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Introduction: Idiopathic scoliosis (IS) is a complex spinal deformity affecting ~3% 
of the population, with a multifactorial and genetically heterogeneous origin. 
This study aimed to investigate the genetic origins of severe IS by examining 
both constitutional and post-zygotic alterations.
Methods: We analyzed 70 unrelated IS-affected individuals using whole exome 
sequencing (WES) and SNP array approaches on intraoperatively collected 
articular processes and blood samples.
Results: Two pathogenic constitutional copy number variants (CNVs) were 
identified – a 43.6 Mb duplication on chromosome 8p and trisomy X – along with 
eight regions of homozygosity (ROH) located on chromosomes 1, 2, 8, 12, 14, 
and 16, absent in ethnically matched controls. Additionally, a heterozygous DMD 
deletion (exons 17–36) was found in one female, and rare recurrent pathogenic 
single-nucleotide variants (SNVs) were detected in ENAM and FLNB genes. 
Notably, 13% (95% CI, 6.1–23%) of individuals harbored pathogenic variants, 
spanning CNVs, ROH, and SNVs, suggesting a genetic contribution to IS.
Discussion: Our findings demonstrate that one in seven cases classified as 
idiopathic may have an underlying monogenic cause. This study underscores the 
polygenic and heterogeneous nature of IS and highlights the need for genetic 
testing by integrating WES and SNP array analyses into its diagnostic workflow. 
Our findings suggest that incorporating genetic testing into the diagnostic 
evaluation of severe IS patients may enable personalized genetic counseling 
and, consequently, improve clinical management.
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1 Introduction

Scoliosis is a three-dimensional spine deformity, diagnosed 
through X-ray imaging by measuring the major curvature using the 
Cobb angle method (≥10°). Approximately 80% of cases are classified 
as idiopathic, meaning that no clear cause is identified (1, 2). 
Idiopathic scoliosis (IS) is primarily observed in adolescents (AIS), 
with girls being up to 10 times more likely to develop severe disease 
and experience rapid progression (3). The female predominance may 
reflect developmental factors, as girls enter puberty earlier during the 
critical period of postural system maturation. However, the absence 
of a clear sex-linked inheritance pattern suggests the Carter effect, a 
genetic phenomenon in which males, as the less frequently affected 
sex, must carry a higher genetic burden to develop the condition. This 
increases their likelihood of transmitting it to the next generation, 
thereby maintaining the sex imbalance (1, 4–6).

The prevalence of IS varies geographically and affects roughly 
2–3% of the population. Research suggests that IS may have a 
hereditary component, with an estimated 6–11% penetrance among 
first-degree relatives, further supported by higher concordance in 
monozygotic compared to dizygotic twins (1). A Swedish Twin 
Registry-based study found that genetic factors account for 38% of the 
risk of developing scoliosis, while the remaining 62% attributed to 
environmental factors. Although a polygenic inheritance pattern has 
been predominantly proposed for IS, identifying its precise genetic 
basis remains challenging due to its heterogeneity. Several limitations, 
including small cohort sizes, inconsistent findings, difficulties in 
replicating results across different populations, and insufficient clinical 
examination of study groups, contribute to the existing gaps 
in knowledge.

In this study, we selected a well-defined cohort with a uniform 
ethnic background, focusing on severe, surgically treated IS cases, 
with a median curvature of 59 degrees. Since only a fraction of IS 
patients (0.1–0.3%) exhibit curvatures exceeding 40 degrees, 
we  hypothesized that this severely affected group is enriched for 
constitutional and/or post-zygotic pathogenic variants compared to 
the general AIS population (2, 3, 7, 8).

Our study focused on a comprehensive molecular analysis of both 
constitutional and post-zygotic variants. To investigate this, 
we collected paired blood and intraoperative material from articular 
processes, enabling the assessment of single nucleotide variation using 
whole-exome sequencing (WES) and SNP array-based genotyping for 
structural variation. Post-zygotic mosaic variants arise after 
fertilization and may be present only in a subset of tissues, making 
them undetectable in blood alone. This strategy enabled exploring 
genetic mechanisms that have not previously been investigated in 
IS. The primary aim of the study was to identify constitutional and 
post-zygotic variants in severe AIS, providing a basis for future studies 
and potential applications in personalized genetic counseling and 
clinical management.

2 Materials and methods

2.1 Ethics statement

This study was approved by the Independent Bioethics Committee 
for Research at the Medical University of Gdańsk (no. 

NKBBN/418/2017). Written informed consent for genetic testing was 
obtained from all individuals participating in this study and/or their 
parents/legal guardians. Control samples used in the study were 
collected under a research protocol approved by the Bioethical 
Committee at the Collegium Medicum, Nicolaus Copernicus 
University in Toruń (no. KB509/2010) and by the Independent 
Bioethics Committee for Research at the Medical University of 
Gdańsk (no. NKBBN/564/2018), and all donors were recruited and 
enrolled under informed and written consent. All research involving 
human participants and human-derived tissues was conducted in 
accordance with the relevant guidelines and regulations, including 
Declaration of Helsinki. No personally identifiable information was 
included in the manuscript.

2.2 Clinical description of studied subjects

This study included 70 unrelated individuals of a uniform ethnic 
background, with an average age of 15. All probands were diagnosed 
with severe IS, characterized by a median Cobb angle deformation of 
59°. They underwent direct vertebral rotation as part of scoliosis 
correction treatment (9). We specifically included young individuals 
whose severe scoliosis was not attributable to mechanical damage or 
environmental factors that could have contributed to the progression 
or manifestation of spinal curvature. Individuals with known genetic 
syndromes causing secondary scoliosis were excluded. However, 
genetic testing was not part of the standard diagnostic procedure 
offered before enrollment in the study.

Blood samples (BL) and/or articular processes (AP) closest to the 
area of deformation were collected from the individuals, depending 
on availability. Of the 70 individuals, both types of samples were 
collected from 58 individuals, while the remaining 12 provided only 
one type, either from BL or AP (Figure 1; Supplementary Table 1). To 
verify whether the candidate variant is de novo or inherited, BL 
samples were collected from the probands’ parents, when available.

Detailed clinical information of the studied cohort is provided in 
the Supplementary Table 1. Briefly, the cohort comprised 13 boys and 
57 girls. Notably, 60.3% (41/68) of the cases did not report a family 
history of scoliosis. Family history was collected via self-report from 
patients or their parents (unavailable for two individuals), and no 
clinical examinations of relatives were performed. The cohort’s average 
height and weight percentiles were 61 and 58, respectively, based on 
reference growth and BMI charts for Polish adolescents (10). Besides 
severe scoliosis, several patients exhibited additional skeletal 
abnormalities, including pectus excavatum in two probands, knee 
problems, pigeon-toe, flat feet, Osgood-Schlatter disease, and 
incorrect pelvis rotation, each reported in one case. Furthermore, back 
pain was reported by 27.5% (19/69) of participants. Among these 19 
individuals, some disclosed accompanying symptoms, including 
respiratory difficulties (2/19), paresthesia (1/19), myoclonus (1/19), 
and paraparesis (1/19). Clinical information was unavailable for 
one individual.

As a control for the study, BL and skin (SK) samples from two 
groups of female individuals diagnosed with breast cancer, with the 
same ethnic background, were analyzed using SNP array and WES 
following the same protocols as the studied group. The first control 
group, consisting of 440 unrelated individuals, provided SK samples 
for the structural genomic rearrangement analysis. The second control 
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group, used for WES analysis, included 79 SK and 63 BL samples from 
142 individuals. Neither group was preselected based on scoliosis 
status, with the population risk of mild scoliosis estimated at 
approximately 3% (2, 3, 8).

2.3 DNA isolation

DNA extraction from peripheral blood leukocytes was performed 
using the QIAamp DNA Blood Midi Kit (Qiagen, Germantown, MD), 
while the standard phenol-chloroform method was used for solid 
tissue samples. The quality and quantity of DNA were assessed 
spectrophotometrically (Varioscan-Thermo Fisher, Waltham, MA) 
and fluorometrically (Qubit-Thermo Fisher & TapeStation–Agilent 
Technologies, Santa Clara, CA).

2.4 SNP array

We conducted a chromosomal rearrangement analysis using the 
Illumina Infinium Global Screening Array Multiple Disease 
(GSA-MD-24v3-0-EA_20034606_A1) (Illumina, San Diego, CA) 
according to the manufacturer’s recommendations (11, 12) to identify 
DNA copy number variation (CNVs), copy number alterations 
(CNAs), and runs of homozygosity (ROH) within the genome (hg19). 
Genotyping was performed on 65 individuals, including 58 with both 
AP and BL and seven with only BL samples. Data were analyzed using 
Nexus Copy Number v10.0 (BioDiscovery), the MoChA pipeline 
v.2023–09-19 (13, 14), and Bcftools v.1.17 (15).

In the Nexus Copy Number analysis, only alterations supported 
by at least five probes in samples with Log Ratio (LRR) standard 
deviation <0.2 were included. Constitutional alterations over 150 kbp 
were included, while duplications and deletions <150 kbp were 
manually curated (Supplementary Table 2). CNVs entirely overlapping 
those present in the Database of Genomic Variants (as of November 
2023) and lacking protein-coding genes were excluded (16). The 

pathogenicity of constitutional CNVs was further assessed using 
publicly available online tools, i.e., Franklin by Genoox and 
CNV-ClinViewer by Broad Institute, followed by the manual 
inspection. Both tools are semi-automated systems for the clinical 
significance classification of CNVs, aligning with the current 
diagnostic recommendations (17).

To analyze post-zygotic findings, data from each individual were 
examined in pairs of AP and BL, first using Nexus Copy Number and 
then the MoChA pipeline to identify CNAs occurring in low cell 
fractions, with default parameters (14).

For ROH confirmation, we applied the BCFtools/RoH command 
to the VCF generated by the MoChA pipeline (15). This command 
identifies autozygosity regions using a hidden Markov model and 
1,000 Genomes allele frequencies as reference. Results with quality 
scores <90 (fwd-bwd phred) and <5 Mbp were excluded (18).

Results were visualized using R v4.1.2 and package 
karyoploteR (19).

2.5 Whole exome sequencing (WES)

WES libraries were prepared for all 70 enrolled probands using 
SureSelect XT HS All Exon V7 (Agilent Technologies) and Twist 
Library Preparation EF Kit 2.0 (Twist Bioscience, South San Francisco, 
CA), following manufacturers’ protocols. This included 32 pairs of AP 
and BL, and the remaining 38 samples being either BL or AP, 
depending on material availability. The libraries sequencing was 
performed using NextSeq550, HiSeq XTen, and NovaSeq  6,000 
Illumina instruments, with a mean sequencing depth of 157x (median 
137x) across targeted regions.

For data analysis, an in-house pipeline based on GATK4 best 
practices was applied (20). The reads were aligned to the reference 
genome (hg38) using the Burrows-Wheeler transform aligner (21). 
Complementary variant calling strategies were employed: Platypus 
v0.8.1.1 for constitutional variants, which demonstrates superior 
performance for constitutional variant detection in WES data, and 

FIGURE 1

Visual representation of the study workflow. AP, articular processes; BL, whole blood; SK, skin; Ctrl, control; CNVs, copy number variations; CNAs, copy 
number alterations; ROH, runs of homozygosity, *or smaller if clinically justified surgery qualification.
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FIGURE 2

Key findings from the SNP array analysis.

Octopus v0.7.4 for post-zygotic variants, which uses a haplotype-
aware algorithm analyzed in pairs—specifically optimized for 
low-frequency variant detection, including mosaicism (22, 23). 
Variants with mapping quality <30 or supported by high-quality bases 
(≥30), but in fewer than five reads, and variants located outside the 
targeted regions were excluded from further analysis. Functional 
annotation of all files was performed with ANNOVAR (24). Filtering 
was conducted using R v4.1.2.

2.6 Variant selection criteria

All events in exonic and splicing canonical regions that passed the 
variant calling filters, with a sequencing depth ≥30 and an allele 
frequency ≥0.07, were included. Constitutional variants classified as 
“Benign” and “Likely Benign” in the ClinVar database were excluded. 
All truncating variants were included for further pathogenicity 
assessment. Non-truncating events were filtered based on their 
population frequency using the Genome Aggregation Database 
(gnomAD v2.1.1, v3.1.2). Variants with a minor allele frequency 
(MAF) ≤ 0.01 (“popmax”) or absent in the database were retained.

To assess the theoretical deleterious impact of synonymous and 
missense variants, the Splice AI tool (Δ score ≥0.5) was used for splicing 
prediction, and REVEL (≥0.7) for analysis of missense variants (25, 26).

All post-zygotic variants called by Octopus were defined through 
comparison of paired AP and BL samples and underwent manual 
curation, including Integrative Genomics Viewer (IGV) inspection, 
exclusion of variants with gnomAD popmax MAF > 0.01, in silico 
pathogenicity prediction, and assessment of biological plausibility for 
scoliosis. These criteria were chosen to reduce false positives from 
artifacts or common polymorphisms while retaining rare, potentially 
disease-relevant events.

Firstly, we  applied the above-mentioned filtering criteria to 
evaluate the pathogenicity of variants in genes previously linked to 
scoliosis (Supplementary Table 3) (27). Subsequently, using the same 
filtering criteria, we analyzed all remaining protein-coding genes to 
acquire a comprehensive understanding of the genetic makeup 
underlying IS. Variant pathogenicity classification was performed 
following the American College of Medical Genetics and Genomics 
(ACMG) and the Association for Molecular Pathology (AMP) 
diagnostic recommendations (28).

In this study, “recurrent variants” are defined as genetic variations 
that either arise independently in ≥2 unrelated individuals or 
represent ≥2 distinct variants within the same gene.

2.7 Genomic confirmation mutational 
analysis

Selected candidate variants classified as pathogenic, likely pathogenic, 
or variants of uncertain significance (VUS) were confirmed by 
bidirectional Sanger sequencing and analyzed using SnapGene v6.2.1.

2.8 Statistical analysis

Statistical tests were performed using R v4.1.2 with packages stats 
and binom. The statistical significance of the differences between the 

two groups was assessed using Fisher’s exact test with p-value <0.05. 
Confidence intervals for proportions were calculated using the exact 
binomial method (Clopper-Pearson) to ensure appropriate coverage 
for small sample sizes. Multiple testing correction was not applied, 
given the hypothesis-driven focus on recurrent variants.

3 Results

3.1 Structural chromosomal 
rearrangements

We identified a total of 6,795 constitutional CNVs and 6,258 ROH 
using Nexus Copy Number software and BCFtools/RoH. After 
applying the filtering criteria (Materials and methods) we narrowed 
down the dataset to 41 CNVs and eight ROHs. Among the 41 reported 
here CNVs, three were classified as pathogenic or likely pathogenic 
and were not found in the control group. Namely, two large 
duplications were observed on chromosomes 8 and X in two unrelated 
probands, P15 and P69, respectively (Figure 2). A trisomy of the short 
arm of chromosome 8, spanning 43.6 Mbp, was identified in a 17-year-
old girl with a severe IS characterized by left convex thoracic 
curvature, a Cobb angle of 60 degrees, mild facial dysmorphia, a wide 
neck, dextrocardia, and pectus excavatum. This individual also carried 
a 28 Mbp ROH on chromosome 12, including the centromeric region. 
A trisomy of chromosome X was identified in P69, a 14-year-old 
female with IS and a Cobb angle of 50 degrees, tall stature (73rd 
percentile), low body mass (below 3rd BMI percentile), aphasia, and 
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back pain. Her medical history indicated that her father also had 
scoliosis, though no further clinical data were available. The third 
identified clearly pathogenic variant was a heterozygous deletion of 
exons 17–36 in the DMD gene in P46, a 12-year-old female with a 
Cobb angle of 60 degrees (Supplementary Table 2). All individuals 
with these findings were referred for genetic counseling.

Additionally, 19 CNVs were classified as likely benign or benign 
(data not presented), while another 19 CNVs were VUS. Eight ROHs 
>5 Mbp were detected on chromosomes 1, 2, 8, 12, 14, and 16 
(Supplementary Table 2), encompassing a total of 712 protein-coding 
genes. Among them, 133 genes are potentially dosage sensitive.

No post-zygotic Copy Number Alterations (CNAs) in MoChA 
and Nexus analysis met the filtering criteria.

3.2 Single nucleotide variation analysis

No statistically significant post-zygotic variants, that met the 
filtering criteria (Methods), and were potentially damaging or related 
to scoliosis, were identified in the cohort of 32 AP.

After applying cut-off filtering criteria, constitutional variants 
identified in the studied cohort were grouped into two categories, 
as follows.

3.2.1 Genes previously associated with IS
We identified here a total of 45 variants in 38 individuals, including 

17 truncating variants found in 30% (21/70) of individuals and 28 
non-truncating variants in 34.3% (24/70) of cases 
(Supplementary Table  4). Of these variants, 12 distinct and two 
recurrent heterozygous variants in 14 genes, present in 16 individuals, 
were classified as pathogenic or likely pathogenic according to current 
diagnostic recommendations (Table  1) (28). These included seven 
nonsense variants in the DHCR7, FANCM, FLNB, NEB, OBSL1, 
RPGRIP1L, and WDR81 genes; three frameshifts variants in FANCL, 
NALCN, and TMEM67; two missense variants in LMNA and SLC26A2; 
and two splicing variants in TMEM231 and UPB1. All 14 variants were 
either rare (“popmax” < 0.005) or had not been reported in the 
gnomAD database. Constitutional variants in the FLNB, LMNA, and 
NALCN genes have previously been associated with autosomal 
dominant (AD) disorders, such as Larsen syndrome, Laminopathies, 
Familial partial lipodystrophy, and Congenital contractures of the limbs, 
face, hypotonia, and developmental delay, which present clinically with 
scoliosis or other skeletal abnormalities (29–32). Among the genes 
specifically associated with IS, recurrent pathogenic, likely pathogenic, 
or VUS heterozygous variants were identified in A2ML1, ERCC2, 
MYH7, FLNB, RYR1, and TMEM231 (Supplementary Table 4), with 
FLNB reaching statistical significance in Fisher’s exact test compared to 
the control group (p-value = 0.035). Statistical tests were performed 
based on the number of identified pathogenic variants in the studied 
group compared to the control group, counting occurrences per gene.

3.2.2 Genes not previously linked to IS
In this group of genes, we identified 1,353 truncating variants, 

including 97 pathogenic or likely pathogenic variants, 554 VUS, and 
702 benign or likely benign variants. Additionally, 516 non-truncating 
variants were identified, including 62 pathogenic or likely pathogenic 
variants, 355 VUS, and 99 benign or likely benign variants. These 159 
pathogenic or likely pathogenic truncating and non-truncating 

variants (Supplementary Table 5) were identified in 151 genes in total. 
Of these, 20 genes contained 26 heterozygous variants, either recurrent 
or multiple distinct variants within the same gene, observed in 31 
unrelated individuals.

4 Discussion

Here, we found that individuals with severe IS exhibit various 
structural and point variations, which lead to other known genetic 
disorders presenting with a scoliosis phenotype, albeit without a 
common genetic component. This observation aligns with the 
polygenic inheritance mode that has predominantly been proposed 
for IS (4).

4.1 Structural variants and gene dosage 
effects

Two large constitutional CNVs identified in our cohort highlight 
the role of chromosomal imbalance in severe IS (Figure  2; 
Supplementary Table  2). First, 47,XXX syndrome is a common 
chromosomal aneuploidy, affecting 1 in 1,000 females, often remaining 
undiagnosed due to subtle clinical symptoms. Affected individuals 
tend to be taller and may exhibit an increased prevalence of thoracic 
kyphosis (33). Trisomy X has been previously observed in AIS 
patients, with a reported frequency of 0.7% (2/286), compared to 
0.19% (1/529) in controls (34). Our detection rate of 1.75% (1/57) 
(95% CI, 0–9.4%) and absence in controls substantially exceeds 
previous reports, suggesting enrichment in severe cases. The 
mechanism remains unclear whether scoliosis may result from direct 
genetic effects on spinal development or be secondary to the increased 
stature and altered growth patterns typical in 47,XXX syndrome.

The second large CNV, associated with a trisomy 8p syndrome, is 
characterized by a variable phenotype that includes mild to severe 
developmental delay, short stature, dysmorphic features, autism, 
epilepsy, scoliosis, and spastic paraplegia (35, 36). The trisomy 8p case 
exemplifies how gene dosage imbalances in critical developmental 
pathways contribute to severe IS. The duplication encompasses 
dosage-sensitive FGFR1 and BMP1 genes, both essential for spine and 
cartilage development, providing a plausible mechanism for the 
observed skeletal phenotype (Supplementary Table 1) (37, 38). The 
co-occurrence of a large ROH containing haploinsufficient connective 
tissue genes further illustrates the complex genetic architecture 
underlying severe IS, highlighting the complexity of genetic influences 
on spinal health.

In addition to the two large CNVs, we  identified a small 
pathogenic deletion of exons 17–36 in the DMD gene in one female 
individual (Supplementary Table  1). Constitutional pathogenic 
variants in DMD lead to Duchenne or Becker muscular dystrophies, 
both inherited in an X-linked recessive manner. Female 
heterozygotes are usually asymptomatic; however, up to 17% exhibit 
muscle weakness (39). Papa et al. reported the presence of scoliosis 
and lordosis in 79% of female DMD heterozygous carriers, although 
the studied cohort was limited to 15 individuals (39). The 
co-occurrence of the NALCN pathogenic variant in this patient 
(Table 1), inherited from an affected mother, exemplifies potential 
oligogenic inheritance patterns in severe IS. Constitutional 
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TABLE 1  Summary of constitutional likely pathogenic and pathogenic variants identified by whole exome sequencing (WES) in genes associated with idiopathic scoliosis.

Gene Transcript Nucleotide 
change

Protein 
change

ID Zygosity Inheritance gnomAD 
AF

ClinVar ACMG Class Associated disorder

DHCR7 NM_001360.2 c.452G>A p.(Trp151*) P64 Het Maternal 0.0014 30x P; 1x LP P (PVS1; PP5; 

PP1)

Smith-Lemli-Opitz syndrome (AR)

FANCL NM_018062.3 c.1096_1099dup p.(Thr367Asnfs*13) P41 Het Maternal 0.0053 1x P; 9x VUS; 

2x LB; 2x B

LP (PVS1; PM2) Fanconi anemia (AR)

FANCM NM_020937.2 c.1972C>T p.(Arg658*) P59 Het Maternal 0.0001 3x P; 3x LP P (PVS1; PM2; 

PP5)

Fanconi anemia (AR)

FLNB NM_001457.4 c.3923_3924del p.(Tyr1308*) P13 Het Paternal Absent No data LP (PVS1; PM2) Larsen syndrome (AD), Atelosteogenesis, type I or 

II (AD), spondylocarpotarsal synostosis syndrome 

(AR) and boomerang dysplasia (AD)

LMNA NM_170707.4 c.688G>A p.(Asp230Asn) P64 Het Unknown Absent 1x P LP (PM1; PM2; 

PP3; PP5)

Laminopathies (AD/ AR) which affect various 

tissues and organs, including muscles, fat, and 

bones

NALCN NM_052867.4 c.1632del p.(Phe544Leufs*16) P46 Het Maternal Absent No data LP (PVS1; PM2) Congenital contractures of the limbs and face, 

hypotonia, and developmental delay (AD)

NEB NM_001164508.2 c.23989C>T p.(Arg7997*) P20 Het Paternal 0.0005 6x P; 10x LP; 1x 

VUS

P (PVS1; PM2; 

PP5)

Nemaline myopathy (AR) and Arthrogryposis 

multiplex congenita 6 (AR)

OBSL1 NM_015311.3 c.4951G>T p.(Glu1651*) P16

P60

Het Unknown 0.002 2x VUS; 2x LB LP (PVS1; PM2) Three M Syndrome 2 (AR)

RPGRIP1L NM_015272.5 c.3594G>A p.(Trp1198*) P15 Het Maternal Absent 1x LP; 2x VUS P (PVS1; PM2; 

PP5)

Joubert syndrome type 7 (AR), and Meckel 

Syndrome type 5 (AR)

SLC26A2 NM_000112.4 c.1957T>A p.(Cys653Ser) P30 Het Unknown 0.0002 8x P; 2x LP LP (PM1; PM2; 

PP3; PP5)

Diastrophic dysplasia, atelosteogenesis type 2 (AR), 

and Achondrogenesis type 1B (AR)

TMEM231 NM_001077418.3 c.664+1G>C p.(?) P5

P6

Het 2x (Paternal) Absent No data LP (PVS1; PM2) Joubert syndrome (AR) and Meckel syndrome (AR)

TMEM67 NM_153704.6 c.476_477del p.(Ser159Phefs*15) P40 Het Paternal Absent No data LP (PVS1; PM2) Joubert syndrome (AR) or Meckel syndrome (AR)

UPB1 NM_016327.3 c.917-1G>A p.(?) P10 Het Unknown 0.0027 12x P; 1x B LP (PVS1; PM2) β-ureidopropionase deficiency (AR)

WDR81 NM_001163809.2 c.3775G>T p.(Gly1259*) P1 Het Unknown Absent No data LP (PVS1; PM2) Cerebellar ataxia, mental retardation, and 

disequilibrium syndrome (AR)

The variant pathogenicity classification was performed in line with the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) diagnostic recommendations (28). Gene, Gene symbol according to HGNC 
nomenclature; Transcript, Reference transcript identifier from the MANE (Matched Annotation from NCBI and EMBL-EBI) project; Nucleotide change, DNA-level variant nomenclature according to HGVS guidelines; Protein change, Predicted amino acid change in 
the protein sequence; ID, Unique identifier for each proband carrying the variant; Zygosity, Heterozygous (Het) or homozygous (Hom) status; Inheriatance, Indicates the origin of the variant: maternal, paternal, de novo, or unknown. gnomAD AF, Allele frequency in 
the Genome Aggregation Database (gnomAD) version 2.1.1, using the maximum frequency observed across all populations (popmax; as of November 2023); ClinVar, Pathogenicity classification in the ClinVar database (as of October 2024): P, pathogenic, LP, likely 
pathogenic, VUS, variant of uncertain significance, LB, likely benign, B, benign; ACMG Class, Variant classification according to ACMG/AMP guidelines; Associated Disorder, Clinical disorder(s) associated with pathogenic variants in the gene, with inheritance 
patterns autosomal dominant (AD) / autosomal recessive (AR).
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pathogenic variants in this gene cause autosomal dominant 
congenital limb and facial contractures, hypotonia, and 
developmental delay, with scoliosis being one of the main 
symptoms (32).

According to current diagnostic recommendations (18) ROH 
regions greater than 5 Mb are considered significant and may increase 
the risk of autosomal recessive (AR) disorders. The identification of 
eight large ROH regions absent in controls represents an unexplored 
mechanism in IS pathogenesis. These regions harbor numerous 
dosage-sensitive skeletal development genes (Supplementary Table 2), 
suggesting that regional haploinsufficiency or unmasking of recessive 
alleles may contribute to disease severity, particularly in populations 
with higher consanguinity rates.

4.2 Simple nucleotide variants and 
heterozygous carriers

The WES findings from our cohort align with prior studies, 
providing a list of potential candidate genes associated with IS 
(Table 1) (1, 2, 5). Among the identified variants, FLNB and LMNA, 
both associated with autosomal dominant disorders that include 
scoliosis in their phenotypic spectrum, emerge as particularly 
significant contributors to severe IS, with FLNB showing statistical 
enrichment compared to controls (p < 0.05).

FLNB encodes filamin B, a cytoplasmic protein that organizes the 
actin cytoskeleton, whose alterations cause skeletal disorders, 
including AD Larsen syndrome and AR spondylocarpotarsal 
synostosis. Jiang et al. demonstrated that FLNB pathogenic variants 
alter protein conformation in IS, suggesting a disease-modifier role 
(31). The identification of rare variants absent in controls supports a 
causal role in the pathogenesis of severe IS. However, due to limited 
evidence, two of three identified variants are classified as VUS until 
further data becomes available (Supplementary Table 4).

Similarly, LMNA encodes Lamin A and C, which are crucial for 
nuclear integrity and cellular processes. Variations in LMNA gene are 
linked to laminopathies, which affect muscles, fat, and bones, causing 
skeletal deformities, including scoliosis (29, 30), providing a 
mechanistic link between nuclear envelope dysfunction and 
spinal deformity.

Beyond AD genes, we  identified several clearly pathogenic 
variants associated with AR disorders (Table 1). While heterozygotes 
for AR conditions are typically asymptomatic due to the presence of 
one functional allele, rare cases exhibit mild symptoms or increased 
susceptibility to conditions associated with the underlying disease. For 
instance, symptomatic heterozygotes have been reported in metabolic 
and neuromuscular disorders, such as cystinuria type 1 and 2 or 
hereditary aceruloplasminemia (40).

When comparing the prevalence of heterozygous pathogenic 
variants in the genes linked to AR diseases (Table 1), we observed a 
rate of 22.86% (16/70) (95% CI, 13.7–34.4%) in the IS cohort versus 
14.08% (20/142) (95% CI, 8.8–20.9%) in controls. This difference was 
not statistically significant (Fisher exact test, p-value = 0.12), and 
therefore should be interpreted cautiously.

The underlying causes of symptomatic heterozygosity remain 
unclear. Hypothetical mechanisms could include oligogenic 
inheritance, synergistic heterozygosity, DNA methylation, or 

environmental factors. Other theoretical explanations might involve 
dosage effects leading to haploinsufficiency, dominant-negative 
effects, gain-of-function variations, or undetected secondary variants 
such as deep splice or regulatory changes (40–42). However, these 
possibilities are speculative, and further studies will be required to 
investigate their potential role in IS.

4.3 Preliminary novel findings

As a second tier of this study, we analyzed genes not previously 
linked to IS. While several variants classified as pathogenic or likely 
pathogenic (Supplementary Table 5) are primarily associated with 
metabolic, developmental, or immunological disorders, scoliosis is 
generally not considered a direct or secondary feature. One exception 
is the ENAM gene, which showed recurrent rare pathogenic frameshift 
variants in four unrelated individuals. The cumulative results for 
ENAM were statistically significant (p = 0.04, Fisher’s exact test) 
compared to the control group (Supplementary Figure 1).

Both frameshifts occur in the terminal exon of ENAM and are 
associated with amelogenesis imperfecta (AI), a condition affecting 
enamel formation, resulting in truncated enamelin protein 
production. ENAM c.1259_1260insAG has been extensively 
reported in the literature, whereas c.2763del has been described 
only once in compound heterozygosity with another ENAM variant, 
both linked to AR AI (43). The identified variants are rare in the 
gnomAD population database (“popmax” ~ 0.00036) and are listed 
as pathogenic in ClinVar and Leiden Open Variation Database 
(LOVD; as of November 2024).

However, as our questionnaire did not specifically query dental 
conditions, and no dental abnormalities were spontaneously reported 
by participants, we  cannot determine whether AI features were 
present. Additionally, these individuals reported no family history of 
scoliosis, further limiting the interpretability of the ENAM association. 
While no direct link between ENAM and scoliosis exists, some studies 
suggest that dental issues and spinal deformities may co-occur (44). 
Fuchs et al. found that enamelin variations affected bone and energy 
metabolism in mutant mouse lines, suggesting a pleiotropic role of the 
ENAM (45). However, this remains speculative and highlights the 
need for replication in properly matched cohorts with comprehensive 
dental phenotyping.

4.4 Post-zygotic variation in severe IS

An important consideration for future research is the potential 
role of post-zygotic variation in severe IS. To our knowledge, this 
study is the first to systematically investigate post-zygotic variants 
in IS using paired blood and intraoperative spinal tissue samples. 
Analyses including SNP array and WES revealed no evidence of 
tissue-specific mosaic variants in this cohort, suggesting that post-
zygotic mosaicism does not play a major role in severe IS. Our mean 
sequencing coverage of 157 × may not detect low-level mosaicism 
(<10% variant allele frequency), leaving open the possibility of rare 
or tissue-restricted events. These negative findings are valuable, 
narrowing the search for causative mechanisms and suggesting that 
constitutional variants, rather than post-zygotic events, drive 
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disease pathogenesis. Future studies employing ultra-deep 
sequencing or single-cell approaches may still uncover rare mosaic 
events below our detection threshold.

4.5 Study limitations

While the study was rigorous, including a large, well-phenotyped 
cohort of young individuals from the same ethnic background with 
severe scoliosis, there are some limitations. The control group was not 
fully standardized: it consisted exclusively of females and was not 
screened for scoliosis, with an estimated population risk of mild 
scoliosis of approximately 3%, which may limit the comparability and 
generalizability of our findings (2). Additionally, family history was 
self-reported, and family members were not clinically examined, which 
may affect the precision of clinical interpretations. These factors should 
be  taken into account when extrapolating our results to 
broader populations.

4.6 Clinical implications and future 
directions

Despite the lack of direct recommendations for routine genetic 
testing in IS (2), our results suggest that molecular analysis could 
be valuable for individuals with severe IS (Cobb >40°) (2), as severe 
curvature suggests a strong genetic basis. Our findings suggest that genetic 
testing may have clinical utility for patients with severe IS. Diagnostic 
yield of 13% (9/70 individuals) (95% CI: 6.1–23%) comprising pathogenic 
CNVs including large chromosomal abnormalities and gene deletions 
(4.3%; 3/70) (95% CI: 0.9–12%), pathogenic variants in AD IS genes 
(2.9%; 2/70) (95% CI: 0.3–9.9%), and ROHs potentially contributing to 
disease susceptibility (5.7%; 4/70) (95% CI: 1.6–14%) partially supports 
our hypothesis that severely affected individuals are enriched for 
constitutional pathogenic variants compared to the general AIS 
population. This 13% yield is specific to severe IS cases and should not 
be generalized to the broader IS population with milder phenotypes. 
However, contrary to our expectations, no post-zygotic variants were 
identified, and the marked genetic heterogeneity observed challenges the 
concept of a unified pathogenic mechanism. Therefore, rather than 
targeted gene panels, a comprehensive diagnostic strategy is warranted. A 
stepwise approach could be  considered, beginning with SNP array 
analysis as a cost-effective screening tool, given that large structural 
variants account for a notable proportion of identifiable genetic causes. If 
results from microarray analysis are negative, WES could provide more 
comprehensive information, as it is not limited to a predefined set of 
genes, which – as shown in the literature (46) – tend not to be recurrent. 
This approach may be particularly relevant in diverse populations, where 
population-specific gene panels may not reliably capture all pathogenic 
variants. Early identification of genetic factors may help guide treatment 
strategies and provide valuable information for genetic counseling.
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