injury (157). In CKD patients, 
including those with non-diabetic renal disease (NDRD), the rate of 
eGFR decline is significantly associated with both cortical and medullary 
T2* values, suggesting that BOLD-MRI may provide a noninvasive 
method to assess the severity of renal injury (158–161). However, in DN 
patients, renal T2* did not correlate with eGFR (162). Researchers have 

shown that factors such as the type and severity of kidney disease, plasma 
sodium concentration, fluid intake, hematocrit, microvascular density, 
and renal blood volume can influence T2* values, indicating that the 
effectiveness of BOLD-MRI in assessing renal fibrosis remains a subject 
of debate (163, 164).

3.2.3 ASL MRI
Arterial spin labeling (ASL) is a quantitative MRI technique based 

on tissue perfusion; it uses magnetically labeled arterial blood water as 
an endogenous tracer to measure renal perfusion (reported in mL/100 g/
min) (165). In an allograft transplant model, renal perfusion was 
decreased and was inversely correlated with fibronectin expression. 
ASL-MRI studies comparing transplant recipients to healthy controls 
found that peritubular capillary density was significantly reduced in 
transplanted kidneys, and that cortical renal blood flow (RBF) decreased 
with increasing fibrosis, with a moderate negative correlation to Banff 
fibrosis scores (166, 167). Additionally, in CKD patients (including those 
with DN and IgAN), RBF declines as interstitial fibrosis worsens. Morra-
Gutierrez reported a significant difference in cortical perfusion when IF 
exceeded 30%, while Mao et al. (168) reported that the ROC AUCs for 
ASL-derived RBF were 0.93 and 0.90 in distinguishing ≤25% vs. >25% 
IF and ≤50% vs. >50% IF, respectively (169, 170). Therefore, ASL can 
serve as a predictor of DKD progression and fibrosis; however, due to low 
signal-to-noise ratio and resolution limitations, larger longitudinal 
studies are needed to evaluate its potential for CKD and fibrosis 
stratification. Therefore, ASL can serve as a predictor of DKD progression 
and fibrosis; however, due to low signal-to-noise ratio and resolution 
limitations, larger longitudinal studies are needed to evaluate its potential 
for CKD and fibrosis stratification.

3.2.4 Magnetic resonance elastography
Similar to SWE, magnetic resonance elastography (MRE) can 

be used to assess tissue stiffness. In an adenine-induced rat model of 
renal fibrosis, MRE showed significantly increased shear wave speed 
(SWS) in fibrotic kidneys, and this SWS was positively correlated with 
the collagen area fraction (CAF) (171). In kidney transplant patients with 
biopsy-confirmed fibrosis, renal stiffness measured by MRE correlated 
positively with Banff fibrosis scores (172). However, a study by Chauveau 
et  al. (173) found no significant correlation between MRE-derived 
stiffness and Banff fibrosis scores, nor an inverse correlation between 
stiffness and cortical glomerulosclerosis rate, suggesting that reduced 
renal blood flow might explain these discrepancies. Similarly, mixed 
results have been observed in patients with DN, IgAN, and LN. Brown 
reported that renal stiffness gradually decreased as DN progressed, while 
renal blood flow measured by ASL also declined significantly; the latter 
showed a strong positive correlation with both eGFR and MRE-derived 
shear stiffness (170). Furthermore, healthy individuals exhibited 
increased renal stiffness after water loading, indicating that increased 
renal perfusion pressure can raise tissue stiffness (174). Thus, while MRE 
does reflect the presence of renal fibrosis, factors such as renal perfusion 
contribute to variability in measurements.

3.2.5 Other novel MR techniques
In patients with chronic glomerulonephritis (CGN), native T1 

relaxation times are significantly elevated, closely correlating with CKD 
stage. ROC analysis showed that the optimal T1 threshold for predicting 
renal fibrosis was 1,695 ms (specificity 0.778, sensitivity 0.625). Therefore, 
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native T1 mapping can be an effective, noninvasive method for detecting 
renal fibrosis in CGN patients (175). MPI is an innovative functional 
imaging modality exploiting SPION nonlinear responses to achieve 
three-dimensional lesion localization. Its high sensitivity, temporal 
resolution, and quantitative measurement capabilities make it highly 
suitable for preclinical molecular imaging applications (176).

Additionally, as noted above, fibroblast activation protein (FAP) can 
serve as a fibrosis biomarker. Combining MRI with a FAP-targeted 
fluorescent probe enabled highly sensitive imaging of fibrotic kidneys in 
a UUO mouse model, demonstrating potential for early RF diagnosis 
and guidance of FAP-targeted therapy (177). Using amide proton 
transfer-weighted MRI (APTw) in bilateral renal ischemia-reperfusion 
(IRI) and UUO models, researchers found that cortical APT (cAPT) and 
medullary APT (mAPT) values were positively correlated with the extent 
of renal fibrosis; in early-stage fibrosis, APT values had better diagnostic 
performance than ADC values (178). Gd-OA, a probe targeting collagen 
side chains designed by Chen et  al. (179), and newly synthesized 
gadolinium oxide nanoparticles (Gd₂O₃ NPs) by Ashouri et al. (180), 
have been shown in combination with MRI to be important tools for 
detecting and staging renal fibrosis in animal models. However, further 
research is needed to determine their clinical applicability.

In summary, diffusion-based MRI techniques—including DWI, 
DTI, IVIM, and DKI—have shown potential value for noninvasive 
diagnosis of renal fibrosis. Studies have found significant differences in 
parameters such as ADC, D, D*, f_p, mean kurtosis (MK), and MD 
between CKD stages 1–2 and 3–5 in patients and healthy volunteers. 
Moreover, renal MD, D, and medullary FA are negatively correlated with 
injury scores. Thus, IVIM appears to have higher diagnostic value than 
DWI in CKD patients. However, another study noted that DKI and 
medullary DTI outperformed DWI and IVIM in evaluating the severity 
of renal pathology and dysfunction in CKD (181, 182). Additionally, in 
IgAN patients and healthy volunteers, multiple MRI parameters (cortical 
and medullary T2*, ADC, D, D*, and f) decreased with declining 
eGFR. Except for cortical and medullary D*, all MRI parameters were 
significantly correlated with interstitial fibrosis scores, with cortical D* 
showing the strongest correlation. Therefore, IVIM-DWI and 
BOLD-MRI can aid in further assessing renal function, Oxford 
classification lesions, and prognostic risk in IgAN patients (150).

3.3 Computed tomography and positron 
emission tomography/computed 
tomography

3.3.1 CT
Because iodinated contrast agents may worsen renal insufficiency, 

contrast-enhanced computed tomography (CT) is rarely used in the 
clinical diagnosis of kidney diseases (183). Radiomics employs 
advanced algorithms to convert standard medical images into high-
dimensional data arrays, capturing subtle renal structural changes. CT 
combined with ML demonstrated higher diagnostic accuracy (AUC) 
in differentiating CKD stages 1–3 from healthy controls compared to 
radiologists (184). A CNN model developed by Chantaduly et al. (185) 
differentiated mild/moderate from severe renal fibrosis similarly to 
renal biopsy. Ren et  al. (186) reported superior performance of 
combined radiomics models in predicting IF grading (mild–moderate 
vs. severe).

3.3.2 PET/CT
PET/CT offers high specificity and sensitivity by using molecular 

probes that target specific biological processes or molecules to 
quantitatively assess radiotracer accumulation in fibrotic tissue, thereby 
elucidating disease mechanisms (187). In normal organs, FAP is barely 
detectable, but it is significantly upregulated in areas of tissue 
remodeling, including renal and pulmonary fibrosis (188). Huang et al. 
(189) employed PET/CT with FAP-targeted tracers ([18F]FAPI-42 and 
[18F]AlF-NOTA-FAPI) to image kidneys on day 2 after acute kidney 
injury (AKI). They found that AKI was associated with renal fibrosis 
by day 14, and that FAP-specific PET/CT imaging was able to 
dynamically observe the maladaptive repair process after AKI and 
predict the development of renal fibrosis. The radiolabeled FAP 
inhibitor [68Ga]Ga-FAPI-04 has been demonstrated as an imaging 
tracer for PET/CT. Our team was the first to perform [68Ga]Ga-FAPI-04 
PET/CT in an adenine-induced CKD model, reporting increased renal 
FAPI uptake that rose over time and correlated with the extent of renal 
fibrosis (190). We subsequently applied this imaging in CKD patients 
undergoing biopsy, and the results showed that nearly all patients with 
renal fibrosis exhibited tracer uptake, which increased with fibrosis 
severity, indicating that [68Ga]Ga-FAPI-04 PET/CT can sensitively 
detect renal fibrosis at early stages (191). Additionally, a peritoneal 
fibrosis (PF) rat model showed significantly increased 68Ga tracer 
uptake compared to controls (192). PET/CT imaging with [68Ga]
Ga-FAPI-04 was also performed in LN patients and healthy individuals. 
The study found that renal uptake of 68Ga-FAPI-04 was positively 
correlated with disease progression, serum creatinine, chronicity index, 
and the degree of tubulointerstitial fibrosis. LN patients had 
significantly higher renal 68Ga-FAPI-04 uptake than healthy controls, 
suggesting that 68Ga-FAPI-04 PET/CT can be used for noninvasive 
assessment of tubulointerstitial fibrosis in active lupus nephritis (193). 
Conen et al. (194) conducted a retrospective analysis of patients who 
underwent [68Ga]Ga-FAPI PET/CT and reported that renal 
parenchymal FAPI uptake was significantly inversely correlated with 
eGFR, indicating that [68Ga]Ga-FAPI has potential as a noninvasive 
tool for CKD staging and quantitative assessment. Furthermore, in a 
trial of 14 patients with histologically confirmed Erdheim–Chester 
disease (ECD), 68Ga-FAPI PET/CT outperformed 18F-FDG PET/CT, 
including showing enhanced image contrast and higher lesion SUV 
max across multiple organs (kidneys, heart, lungs) (195). Wang et al. 
(196–198) reported the use of 18F-AlF-NOTA-FAPI-04 PET/CT in a 
patient with multiple myeloma and renal interstitial fibrosis. The scan 
showed markedly increased FAPI uptake in both kidneys. In a 
comparison with healthy individuals, patients with IgAN, MN, or DN 
had significantly higher renal uptake on 18F-AlF-NOTA-FAPI-04 PET/
CT. Moreover, renal SUV_max correlated positively with interstitial 
fibrosis, tubular atrophy, and tubulointerstitial inflammation scores on 
biopsy, suggesting that 18F-AlF-NOTA-FAPI-04 PET/CT may 
be valuable for noninvasive evaluation of renal interstitial fibrosis and 
for monitoring disease progression. The authors proposed that 18F-AlF-
NOTA-FAPI-04 could serve as an alternative to [68Ga]Ga-FAPI. If 
FAPI-targeted imaging is validated in larger dedicated studies and 
proven to be  specific for fibrosis, it may represent the first direct 
noninvasive imaging approach for renal fibrosis (199).

Cardiorenal syndrome is defined as a pathophysiological 
disorder including both heart and kidneys (200). Brown has 
suggested that 13N-ammonia PET/CT can simultaneously evaluate 
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myocardial and renal perfusion. In his study, resting PET-measured 
renal blood flow was strongly negatively correlated with histological 
interstitial fibrosis, opening a potential new avenue to investigate 
therapies that confer overlapping benefits to the heart and kidneys 
(201). In summary, PET/CT provides a comprehensive assessment 
of renal structure and function, effectively monitors CKD and renal 
fibrosis progression, and offers opportunities for early detection, 
accurate diagnosis, and personalized therapeutic strategies.

3.4 Radiomics

With technological advancements, radiomics holds promise for 
providing more reliable and accurate information on diagnosis, 
treatment, and prognosis. Lu et al. (202) developed a multimodal 
molecular imaging system integrating PET, SPECT, FMI, and CT to 
obtain comprehensive small animal imaging data. The kidney imaging 
project (KIP) initiated by Zhou et al. (203) aims to advance precision 
nephrology through multimodal, multi-scale renal imaging atlases.

4 Discussion and conclusions

In conclusion, despite renal biopsy remaining the diagnostic gold 
standard for renal fibrosis, it is limited by invasiveness, bleeding risks, 
and sampling inadequacies. Various serum and urinary biomarkers 
are crucial for early diagnosis, dynamic monitoring, and therapeutic 
evaluation (Table  2). Biomarkers like TGFβ1 reflect fibrosis and 
inflammation activation; pro-fibrotic cytokines (e.g., IL-6) correlate 
with renal dysfunction and fibrosis progression. Urinary biomarkers 
(KIM-1, NGAL) directly reflect local pathology and ongoing tubular 
injury; collagen metabolites, exosome-derived miRNAs (miR-21, 
miR-29), and TIMPs relate to abnormal ECM deposition (Figure 3). 
However, due to limited assay standardization (e.g., ELISA) and 
insufficient specificity, combined use of biomarkers with multi-omics 
(proteomics, metabolomics) and ML has gained attention. Clinical 
translation remains challenged by assay standardization and pathology 
correlations. Integration of biomarkers with radiomics and AI may 
enhance fibrosis assessment precision in the future.

Advancements in ultrasound technologies (SRUS, SMI) are 
transitioning renal fibrosis diagnostics from macroscopic to 
microcirculatory, molecular, and functional multidimensional 
assessments. Despite limitations, multimodal imaging with AI may 
eventually replace biopsies. Imaging methods (DWI, DTI, IVIM) 
show inconsistent correlations with fibrosis. Enhanced CT and MRI 
pose risks; radiomics and AI may improve diagnostic accuracy but 
need further clinical validation. PET/CT combined with FAPI shows 
high specificity and sensitivity, offering promising quantitative 
diagnostic potential for renal fibrosis (Table 3).

In conclusion, despite significant advancements and the 
demonstrated potential of serum and urinary biomarkers and imaging 
techniques such as ultrasound, PET/CT, and MRI, much work remains 
to be  done to clarify biomarker mechanisms, enhance imaging 
diagnostic thresholds, and expand the clinical translation of these 
methods. Future efforts should focus on integrating novel biomarkers 
and imaging modalities with multi-omics and artificial intelligence 
approaches to overcome the current “bench-to-bedside” translation 
bottleneck, enabling earlier diagnosis and treatment of renal fibrosis. T
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TABLE 2  (Continued)

Classification Biomarker Type of disease (person) Sample type Advantage Disadvantage

Tubular injury markers

KIM-1 ANCA-GN (39) Blood, urine Indicates tubular injury and CKD 

severity

Does not increase the predicted risk of disease 

progression Factors such as infection and 

ischemia interfere
NGAL CTIN, MN (42), T2DM (36) Blood, urine

NAG DKD (44) Blood, urine

DKK-3 CKD (48) kidney transplant (49) PD 

(51)

Urine Increased in CKD

Related to eGFR and degree of fibrosis

Lack of large-scale queue validation

VCAM1 MLN, PLN (53, 54) T2DM, DKD (55) 

LN (56)

Blood Associated with the degree of renal 

interstitial inflammation and fibrosis 

score

Elevated in AS and infection

Low specific

EVs

mRNA DKD, FSGS, IgAN, MN (CD2AP 

mRNA) (59)

Kidney transplant (VTN) (60)

Urine Reflects the physiological state of the 

source cell

Lack of consensus on standardization of urine 

collection, processing and storage and on uEV 

separation and downstream analysis

miRNA Peritoneal dialysis (miR-21) (62)

IgAN (miR-451a) (63)

Urine

Urine sediment and 

urinary exfoliated cell

Renal tubular epithelial cells or casts 

urinary isomorphic erythrocytes

DKD (66)

ANCA-MPO vasculitis (67)

Urine Directly reflects the core link of tubular 

injury

Impossible to distinguish between AKI and 

CKD

Metabolites from the gut Pcs, IXS, indole-3-propionic acid, 

indole-3-aldehyde, and tryptamine

CKD (72)

MN (74)

Blood Associated with the fibrosis score Interfered by liver function and protein intake

TMAO T2DM, CKD (77–84) Positively correlated with Scr, BUN and 

UACR, and negatively correlated with 

eGFR

Affected by age, sex, BMI, and diet Correlated 

with AS

Low specific

Biomarkers: PRO-C3, procollagen III N-terminal propeptide; PRO-C6, procollagen VI C-terminal propeptide; C1M, collagen type I degradation marker; C3M, collagen type III degradation marker; MMPs, matrix metalloproteinases; TGFβ1, transforming growth 
factor beta-1; MCP-1, monocyte chemoattractant protein-1; ILs, interleukins; DKK-3, Dickkopf-related protein 3; VCAM1, vascular cell adhesion molecule 1; TMAO, trimethylamine N-oxide; KIM-1, kidney injury molecule-1; NGAL, neutrophil gelatinase-associated 
lipocalin; NAG, N-acetyl-β-D-glucosaminidase; VTN, von Willebrand factor-associated nephropathy. Diseases and pathology: LN, lupus nephritis; IgAN, immunoglobulin A nephropathy; T2DM, type 2 diabetes mellitus; ANCA-GN, ANCA-associated 
glomerulonephritis; D-CTIN, drug-induced chronic tubulointerstitial nephritis; MN, membranous nephropathy; PD, peritoneal dialysis; MLN, membranous lupus nephritis; PLN, primary lipoprotein glomerulopathy; FSGS, focal segmental glomerulosclerosis; ANCA-
MPO, vasculitis, myeloperoxidase-ANCA vasculitis; AAV, ANCA-associated vasculitis. Others: TIF, tubulointerstitial fibrosis; AS, atherosclerosis; BMI, body mass index.
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TABLE 3  Characteristics of noninvasive renal fibrosis imaging techniques.

Detection Method Advantage Disadvantage Clinical application Diagnostic value

Tissue stiffness USE Non-invasive, real-time imaging, 

low cost, no radiation

Dependent on the operator’s 

experience, sensitive to obesity or 

gas interference, with limited 

depth

Initial screening and dynamic 

monitoring of fibrosis p 

regression

Dependent on the operator’s 

experience, sensitive to 

obesity or gas interference, 

with limited depth

MRE Quantifiable, high accuracy, 

unaffected by operator influence

High equipment requirements and 

low adoption rate

During the research phase, 

potential non-invasive 

evaluation tools

The reflection of kidney 

fibrosis by MRE remains 

controversial due to factors 

such as renal perfusion

Diffusion of 

water molecules

DWI Noninvasive, no contrast agent It is susceptible to respiratory 

motion artifacts and has low 

resolution

Auxiliary diagnosis of fibrosis 

and differentiation of other 

kidney diseases (such as 

inflammation)

It needs to be combined with 

other sequences, and its 

sensitivity and specificity 

need to be improved

DTI Assess structural disorder caused 

by fibrosis

The scanning time is long, the 

motion is sensitive, and the 

clinical application is limited

Conducted to assess early 

fibrosis in DN or hypertensive 

kidney damage

Lack of standardized 

parameter threshold, the 

research is mostly in the 

experimental stage

IVIM Distinguish between perfusion 

and diffusion

Post-processing is complex Early microcirculation 

assessment

The severity of renal fibrosis 

needs to be further verified

FIGURE 3

Key hematological biomarkers for noninvasive diagnosis of renal fibrosis.

(Continued)
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