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Introduction: The increasing prevalence of type 2 diabetes mellitus (T2DM) 
requires improved early detection strategies that integrate demographic, 
clinical, physiological, and pharmacological data. Electrocardiographic (ECG) 
biomarkers offer a non-invasive means to assess diabetes-related cardiac risk, 
particularly in individuals with hypertension (HT) and cardiovascular disease 
(CVD) comorbidities of diabetes.
Methods: ECG data from 581 subjects were categorized by glycemic status 
(healthy, prediabetes, T2DM) and comorbidities. Demographic, clinical, and 
pharmaceutical data were merged with 10 s and 5 min ECG recordings. SMOTE 
was used to correct class imbalance. Support Vector Machines (SVM) performed 
best among machine learning classifiers. Classification accuracy, sensitivity, 
specificity, and AUC were computed using 5-fold cross-validation. Feature 
importance was assessed through permutation analysis to identify the most 
discriminative ECG and medication-related predictors.
Results: T2DM patients, particularly those with HT and CVD, exhibited significant 
prolongation of QTc (10 s), QTd (10 s and 5 min), and PQ intervals, as well as 
changes in the QRS-Axis, indicating increased arrhythmic risk and electrical 
remodeling (p < 0.001). Antihypertensive and lipid-lowering medications 
influenced QRS-Axis and PQ intervals, while antidepressant use was associated 
with QTd dispersion (p = 0.010). Classification accuracy ranged from 0.64 to 
0.88. Five-minute ECGs provided higher accuracy (~0.88) when medication 
data were included, while 10-s ECGs performed well in treated patients (~0.86–
0.88).
Discussion: This study shows that ECG-based, AI-driven screening captures 
the interaction between comorbidities, medication use, and cardiac 
electrophysiology. Integrating ECG biomarkers with medication data improved 
T2DM risk classification, enabling better treatment outcomes based on clinical 
use of non-invasive methods for risk classification.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a complex and progressive 
disease characterized by chronic hyperglycemia resulting from insulin 
resistance, impaired insulin secretion, and increased gluconeogenesis 
(1). The global burden of T2DM continues to increase despite 
improved medication and lifestyle intervention opportunities, with 
828 million individuals presenting with diabetes worldwide, rising 
from 7% in 1990 to 14% in 2022. However, the number may be much 
higher as approximately 59% of people with diabetes over 30 years of 
age are either not identified in the healthcare systems or untreated, 
highlighting healthcare access and treatment inadequacies, possibly 
due to a lack of screening opportunities and early diagnosis based on 
biomarkers other than fasting glucose or HbA1c. Negative lifestyle 
changes, urbanization, and aging populations are driving the increase 
in T2DM, emphasizing the need for public health measures to 
promote prevention, early diagnosis, and treatment (2–6). Screening 
approaches also need to consider that T2DM often coexists with 
hypertension (HT) and cardiovascular disease (CVD), leading to a 
more complex clinical presentation that compounds morbidity and 
healthcare costs. Recent advances in understanding the 
pathophysiology of T2DM have highlighted the significant 
heterogeneity in metabolic phenotypes, ranging from isolated insulin 
resistance to severe β-cell dysfunction, which influences the 
progression of T2DM and the occurrence of comorbidities on an 
individual level and hence requires individualized reviews and 
treatment. Numerous studies have shown the connection between 
T2DM and genetics, environment, and lifestyle factors such as 
nutrition, exercise, and inactivity (7). Liver, pancreas, and muscle 
pathology in addition to increased levels of cholesterolcan contribute 
to the development of T2DM. Characterizing the contribution of 
individual factors that can affect T2DM and its progression, as well as 
the occurrence of comorbidities, could make treatment more effective 
(8). However, significant gaps remain in integrating these approaches 
for patients with comorbidities, particularly in resource-limited 
settings. The varying disease course and therapy responses of T2DM 
are associated with changed metabolic interactions, depending on the 
presence or absence of comorbidities (9). These variations in metabolic 
processes and their etiology may help identify patients at risk for 
T2DM in primary and secondary prevention studies, as well as those 
who can benefit from personalized interventions.

T2DM has many pathophenotypes and management approaches. 
Effective treatment often requires the use of angiotensin-converting 
enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), 
and thiazide diuretics to manage concomitant diseases such as 
hypertension and cardiovascular risk in T2DM patients (10). Statins 
and aspirin are prescribed to T2DM patients to treat dyslipidemia 
(11). The increased prevalence of hypertension in T2DM patients 
highlights the need for better monitoring that addresses oxidative 
stress and inflammation, two major contributors of poor glycemic 
control (11, 12). Although we  have a better understanding of the 
T2DM and disease progression including comorbidities there are few 
studies on the classification of T2DM comorbidities. Recent research 
has shown biomarker alterations with the transitions from normal 
blood sugar levels to prediabetes and T2DM, especially associated 
with comorbidities. Key alterations encompass mitochondrial-derived 
peptide MOTSc, as well as reduced glutathione, glutathione disulfide 
ratio (GSH/GSSG), interleukin-1beta (IL-1β), and 8-isoprostane 

(8-iso-PGF2α) (13–15). Oxidative stress and mitochondrial 
dysfunction contribute to T2DM progression and influence cardiac 
electrophysiology through ion channel remodeling, autonomic 
instability, and myocardial energetics (16–18). This can cause QTc 
prolongation, QTd variability, and QRS-axis deviations of the 
ECG. These features of the ECG can be  used as a non-invasive 
surrogate measure of systemic metabolic load and inflammation to 
assess disease progression and cardiovascular risk in T2DM patients.

Control of T2DM requires control of blood pressure and 
cardiovascular comorbidities to reduce the risk of T2DM progression 
through appropriate medication use, diet, and exercise (19). Medication 
use is also indicated for subclinical cardiac pathology including raised 
blood pressure, and diabetes (20). Multifactorial treatment options 
need consider obesity, inflammation, insulin resistance, oxidative 
stress, dyslipidemia, coagulopathy, and endothelial dysfunction as well 
as comprehensive multifactorial interventions in newly diagnosed 
T2DM associated with cardiac pathology (21). Metformin, 
thiazolidinediones, and novel anti-diabetic drugs, such as glucagon-
like peptide-1 and sodium-glucose linked transporter-2 inhibitors, are 
also currently prescribed to improve insulin resistance (22, 23).

Hypertension and diabetes are interconnected and can lead to 50% 
faster chronic micro- and macro-vascular problems than in patients 
with no hypertension (24). Hyperglycemia can cause hypertension 
directly through microaneurysms, cytokines, and inflammogenic 
effects, and by several enzymes, osmotic agents, and vasoconstrictors 
(25). Hyperglycemia and arterial hypertension aggravate cardiovascular 
conditions by increasing the risk of left ventricular hypertrophy, 
coronary and cerebrovascular cardiac and brain lesions, resulting in a 
worse prognosis (26, 27). High blood pressure, rapid occurrence of 
complications, poorer prognosis, and increased cardiovascular 
morbidity and mortality are associated with diabetes and arterial 
hypertension (27). Some recommendations and protocols seek to 
achieve normotension or good arterial hypertension control in 
diabetics and those with impaired fasting glucose (28). Better arterial 
blood pressure regulation reduces erythrocytic hyperviscosity, arterial 
stiffness, cardiac hypertrophy with ventricular dysfunctions, glomerular 
blood clots, urine albumin, and other glucometabolic markers (29, 30).

Research has shown that ECG biomarkers can help track disease 
progression in diabetes, hypertension, and cardiovascular diseases and 
predict major adverse cardiac events (31, 32). Recently, biomedical 
engineering and bioengineering have relied on ECG indicators beyond 
clinical contexts. Continuous ECG monitoring with smart wearables 
allows real-time cardiac anomaly diagnosis and risk classification, 
enabling tailored medication. These developments enable adaptive 
algorithms to use patient-specific data for personalized feedback and 
treatment. These breakthroughs support precision health, digital 
therapies, and multimodal sensing, combining engineering with patient-
centered care (33, 34). The advantage of ECG is its noninvasive nature, 
ease of interpretation, availability, and low cost compared to metabolic 
biomarkers (35). In addition, ECG findings have been linked the 
metabolic syndrome components, such as hypertension and 
dyslipidemia, and cardiac pathology (36, 37). Identifying specific 
biomarkers that link these diseases has been extended to community 
screening, particularly in rural populations, where they offer a 
non-invasive and efficient means of identifying asymptomatic cardiac 
conditions (38, 39). Moreover, the integration of ECG data with artificial 
intelligence (AI) has enhanced the diagnostic potential, enabling the 
early detection of subclinical diabetes complications that provides a 
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cost-effective and accessible diagnostic approach (40, 41). Screening of 
cardiovascular disease progression with ECG has also shown that several 
ECG biomarkers are specific for monitoring progression of diabetes and 
hypertension in addition to CVD. These biomarkers include PQ interval, 
QRS complex, and QT/QTc (42). Due to the intricate relationship 
between diabetes and comorbidities such as hypertension and 
cardiovascular disease, classifying T2DM patients by comorbidities and 
treatment regimens including medication use is difficult. The current 
study examined how antilipid, antiplatelet, antihypertensive, and 
antidepressant medications affect ECG biomarkers in individuals with 
type 2 diabetes. It compared patient classification model results generated 
without considering diabetes medication status to assess the added value 
of including ECG markers. Furthermore, the study evaluated how these 
non-diabetes medications influence ECG biomarkers across different 
T2DM stages and comorbidity groups in a screening context, as well as 
their impact on the accuracy of classifying diabetes progression.

2 Materials and methods

2.1 Recruitment of participants

Data from 581 individuals participating in the Diabetes Health 
Screening Clinic (DiabHealth) at Charles Sturt University, Albury, 
Australia, were included in the analysis of blood and urine specimens. 
The study obtained ethical approval from the University Human 
Ethics Committee under Protocol Number 2006-042, and all 
participants provided written informed consent, including agreement 
for the publication of results. A control group with a screening glucose 
of <5.6 mmol/L, a prediabetes group with a screening glucose of 
5.6–6.9 mmol/L, and a type 2 diabetes group with screening glucose 
≥7 mm/L were compared. No exclusion criteria were established for 
this study, as patients participated in a public screening clinic focused 
on diabetes progression and diabetes complications. Gender, age, and 
the use of medications, including antiplatelet agents (AntiPL), lipid-
lowering agents (AntiLP), antihypertensive medications (HT-med), 
and antidepressants, were collected for all patients in the study. The 
ECGs were recorded using a GE Healthcare MAC™ 5500 HD 12-lead 
electrocardiograph to obtain PQ interval conduction time, QRS 
duration, QTc interval, and QT dispersion (QTd). These metrics were 
analyzed from 10-s and 5-min recordings. These intervals represent 
important electrophysiological mechanisms related to diabetic 
pathogenesis and cardiovascular consequences. Autonomic 
dysfunction and decreased parasympathetic regulation in diabetes can 
affect atrioventricular conduction time, which affects the PQ interval 
(43, 44). QRS duration measures intraventricular conduction, and 
small delays may indicate structural or electrical changes like left 
ventricular hypertrophy or fibrosis (45, 46). The QTc interval and QTd 
measure ventricular repolarization heterogeneity, which predicts 
arrhythmic risk and sudden cardiac mortality, especially in diabetics 
(47–49). In diabetes, extended QTc and elevated QTd are linked to 
insulin resistance, glycemic management, and cardiovascular 
mortality (50, 51). These ECG indicators enable a comprehensive 
assessment of conduction, depolarization, and repolarization issues 
associated with diabetes and cardiovascular risk. The study focused on 
ECG biomarkers and diabetes progression, particularly in the context 
of comorbidities and medication use, over a 10-year period, utilizing 
data exclusively from first-admission records.

2.2 Statistical analysis and machine 
learning

Microsoft Excel (Office 365, Microsoft) was used to analyze 
descriptive data, and the results are presented as mean ± standard 
deviation (x ± SD). The machine learning process and statistical 
analyses were created to determine the significance of characteristics 
in predicting diabetes status and to find significant group differences. 
The Synthetic Minority Oversampling Technique (SMOTE), which was 
used to address class imbalance in the dataset, ensured that the four 
clinical subgroups—no comorbidities, hypertension, cardiovascular 
disease, and combined hypertension and cardiovascular disease—all 
had balanced representation of the no diabetes, prediabetes, and type 
2 diabetes mellitus (T2DM) groups (52). The Support Vector Machine 
(SVM) consistently produced the greatest classification accuracy for 
differentiating diabetes groups among the machine learning models 
examined, including logistic regression, random forests, and k-nearest 
neighbors. It was chosen as the main classifier due to its performance 
and ability to handle high-dimensional data. SVM maximizes the gap 
between the closest support vectors (data points closest to the border) 
by finding the best hyperplane in the feature space that separates data 
points of various classes (53). This maximum improves the model’s 
generalizability and reduces the possibility of misclassification. By 
adjusting the regularization parameter (C), kernel type, and gamma 
settings, a grid search and 5-fold cross-validation were used to improve 
the SVM hyperparameters. As a measure of model stability, the 
associated standard deviation was provided, and the model with the 
greatest mean cross-validated accuracy was chosen as the best-
performing model. The contribution of each feature was then measured 
by applying permutation significance to the optimum SVM model. 
This helped determine the most significant predictors by rearranging 
the values of each characteristic and calculating the change in model 
accuracy that resulted from these changes. Bar plots were used to 
display the results, and feature names were reformatted for readability. 
Pandas, scikit-learn, and imbalanced-learn were used in Python for 
further statistical studies. Kruskal–Wallis tests for non-parametric 
group differences were used to evaluate continuous data, whereas 
Chi-square tests using contingency tables were used to investigate 
categorical variables (54). To control for the increased risk of Type 
I  errors due to multiple comparisons, we  applied the Bonferroni 
correction by adjusting the significance threshold (α) from the 
conventional 0.05 level to α/m to include the total number of pairwise 
tests conducted (55). Significant variables were further investigated 
using paired Mann–Whitney U tests (56). This integrated methodology 
provides a comprehensive evaluation of the primary parameters that 
influence diabetes categorization and development by combining 
machine learning with robust statistical methodologies.

3 Results

3.1 Demographics and statistical analysis

Data from five hundred and eighty-one participants were included 
in the analysis.

Table 1 summarizes the demographic and clinical characteristics 
of the Healthy, Prediabetes, and T2DM participant groups, including 
pairwise post-hoc Chi-square tests with the Bonferroni correction 
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for categorical variables. Prescription of statins (AntiLP-MedUse) 
was significantly higher in the T2DM group, with 33.3% of 
individuals compared to the Healthy and Prediabetes groups 
(p < 0.001, Kruskal–Wallis). Post-hoc pairwise Chi-square tests with 
Bonferroni correction revealed a significant difference between the 
Healthy and T2DM groups (p < 0.001). Medications, such as 
antidepressant medications, did not vary significantly between 
groups (p = 0.383). The mean age of 55.22 years in the Healthy group 
to 58.92 years in the T2DM group was not significant. Similarly, 
gender distribution was predominantly female in all groups but was 
not significantly different between the three groups. ECG features, 
however, reveal a significant difference in QTd-10 s, suggesting a 
potential link to diabetes. Pairwise comparisons also highlight that 
QTd-5 min is significantly different between the Healthy and 
T2DM groups.

Demographic and clinical characteristics of the participants with 
hypertension are presented in Table 2, along with pairwise post-hoc 
Chi-square tests with the Bonferroni correction for categorical 
variables. In Table 2, the term Control refers to patients diagnosed 
with hypertension only. Medication is a key differentiator among the 
groups, with AntiLP-MedUse, as indicated by post-hoc pairwise 
Chi-square tests with Bonferroni correction, showing a significant 
difference between Healthy and T2DM, and between Prediabetes and 
T2DM. Diabetes medication was prescribed significantly more often 
for the hypertension groups compared to the T2DM group. As 
expected, increased hypertension-specific medication use 
(HT-MedUse) was observed in all three diabetes-associated groups 
compared to the Healthy group. ECG features reveal several significant 
distinctions. PQ-10 s differed significantly between groups, with a 
significant difference between the Healthy and Prediabetes groups. 

TABLE 1  Demographics, Kruskal–Wallis, and Mann–Whitney analysis of the population without comorbidities.

Feature Healthy (H) Prediabetes 
(P)

T2DM (T) Kruskal–
Wallis/χ2 
p-value

Mann–Whitney/Bonferroni

p-value 
(H vs P)

p-value 
(H vs T)

p-value 
(P vs T)

N 123 21 12 – – – –

AntiLP-MedUse
No: 121 (98.4%) No: 21 (100.0%) No: 8 (66.7%)

<0.001 1.000 <0.001 0.023
Yes: 2 (1.6%) Yes: 0 (0.0%) Yes: 4 (33.3%)

AntiPL-MedUse
No: 123 (100.0%) No: 21 (100.0%) No: 12 (100.0%)

1.000 1.000 1.000 1.000
Yes: 0 (0.0%) Yes: 0 (0.0%) Yes: 0 (0.0%)

Birth Age [yrs] 55.22 ± 11.60 57.76 ± 9.55 58.92 ± 8.70 0.296 0.309 0.199 0.694

DM-MedUse
No: 123 (100.0%) No: 21 (100.0%) No: 12 (100.0%)

<0.001 1.000 <0.001 <0.001
Yes: 0 (0.0%) Yes: 0 (0.0%) Yes: 0 (0.0%)

Gender
F: 75 (61.0%) F: 10 (47.6%) F: 8 (66.7%)

0.450 0.363 0.939 0.488
M: 48 (39.0%) M: 11 (52.4%) M: 4 (33.3%)

Grade-10 s 1.18 ± 0.53 1.19 ± 0.51 1.33 ± 0.65 0.436 0.746 0.202 0.469

Grade-5 min 1.10 ± 0.37 1.24 ± 0.62 1.17 ± 0.58 0.538 0.267 0.865 0.668

HT-MedUse
No: 123 (100.0%) No: 21 (100.0%) No: 12 (100.0%)

1.000 1.000 1.000 1.000
Yes: 0 (0.0%) Yes: 0 (0.0%) Yes: 0 (0.0%)

Other meds depression
No: 115 (93.5%) No: 20 (95.2%) No: 10 (83.3%)

0.383 1.000 0.480 0.607
Yes: 8 (6.5%) Yes: 1 (4.8%) Yes: 2 (16.7%)

PQ-10 s [ms] 168.70 ± 20.83 176.19 ± 26.54 165.25 ± 17.22 0.667 0.397 0.892 0.409

PQ-5 min [ms] 169.15 ± 24.01 166.95 ± 16.11 167.75 ± 29.05 0.982 0.973 0.844 0.955

QRS-10 s [ms] 95.81 ± 6.70 97.38 ± 5.21 97.50 ± 8.50 0.455 0.255 0.513 0.954

QRS-5 min [ms] 95.13 ± 10.20 96.38 ± 6.20 97.92 ± 7.06 0.195 0.193 0.166 0.735

QRS-Axis-10 s [o] 32.07 ± 24.70 25.90 ± 26.39 21.58 ± 25.99 0.235 0.256 0.167 0.680

QRS-Axis-5 min [o] 24.08 ± 22.48 25.81 ± 24.37 38.00 ± 23.38 0.101 0.743 0.035 0.088

QTc-10 s [ms] 423.21 ± 15.93 429.76 ± 19.46 416.00 ± 6.45 0.067 0.170 0.089 0.023

QTc-5 min [ms] 424.72 ± 18.07 429.24 ± 14.27 420.67 ± 13.03 0.118 0.091 0.372 0.039

QTd-10 s [ms] 53.94 ± 17.99 70.76 ± 20.53 59.67 ± 18.25 <0.001 <0.001 0.349 0.177

QTd-5 min [ms] 58.25 ± 15.01 66.62 ± 14.97 67.33 ± 12.00 0.008 0.012 0.037 0.612

Bold values indicate statistically significant differences (p < 0.05). A single bold pairwise p-value indicates significance between two classes only based on Mann–Whitney/Bonferroni analysis. 
AntiLP-MedUse, Antilipid medication use; AntiPL-MedUse, Antiplatelet medication use; DM-MedUse, Diabetes medication use; HT-MedUse, Hypertension medication use; PQ-10 s, PQ 
interval measured over 10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS complex duration measured over 10 s; QRS-5 min, QRS complex duration measured over 5 min; 
QRS-Axis-10 s, QRS axis deviation measured over 10 s; QRS-Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; QTc-5 min, Corrected 
QT interval measured over 5 min; QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.
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QTd-10 s and QTd-5 min also show significant differences, 
particularly between the Prediabetes and T2DM groups.

AntiLP-MedUse in the cardiovascular disease cohort across the 
three groups was significantly more common in the T2DM group 
(Table  3). Post-hoc pairwise Chi-square tests with the Bonferroni 
correction revealed significant differences between the Control and 
T2DM groups, as well as between the Prediabetes and T2DM groups. 
In Table  3, the term Control refers to patients diagnosed with 
cardiovascular disease only. Diabetes medication was only prescribed 
in the T2DM group. In line with previous results, gender distribution 
revealed significant variation, with a higher proportion of males in the 
prediabetes group compared to the control and T2DM groups. Post-
hoc pairwise comparisons revealed a significant difference between the 
Control and Prediabetes groups, but not between Control and T2DM 
groups, or between Prediabetes and T2DM groups. ECG features 
show mixed results. PQ-10 s exhibited a significant difference between 

the prediabetes and T2DM groups. QTc-5 min values were 
significantly different among the groups, particularly between the 
control, prediabetes, and T2DM groups, with the longest intervals 
observed in prediabetes (430.23 ms), which is still within the normal 
range for both men and women.

ECG biomarkers and medication were able to separate Control, 
Prediabetes, and T2DM individuals with hypertension (HT) and 
cardiovascular disease (CVD) (Table 4). In Table 4, the term Control 
refers to patients diagnosed with both hypertension and cardiovascular 
diseases. AntiLP-medication use differed significantly amongst 
diabetes groups, emphasizing its importance in diabetes classification 
models. Post-hoc comparisons revealed significant differences between 
the Control and T2DM groups (p < 0.001) and the Prediabetes and 
T2DM groups (p = 0.005). Previous research has shown that 
antidiabetic therapy affects disease progression and cardiovascular 
risk assessment and indicates the importance of using diabetes 

TABLE 2  Demographics, Kruskal–Wallis, and Mann–Whitney analysis of the population with hypertension.

Feature Control (C) Prediabetes (P) T2DM (T) Kruskal–
Wallis/χ2

p-value

Mann–Whitney/Bonferroni

p-value 
(C vs P)

p-value 
(C vs T)

p-value 
(P vs T)

N 80 20 48 – – – –

AntiLP-Med Use
No: 68 (85.0%) No: 14 (70.0%) No: 23 (47.9%)

<0.001 0.216 <0.001 0.162
Yes: 12 (15.0%) Yes: 6 (30.0%) Yes: 25 (52.1%)

AntiPL-Med Use
No: 80 (100.0%) No: 20 (100.0%) No: 48 (100.0%)

1.000 1.000 1.000 1.000
Yes: 0 (0.0%) Yes: 0 (0.0%) Yes: 0 (0.0%)

Birth Age [yrs] 65.88 ± 11.10 No: 68.35 ± 10.12 No: 63.81 ± 9.74 0.168 0.413 0.176 0.071

DM-Med Use
No: 80 (100.0%) No: 19 (95.0%) No: 11 (22.9%)

<0.001 0.451 <0.001 <0.001
Yes: 0 (0.0%) Yes: 1 (5.0%) Yes: 37 (77.1%)

Gender
F: 44 (55.0%) F: 10 (50.0%) F: 24 (50.0%)

0.832 0.880 0.714 1.000
M: 36 (45.0%) M: 10 (50.0%) M: 24 (50.0%)

Grade-10 s 1.26 ± 0.57 1.05 ± 0.22 1.25 ± 0.56 0.270 0.107 0.875 0.143

Grade-5 min 1.21 ± 0.50 1.00 ± 0.00 1.12 ± 0.39 0.095 0.046 0.278 0.141

HT-Med Use
No: 45 (56.2%) No: 6 (30.0%) No: 12 (25.0%)

<0.001 0.064 0.001 0.901
Yes: 35 (43.8%) Yes: 14 (70.0%) Yes: 36 (75.0%)

Other meds 

depression

No: 70 (87.5%) No: 17 (85.0%) No: 39 (81.2%)
0.629 1.000 0.480 0.984

Yes: 10 (12.5%) Yes: 3 (15.0%) Yes: 9 (18.8%)

PQ-10 s [ms] 169.40 ± 22.02 183.30 ± 19.01 170.96 ± 23.12 0.037 0.008 0.788 0.043

PQ-5 min [ms] 169.91 ± 23.25 171.95 ± 24.35 166.08 ± 25.99 0.562 0.682 0.406 0.335

QRS-10 s [ms] 104.59 ± 17.77 104.70 ± 9.73 106.44 ± 17.15 0.354 0.188 0.327 0.695

QRS-5 min [ms] 101.64 ± 16.05 101.80 ± 12.91 103.58 ± 8.65 0.081 0.528 0.021 0.557

QRS-Axis-10 s [o] 7.42 ± 28.01 2.50 ± 26.24 20.27 ± 32.19 0.047 0.325 0.035 0.059

QRS-Axis-5 min [o] 15.62 ± 29.24 5.95 ± 32.52 24.71 ± 27.14 0.055 0.231 0.079 0.032

QTc-10 s [ms] 427.88 ± 20.50 429.60 ± 18.93 426.31 ± 18.31 0.501 0.430 0.528 0.255

QTc-5 min [ms] 431.81 ± 20.26 428.65 ± 17.11 424.73 ± 16.74 0.090 0.976 0.037 0.139

QTd-10 s [ms] 74.84 ± 38.84 86.25 ± 43.58 51.00 ± 14.33 <0.001 0.259 <0.001 <0.001

QTd-5 min [ms] 81.85 ± 37.64 83.35 ± 34.58 58.62 ± 9.84 0.001 0.743 0.001 0.002

Bold values indicate statistically significant differences (p < 0.05). Bonferroni correction and pairwise p-value shown in bold indicate significance between two classes only based on Mann–
Whitney/Bonferroni analysis. AntiLP-MedUse, Antilipid medication use; AntiPL-MedUse, Antiplatelet medication use; DM-MedUse, Diabetes medication use; HT-MedUse, Hypertension 
medication use; PQ-10 s, PQ interval measured over 10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS complex duration measured over 10 s; QRS-5 min, QRS complex 
duration measured over 5 min; QRS-Axis-10 s, QRS axis deviation measured over 10 s; QRS-Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured 
over 10 s; QTc-5 min, Corrected QT interval measured over 5 min; QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.
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medication in the model (57). Hypertension medication used in the 
model may indirectly indicate diabetes progression. T2DM patients 
also reported higher use of antidepressants compared to Control and 
Prediabetes (p = 0.010). Since antidepressants have been connected to 
metabolic abnormalities and diabetes risk, this finding shows a link 
between depression and diabetes progression that merits 
additional study.

Several ECG biomarkers showed statistically significant 
differences, supporting their use in machine learning-based 
diabetes classification models. QRS-Axis-10 s was significantly 
different between Control vs. T2DM (p = 0.006), suggesting that 
diabetic individuals with HT and CVD may have more structural 
heart or electrical remodeling issues. T2DM patients had longer 
grade-10 s (p = 0.036) conduction delays, which may indicate 
autonomic dysfunction and diabetes-related conduction anomalies 
(58). QTc-10 s (p = 0.001) and QTd-10 s (p = 0.038) demonstrated 

substantial differences between the three groups, with T2DM 
patients having wider repolarization times, a risk factor for 
arrhythmias and sudden cardiac death, specifically between 
Control and T2DM (p < 0.001) (59).

3.2 ECG-based classification and feature 
selection

The feature relevance rankings for diabetes classification in 
patients without comorbidities using ECG biomarkers over 10 s (Panel 
A) and 5 min (Panel B) are shown in Figure  1. As the T2DM 
medication feature is excluded, QRS-Axis-10 s, QTc-10 s, PQ-10 s, 
and QTd-10 s for 10-s measures and QTd-5 min, QRS-5 min, 
QRS-Axis-5 min, and PQ-5 min for 5-min measurements are the 
most influential predictors. Medication-related parameters, especially 

TABLE 3  Demographics, Kruskal–Wallis, and Mann–Whitney analysis of the population with cardiovascular disease.

Feature Control (C) Prediabetes (P) T2DM (T) Kruskal–
Wallis/χ2

p-value

Mann–Whitney/Bonferroni

p-value 
(C vs P)

p-value 
(C vs T)

p-value 
(P vs T)

N 34 13 14 – – – –

AntiLP-Med Use
No: 29 (85.3%) No: 12 (92.3%) No: 6 (42.9%)

0.002 0.876 0.008 0.021
Yes: 5 (14.7%) Yes: 1 (7.7%) Yes: 8 (57.1%)

AntiPL-Med Use
No: 10 (29.4%) No: 6 (46.2%) No: 2 (14.3%)

0.193 0.460 0.463 0.164
Yes: 24 (70.6%) Yes: 7 (53.8%) Yes: 12 (85.7%)

Birth Age [yrs] 68.12 ± 11.31 67.69 ± 11.61 65.07 ± 10.70 0.607 0.821 0.296 0.680

DM-Med Use
No: 34 (100.0%) No: 13 (100.0%) No: 3 (21.4%)

0 1.000 <0.001 <0.001
Yes: 0 (0.0%) Yes: 0 (0.0%) Yes: 11 (78.6%)

Gender
F: 26 (76.5%) F: 4 (30.8%) F: 6 (42.9%)

0.006 0.010 0.056 0.802
M: 8 (23.5%) M: 9 (69.2%) M: 8 (57.1%)

Grade-10 s 1.44 ± 0.79 1.38 ± 0.77 1.21 ± 0.58 0.641 0.827 0.354 0.566

Grade-5 min 1.56 ± 0.82 1.31 ± 0.63 1.14 ± 0.53 0.142 0.370 0.062 0.307

HT-Med Use
No: 34 (100.0%) No: 13 (100.0%) No: 14 (100.0%)

1 1 1 1
Yes: 0 (0.0%) Yes: 0 (0.0%) Yes: 0 (0.0%)

Other meds 

depression

No: 31 (91.2%) No: 13 (100.0%) No: 12 (85.7%)
0.393 0.660 0.965 0.496

Yes: 3 (8.8%) Yes: 0 (0.0%) Yes: 2 (14.3%)

PQ-10 s [ms] 163.56 ± 20.22 168.15 ± 15.40 156.50 ± 18.35 0.063 0.354 0.083 0.019

PQ-5 min [ms] 178.50 ± 33.00 171.77 ± 18.84 164.00 ± 14.09 0.262 0.617 0.123 0.262

QRS-10 s [ms] 97.79 ± 9.43 102.08 ± 9.63 94.29 ± 12.11 0.149 0.158 0.285 0.086

QRS-5 min [ms] 98.88 ± 8.95 106.00 ± 18.41 99.29 ± 4.23 0.468 0.322 0.973 0.184

QRS-Axis-10 s [o] 11.29 ± 24.90 21.38 ± 33.61 22.71 ± 16.27 0.367 0.528 0.148 0.785

QRS-Axis-5 min [o] 17.85 ± 19.04 24.31 ± 34.68 34.07 ± 7.75 0.014 0.766 0.002 0.161

QTc-10 s [ms] 422.59 ± 18.12 432.62 ± 22.95 429.79 ± 9.36 0.189 0.186 0.116 0.845

QTc-5 min [ms] 424.97 ± 16.44 430.23 ± 18.93 412.86 ± 18.69 0.048 0.329 0.038 0.041

QTd-10 s [ms] 60.50 ± 19.80 62.85 ± 33.75 56.14 ± 29.60 0.436 0.729 0.203 0.465

QTd-5 min [ms] 45.09 ± 9.79 47.15 ± 9.99 55.07 ± 34.41 0.771 0.431 0.820 0.903

Bold values indicate statistically significant differences (p < 0.05). A single bold pairwise p-value indicates significance between two classes only based on Mann–Whitney/Bonferroni analysis. 
AntiLP-MedUse, Antilipid medication use; AntiPL-MedUse, Antiplatelet medication use; DM-MedUse, Diabetes medication use; HT-MedUse, Hypertension medication use; PQ-10 s, PQ 
interval measured over 10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS complex duration measured over 10 s; QRS-5 min, QRS complex duration measured over 5 min; 
QRS-Axis-10 s, QRS axis deviation measured over 10 s; QRS-Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; QTc-5 min, Corrected 
QT interval measured over 5 min; QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.
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anti-lipid and AntiLP-MedUse medication use, contribute to 
classification but are less important.

Combining demographic, clinical, and ECG variables reveals 
notable differences among the Healthy, Prediabetes, and T2DM 
groups, as summarized in Table  1. Classification accuracy was 
0.86 ± 0.02 for 10-s intervals and 0.88 ± 0.02 for 5-min intervals, with 
a focus on cardiac ECG biomarkers. ECG biomarkers. Anti-lipid 
medication use reported by the Healthy and T2DM groups vary 
significantly. Among ECG biomarkers, QTd-10 s and QTd-5 min 
show significant differences between the Healthy and Prediabetes 
groups and between the Healthy and T2DM groups, respectively, as 
confirmed by pairwise comparisons. In contrast, anti-depression 
medication does not substantially vary, suggesting that antidepressant 
use is unrelated to diabetes status in this cohort.

Many factors affect patients with diabetes and hypertension. 
Without the T2DM medication component, the predictive power 

shifts primarily to ECG biomarkers. In the 10-s measurement 
(Panel A of Figure  2), PQ-10 s, QTd-10 s, and QRS-Axis-10 s 
emerge as the dominant predictors, suggesting their strong role 
in capturing conduction and repolarization abnormalities. In 
contrast, the 5-min measurement (Panel B of Figure 2) highlights 
the most important features, including Birth Age, PQ-5 min, and 
QRS-Axis-5 min, suggesting that longer ECG recordings capture 
broader structural and conduction-related differences. The shift 
in feature rankings between Panels A and B highlights the 
influence of ECG biomarkers in predicting diabetes risk in 
hypertensive patients and underscores the role of measurement 
duration in feature importance distribution. Comparing 
demographic and clinical factors across the hypertensive diabetic 
groups shows a significant difference in the reported antilipid 
medication use between the Control and T2DM groups. Several 
ECG indicators further distinguish between the three groups. 

TABLE 4  Demographics, Kruskal–Wallis, and Mann–Whitney analysis of the population with both hypertension and cardiovascular diseases.

Feature Control (C) Prediabetes (P) T2DM (T) Kruskal–
Wallis/χ2

p-value

Mann–Whitney/Bonferroni

p-value 
(C vs P)

p-value 
(C vs T)

p-value 
(P vs T)

N 95 26 95 – – – –

AntiLP-Med Use
No: 56 (58.9%) No: 17 (65.4%) No:31 (32.6%)

<0.001 0.713 <0.001 0.005
Yes: 39 (41.1%) Yes: 9 (34.6%) Yes: 64 (67.4%)

AntiPL-Med Use
No: 25 (26.3%) No: 5 (19.2%) No: 17 (17.9%)

0.352 0.628 0.221 1.000
Yes: 70 (73.7%) Yes: 21 (80.8%) Yes: 78 (82.1%)

Birth Age [yrs] 70.37 ± 8.88 69.96 ± 8.40 69.77 ± 8.49 0.764 0.654 0.488 0.990

DM-Med Use
No: 95 (100.0%) No: 26 (100.0%) No: 26 (27.4%)

<0.001 1.000 <0.001 <0.001
Yes: 0 (0.0%) Yes: 0 (0.0%) Yes: 69 (72.6%)

Gender
F: 60 (63.2%) F: 12 (46.2%) F: 46 (27.4%)

0.081 0.180 0.058 1.000
M: 35 (36.8%) M: 14 (53.8%) M: 49 (72.6%)

Grade-10 s 1.41 ± 0.69 1.12 ± 0.43 1.45 ± 0.68 0.036 0.027 0.531 0.009

Grade-5 min 1.60 ± 0.74 1.54 ± 0.76 1.56 ± 0.71 0.867 0.633 0.715 0.800

HT-Med Use
No: 27 (28.4%) No: 7 (26.9%) No: 6 (6.3%)

<0.001 1.000 <0.001 0.008
Yes: 68 (71.6%) Yes: 19 (73.1%) Yes: 89 (93.7%)

Other meds 

depression

No: 87 (91.6%) No: 24 (92.3%) No: 73 (76.8%)
0.010 1.000 0.010 0.140

Yes: 8 (8.4%) Yes: 2 (7.7%) Yes: 22 (23.2%)

PQ-10 s [ms] 181.69 ± 36.73 176.27 ± 32.79 173.40 ± 21.63 0.221 0.512 0.075 0.892

PQ-5 min [ms] 182.20 ± 28.39 177.00 ± 22.74 178.29 ± 22.78 0.590 0.348 0.442 0.791

QRS-10 s [ms] 113.15 ± 26.29 113.15 ± 26.74 105.65 ± 15.51 0.875 0.892 0.638 0.730

QRS-5 min [ms] 104.53 ± 14.24 101.69 ± 14.22 101.69 ± 15.35 0.391 0.332 0.231 0.688

QRS-Axis-10 s [o] −5.33 ± 45.15 −4.23 ± 41.38 8.19 ± 31.06 0.018 0.879 0.006 0.146

QRS-Axis-5 min [o] 3.84 ± 29.93 9.58 ± 32.22 7.81 ± 25.18 0.355 0.441 0.161 0.791

QTc-10 s [ms] 437.86 ± 17.55 435.00 ± 21.72 430.68 ± 24.84 0.001 0.441 <0.001 0.126

QTc-5 min [ms] 431.45 ± 24.23 428.69 ± 14.84 426.02 ± 19.40 0.147 0.806 0.068 0.214

QTd-10 s [ms] 77.11 ± 32.31 83.46 ± 35.53 71.63 ± 33.67 0.038 0.326 0.037 0.047

QTd-5 min [ms] 60.47 ± 19.63 65.08 ± 30.38 66.26 ± 32.73 0.848 0.975 0.586 0.733

Bold values indicate statistically significant differences (p < 0.05). A single bold pairwise p-value indicates significance between two classes only based on Mann–Whitney/Bonferroni analysis. 
AntiLP-MedUse, Antilipid medication use; AntiPL-MedUse, Antiplatelet medication use; DM-MedUse, Diabetes medication use; HT-MedUse, Hypertension medication use; PQ-10 s, PQ 
interval measured over 10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS complex duration measured over 10 s; QRS-5 min, QRS complex duration measured over 5 min; 
QRS-Axis-10 s, QRS axis deviation measured over 10 s; QRS-Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; QTc-5 min, Corrected 
QT interval measured over 5 min; QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.
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Significant variations in QTd-5 min and QTd-10 s exist between 
the Prediabetes and T2DM groups, and between the Control and 
T2DM groups. PQ-10 s difference is significant, with post-hoc 
comparisons confirming differences between Control and 
Prediabetes and Prediabetes vs. T2DM. QRS-Axis-10 s also 
distinguishes Control from T2DM. Demographic characteristics 
have a to minimal impact on diabetes classification in individuals 
with hypertension. As for QRS-Axis-5 min, although the overall 
group difference was marginal (p = 0.055), the difference between 
Prediabetes and T2DM was significant (p = 0.032), while the 
other pairwise comparisons were not. The results confirm that 
ECG biomarkers are key diabetes classification factors for 

hypertensive patients, with a classification accuracy of 0.72 ± 0.05 
for the 10-s recording and 0.74 ± 0.08 for the 5-min recording.

In patients with cardiovascular disease, PQ-10 s, QTc-10 s, 
QTd-10 s, and QRS-Axis-10 s emerge as the most significant 
predictors, indicating that short-term conduction and repolarization 
measures gain prominence (Panel A of Figure  3). In the 5-min 
measurements, AntiLP-MedUse, QRS-Axis-5 min, and QTc-5 min 
dominate (Panel B of Figure 3). Notably, PQ-10 s showed marginal 
overall significance, but its pairwise comparison between Prediabetes 
and T2DM reached significance (p = 0.019). For the 5-min 
recordings, AntiLP-Med Use (p = 0.002), QRS-Axis-5 min 
(p = 0.014), and QTc-5 min (p = 0.048) showed the most substantial 

FIGURE 1

(A) Feature importance for patients without comorbidities, for ECG biomarkers measured for 10 s. (B) Feature importance for patients without 
comorbidities, for ECG biomarkers measured 5 min. AntiLP-MedUse, Antilipid medication use; AntiPL-MedUse, Antiplatelet medication use; HT-
MedUse, Hypertension medication use; PQ-10 s, PQ interval measured over 10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS complex 
duration measured over 10 s; QRS-5 min, QRS complex duration measured over 5 min; QRS-Axis-10 s, QRS axis deviation measured over 10 s; QRS-
Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; QTc-5 min, Corrected QT interval measured 
over 5 min; QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.

FIGURE 2

(A) Feature importance for patients with hypertension, for ECG biomarkers measured for 10 s. (B) Feature importance for patients with hypertension, 
for ECG biomarkers measured for 5 min. AntiLP-MedUse, Antilipid medication use; AntiPL-MedUse, Antiplatelet medication use; HT-MedUse, 
Hypertension medication use; PQ-10 s, PQ interval measured over 10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS complex duration 
measured over 10 s; QRS-5 min, QRS complex duration measured over 5 min; QRS-Axis-10 s, QRS axis deviation measured over 10 s; QRS-Axis-5 min, 
QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; QTc-5 min, Corrected QT interval measured over 5 min; 
QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.
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group differences, underscoring the dominance of long-term ECG 
measures and medication use in distinguishing between Control, 
Prediabetes, and T2DM groups (Panel B, Figure  3). These shifts 
emphasize the interplay between ECG biomarkers and medication 
use in cardiovascular disease patients, and the accuracies equal 
0.74 ± 0.04 for the 10-s recording and 0.77 ± 0.07 for the 5-min 
recording. In addition to medication and ECG features being 
important in classification accuracy, gender indicated significant 
differences between the diabetes groups. However, the antidepressant 
medication used does not differ and contributes to the model, 
demonstrating that antidepressant use does not discriminate between 
cardiovascular disease patients with diabetes and patients with 
different comorbidities or no comorbidities.

The classification of diabetes in individuals with hypertension and 
cardiovascular disease depends primarily on medication use, as 
expected, but includes ECG biomarkers, with minor contributions 
from demographic features. In Figure 4A (10-s analysis), QTd-10 s, 
HT-MedUse, and QRS-Axis-10 s emerge as the top predictors, 
highlighting the role of repolarization abnormalities and hypertension 
treatment. In Figure  4B (5-min analysis), AntiLP-MedUse, 
HT-MedUse, and OtherMeds-Depression dominate, suggesting that 
non-diabetes medications, particularly lipid-lowering and 
antidepressant treatments, influence long-term ECG variability. The 
classification accuracy for these models is 0.68 ± 0.06 in Figure 4A, and 
0.64 ± 0.05 in Figure 4B, indicating performance loss. This shows that 
including provides a focus on physiological indicators. For individuals 
with hypertension and cardiovascular disease, Table  4 compares 
demographic, clinical, and ECG data from the Control, Prediabetes, 
and T2DM groups. HT-MedUse marks a significant difference, with 
93.7% of T2DM patients using hypertension medication compared to 
the Control and Prediabetes groups. AntiLP-MedUse is substantially 
greater in T2DM patients (67.4%) compared to Prediabetes (34.6%) 
and Control (41.1%) groups. Post-hoc comparisons reveal substantial 
differences between the Control and T2DM groups (p < 0.001) and the 
Prediabetes group. QTd-10 s and QTd-5 min are ECG features with 

inconsistent results. QTd-10 s is statistically different among groups, 
whereas QTd-5 min is not. QRS-Axis-10 s differs considerably, 
especially between Control and T2DM, supporting ECG findings for 
diabetes categorization. In contrast, age and gender do not significantly 
affect diabetes classification in this population. OtherMeds-Depression 
is significantly different, suggesting an association between 
antidepressant use and diabetes status. Post-hoc comparisons show that 
Control vs. T2DM shows greater differences, while Prediabetes vs. 
T2DM does not for anti-depressive medication use.

Shorter ECG recordings improve categorization accuracy, 
according to the study. Adding the T2DM treatment feature enhances 
classification accuracy across all groups, boosting biomarker 
predictive power and model resilience (accuracy up to 0.88 ± 0.04). 
This suggests that medication data complements, rather than 
duplicates, diabetes status information. Medication use improved 
classification accuracy for patients without comorbidities, 
hypertensive patients, those with cardiovascular disease, and those 
with both conditions. These findings demonstrate that ECG 
biomarkers and medication data can be combined to improve the 
classification of diabetes.

3.3 Classification and feature selection by 
combining 10 s and 5 min ECG biomarkers

The classification of diabetes status in patients without 
comorbidities was primarily influenced by QRS-Axis-5 min, 
QRS-Axis-10 s, QTd-5 min, and QTc-5 min, with a classification 
accuracy of 0.91 ± 0.05 (Figure 5).

For patients with HT, feature importance rankings shifted, with 
QRS-Axis-5 min, QTd-10 s, and PQ-10 s becoming the most 
influential features, and accuracy was 0.79 ± 0.07 (Figure 6).

In patients with CVD, PQ-5 min, Gender, and PQ-10 s emerged 
as the top predictors (Figure 7), leading to a classification accuracy of 
0.82 ± 0.09.

FIGURE 3

(A) Feature importance for patients with cardiovascular disease, for ECG biomarkers measured for 10 s. (B) Feature importance for patients 
cardiovascular disease, for ECG biomarkers measured for 5 min. AntiLP-MedUse, Antilipid medication use; AntiPL-MedUse, Antiplatelet medication use; 
HT-MedUse, Hypertension medication use; PQ-10 s, PQ interval measured over 10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS 
complex duration measured over 10 s; QRS-5 min, QRS complex duration measured over 5 min; QRS-Axis-10 s, QRS axis deviation measured over 
10 s; QRS-Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; QTc-5 min, Corrected QT interval 
measured over 5 min; QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.
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For patients with both HT and CVD, antihypertensive medication 
use, QTd-10 s, and AntiLP-MedUse were the main features of the 
model, with a classification accuracy of 0.69 ± 0.07 (Figure 8). More 
detailed results of the performance metrics, including AUC per class, 
specificity, and sensitivity, are provided in the Supplementary material.

3.4 ECG biomarker dynamics in 
comorbidity groups without or with 
multiple medications

The distributions of PQ, QRS, QTc, QTd, and QRS-Axis—
measured over 10-s and 5-min intervals for all classes (healthy, 
noDM-HT, noDM-CVD, and noDM-HT + CVD), with and without 
medication, are presented in Figure 9. Across all features, significant 
differences were observed between the classes associated with either 
the 10-s ECG or 5-min ECG recordings, as determined by the 
Kruskal–Wallis test (p < 0.05). Notably, noDM-HT + CVD patients 
exhibited prolonged PQ intervals compared to the other groups, 
reflecting potential cardiac conduction delays in this group 
(Figure  9A). Healthy patients generally displayed shorter QRS 
intervals, whereas noDM-HT and noDM-HT + CVD patients showed 
wider QRS complexes, indicating ventricular conduction 
abnormalities in these groups (Figure 9B). The QTc features, with 
QTc-10 s and QTc-5 min, are prolonged in noDM-HT + CVD patients 
(Figure 9C). This suggests an elevated risk of arrhythmias in patients 
with combined hypertension and cardiovascular disease, which is 
consistent with clinical expectations given the known association 
between QTc prolongation and cardiovascular comorbidities. The 
dispersion of QT intervals (QTd) was higher in noDM-HT and 
noDM-HT + CVD groups, particularly the 10-s recordings 
(Figure  9D). This increased variability could indicate greater 
heterogeneity in ventricular repolarization in these populations. 
Finally, significant differences in QRS-Axis-10 s and QRS-Axis-5 min 
were observed among the control classes (Figure 9E). The noDM-HT 

and noDM-HT + CVD groups exhibited more negative QRS axes, 
indicative of left axis deviation, often associated with structural or 
electrical cardiac abnormalities.

The distributions of PQ, QRS, QTc, QTd, and QRS-Axis, measured 
over 10-s and 5-min intervals in all prediabetic subclasses (only 
prediabetes, prediabetes with HT, prediabetes with CVD, and 
prediabetes with HT + CVD) with and without medication, are 
presented in Figure 10. Class differences were significant within the 
same ECG measurement time, as shown by the Kruskal–Wallis test 

FIGURE 4

(A) Feature importance for patients with hypertension and cardiovascular disease, for ECG biomarkers measured for 10 s. (B) Feature importance for 
patients with hypertension and cardiovascular disease, for ECG biomarkers measured for 5 min. AntiLP-MedUse, Antilipid medication use; AntiPL-
MedUse, Antiplatelet medication use; HT-MedUse, Hypertension medication use; PQ-10 s, PQ interval measured over 10 s; PQ-5 min, PQ interval 
measured over 5 min; QRS-10 s, QRS complex duration measured over 10 s; QRS-5 min, QRS complex duration measured over 5 min; QRS-Axis-10 s, 
QRS axis deviation measured over 10 s; QRS-Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; 
QTc-5 min, Corrected QT interval measured over 5 min; QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.

FIGURE 5

Feature importance for patients without comorbidity using all 
features for 10 s and 5 min. AntiLP-MedUse, Antilipid medication use; 
AntiPL-MedUse, Antiplatelet medication use; HT-MedUse, 
Hypertension medication use; PQ-10 s, PQ interval measured over 
10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS 
complex duration measured over 10 s; QRS-5 min, QRS complex 
duration measured over 5 min; QRS-Axis-10 s, QRS axis deviation 
measured over 10 s; QRS-Axis-5 min, QRS axis deviation measured 
over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; 
QTc-5 min, Corrected QT interval measured over 5 min; QTd-10 s, 
QT dispersion measured over 10 s; QTd-5 min, QT dispersion 
measured over 5 min.
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(p < 0.05). The PQ feature distributions show that PQ-10 s and 
PQ-5 min values differ between classes (Figure 10A). Prediabetes HT 
and HT + CVD, with medication, had longer PQ intervals than other 
classes, suggesting atrioventricular conduction delays. QRS features 
reveal distinct distributional differences across patient groups for both 
QRS-10 s and QRS-5 min durations (Figure  10B). Notably, the 
prediabetes groups with hypertension (HT) and with both HT and 
cardiovascular disease (CVD) exhibit broader and right-shifted 

distributions, indicating higher median and more variable QRS 
durations compared to the prediabetes-only group. These findings 
suggest potential abnormalities in cardiac conduction associated with 
comorbid HT and CVD. The prediabetes with CVD group is notably 
broader and skewed toward longer durations, particularly in 
QRS-5 min recordings. This indicates greater variability and a 
tendency toward prolonged QRS complexes, supporting the presence 
of conduction system impairments often associated with 
cardiovascular disease. Prediabetes CVD, and HT + CVD had longer 
QTc-10 s and QTc-5 min (Figure 10C), indicating a higher risk of 
ventricular arrhythmias in this sample. Only the prediabetes group 
had consistently shorter QTc intervals. QTd features show that 
prediabetes with HT and prediabetes with HT + CVD had larger QTd 
dispersion, especially over 10-s intervals, as in Figures 6, 10D. The 
ventricular repolarization in this group is more heterogeneous, 
explaining this diversity. QRS-Axis features show class differences over 
10-s and 5-min intervals. Prediabetes with HT and prediabetes with 
HT + CVD groups had greater negative QRS-Axis values, indicating 
left axis deviation due to structural or electrical cardiac problems 
(Figure 10E).

PQ, QRS, QTc, QTd, and QRS-Axis feature distributions over 10-s 
and 5-min intervals in all T2DM classes (T2DM, T2DM with HT, 
T2DM with CVD, and T2DM with HT + CVD) with and without 
medication are shown in Figure 11. PQ interval results indicate that 
PQ-10 s and PQ-5 min periods differ across classes (Figure 11A). 
T2DM patients with HT and those with HT + CVD had longer PQ 
intervals than T2DM patients, suggesting atrioventricular conduction 
delays. Group differences in QRS-10 s and QRS-5 min durations are 
also present, as illustrated in Figure 11B. T2DM patients had shorter 
QRS intervals, but T2DM with HT and HT + CVD patients had wider 
QRS complexes, indicating ventricular conduction problems. 
QTc-10 s and QTc-5 min intervals are significantly prolonged in 

FIGURE 6

Feature importance for patients with hypertension using all features 
for 10 s and 5 min. AntiLP-MedUse, Antilipid medication use; AntiPL-
MedUse, Antiplatelet medication use; HT-MedUse, Hypertension 
medication use; PQ-10 s, PQ interval measured over 10 s; PQ-5 min, 
PQ interval measured over 5 min; QRS-10 s, QRS complex duration 
measured over 10 s; QRS-5 min, QRS complex duration measured 
over 5 min; QRS-Axis-10 s, QRS axis deviation measured over 10 s; 
QRS-Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, 
Corrected QT interval measured over 10 s; QTc-5 min, Corrected QT 
interval measured over 5 min; QTd-10 s, QT dispersion measured 
over 10 s; QTd-5 min, QT dispersion measured over 5 min.

FIGURE 7

Feature importance for patients with cardiovascular disease using all 
features for 10 s and 5 min. AntiLP-MedUse, Antilipid medication use; 
AntiPL-MedUse, Antiplatelet medication use; HT-MedUse, 
Hypertension medication use; PQ-10 s, PQ interval measured over 
10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS 
complex duration measured over 10 s; QRS-5 min, QRS complex 
duration measured over 5 min; QRS-Axis-10 s, QRS axis deviation 
measured over 10 s; QRS-Axis-5 min, QRS axis deviation measured 
over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; 
QTc-5 min, Corrected QT interval measured over 5 min; QTd-10 s, 
QT dispersion measured over 10 s; QTd-5 min, QT dispersion 
measured over 5 min.

FIGURE 8

Feature importance for patients with both hypertension and 
cardiovascular disease using all features for 10 s and 5 min. AntiLP-
MedUse, Antilipid medication use; AntiPL-MedUse, Antiplatelet 
medication use; HT-MedUse, Hypertension medication use; PQ-10 s, 
PQ interval measured over 10 s; PQ-5 min, PQ interval measured 
over 5 min; QRS-10 s, QRS complex duration measured over 10 s; 
QRS-5 min, QRS complex duration measured over 5 min; QRS-
Axis-10 s, QRS axis deviation measured over 10 s; QRS-Axis-5 min, 
QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT 
interval measured over 10 s; QTc-5 min, Corrected QT interval 
measured over 5 min; QTd-10 s, QT dispersion measured over 10 s; 
QTd-5 min, QT dispersion measured over 5 min.
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FIGURE 9

(A) PQ features for 10 s and 5 min, (B) QRS features for 10 s and 5 min, (C) QTc features for 10 s and 5 min, (D) QTd features for 10 s and 5 min, and 
(E) QRS-Axis features for 10 s and 5 min, for all control classes. All features show a statistically significant difference within the same time of 
measurement (Kruskal–Wallis test: p < 0.05). PQ-10 s, PQ interval measured over 10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS 
complex duration measured over 10 s; QRS-5 min, QRS complex duration measured over 5 min; QRS-Axis-10 s. QRS axis deviation measured over 
10 s; QRS-Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; QTc-5 min, Corrected QT interval 
measured over 5 min; QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.
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FIGURE 10

(A) PQ features for 10 s and 5 min, (B) QRS features for 10 s and 5 min, (C) QTc features for 10 s and 5 min, (D) QTd features for 10 s and 5 min, and 
(E) QRS-Axis features for 10 s and 5 min, for all prediabetes classes. All features show a statistically significant difference within the same time of 
measurement (Kruskal–Wallis test: p < 0.05). PQ-10 s, PQ interval measured over 10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS 
complex duration measured over 10 s; QRS-5 min, QRS complex duration measured over 5 min; QRS-Axis-10 s, QRS axis deviation measured over 
10 s; QRS-Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; QTc-5 min, Corrected QT interval 
measured over 5 min; QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.
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T2DM with HT and in patients with HT and CVD (Figure 11C), 
indicating a higher risk of arrhythmogenic events in this group. In 
contrast, T2DM patients had shorter QTc intervals. T2DM with CVD 
and HT + CVD had larger QTd dispersion (Figure  11D). The 
variability in ventricular repolarization was greatest when the 10-s 
recoding results were included. QRS-Axis characteristics in Figure 11E 
indicated substantial group differences in QRS-10 s and QRS-5 min. 
HT and HT + CVD patients had greater negative QRS-Axis values, 
indicating structural or electrical cardiac problems associated with left 
axis deviation.

4 Discussion

This study highlights the significant role of ECG biomarkers and 
medication use in classifying diabetes status, particularly in patients 
with HT and CVD. The widespread availability and use of 
ECGdiagnostics in primary care makes our findings clinically relevant. 
QTc, QTd, and QRS-Axis are reliable predictors of diabetes status, 
suggesting that ECG may be an effective, affordable, and non-invasive 
screening approach for early cardiac risk assessment in T2DM 
patients. Short-duration ECGs can be easily incorporated into routine 
patient assessment, or diabetes management to identify cardiovascular 
risk before symptoms appear. This is particularly important in primary 
care and low-income areas where comprehensive metabolic panels are 
not readily available for diagostics. Clinical approaches utilizing 
ECG-based risk assessment may facilitate rapid referrals, personalized 
monitoring, and early intervention (60, 61). By applying a machine 
learning model, we identified QRS-Axis, QTc, and QTd intervals as 
important ECG biomarkers, while lipid-lowering, and antihypertensive 
medications emerged as key distinguishing factors. Across all 
subgroups, QTc, QTd, and QRS-Axis consistently ranked among the 
top predictors of diabetes status. In patients without comorbidities, 
classification using these biomarkers achieved up to 91% accuracy. 
Even in treatment-naïve subgroups, ECG biomarkers retained 
predictive strength, supporting their utility for early screening. These 
findings align with existing research demonstrating that diabetes and 
cardiovascular conditions contribute to alterations in cardiac 
conduction and repolarization (62, 63).

The significant differences in QTd-10 s and QTc-5 min emphasize 
the importance of QRS-axis and QT-related characteristics in diabetes 
classification and that 10-s or 5-min recordings often provide different 
classification outcomes. Prior studies have linked QTc prolongation 
and increased QTd to heightened arrhythmic risk in diabetic 
populations (64). Our work extends these findings by demonstrating 
that machine learning-based classification models benefit from 
prioritizing ECG parameters in combination with medication use for 
optimal diabetes risk stratification. Beyond the methodological 
advancement of machine learning, our study provides clinical insights 
by identifying interactions between medication use and ECG 
biomarkers (65–67).

Our findings suggest that the interactions of medications, 
particularly anti-HT, DM-medication, and antidepressants, 
contribute to variations in ECG biomarkers, influencing diabetes 
classification performance. The prolongation of PQ intervals and 
widening of QRS complexes observed in diabetic patients with 
HT + CVD supports previous studies showing that antihypertensive 
drugs, particularly beta-blockers and calcium channel blockers, can 

prolong PR intervals and alter QRS duration (64). Moreover, 
we  observed that QTc prolongation remained significant even in 
medicated patients, suggesting that standard cardiovascular 
treatments do not fully mitigate repolarization abnormalities 
in T2DM.

Statins are frequently prescribed and generally associated with 
cardioprotective effects but did not show significant associations with 
ECG alterations in our study, suggesting that their cardiovascular 
benefits may not directly impact ECG patterns (63). Similarly, 
antidepressant medications showed limited influence on diabetes 
classification, consistent with prior research indicating that SSRIs have 
a lower impact on ECG compared to tricyclic antidepressants (TCAs) 
(68). However, the statistically significant association between 
antidepressant use and diabetes in our study suggests that psychiatric 
conditions may play an indirect role in metabolic and cardiovascular 
risk, warranting further investigation.

Notably, the lowest accuracy (0.64) was observed in the group 
with hypertension and cardiovascular disease, which is acceptable 
given the expected patient heterogeneity in this subgroup. Previous 
studies have reported variability in ECG alterations based on 
antidiabetic medication, such as GLP-1 receptor agonists and 
SGLT2 inhibitors (62). Our results indicate that excluding DM 
medication data allows ECG biomarkers to play a more prominent 
role in classification. Our study aligns with prior research 
demonstrating that QTc and QTd prolongation are hallmarks of 
diabetes-related cardiac risk. However, few studies have 
systematically examined the impact of medication use on ECG 
biomarker variability in diabetes classification models. Unlike prior 
studies focusing solely on ECG alterations, our work integrates 
machine-learning approaches to quantify the importance of ECG 
biomarkers and medication use. This provides a novel perspective 
on how medication effects interact with cardiac conduction in 
diabetic patients. Existing studies have also suggested that patients 
with multiple comorbidities (HT + CVD) exhibit the most 
pronounced ECG abnormalities (64). Our findings corroborate this, 
showing that PQ-10 s, QRS-Axis-10 s, and QTc-10 s were 
significantly altered in these patients.

Our analysis shows that ECG recording duration significantly 
impacts machine learning-based diabetes classification accuracy. 
Some 5-min ECG recordings showed higher accuracies due to their 
ability to capture more cardiac variability, autonomic function, and 
repolarization instability. These findings support previous research 
that longer ECG interval recordings may be needed for risk assessment 
when a diabetes history is uncertain. Although the accuracy was 
higher when using 5-min ECG features, 10-s recordings remained 
predictive, supporting their potential use in diabetes screening. Short 
ECGs, which are easily obtainable, may be useful for early cardiac risk 
stratification in diabetic patients, particularly in outpatient and 
primary care settings. The high classification accuracy of 5-min ECGs 
without suggesting that prolonged monitoring captures subtle 
electrophysiological variations linked to metabolic status and 
cardiovascular risk, making up for the missing treatment-related 
information. This supports previous findings that longer ECG 
durations improve assessments of repolarization abnormalities, which 
are common in diabetes and are associated with arrhythmias. These 
findings are clinically significant. When diabetes history is unavailable 
or incomplete, 5-min ECGs with long-term cardiac dynamics improve 
classification accuracy.
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FIGURE 11

(A) PQ features for 10 s and 5 min, (B) QRS features for 10 s and 5 min, (C) QTc features for 10 s and 5 min, (D) QTd features for 10 s and 5 min, and 
(E) QRS-Axis features for 10 s and 5 min, for all T2DM classes. All features show a statistically significant difference associated with either the 10-s or 
50 min recordings (Kruskal–Wallis test: p < 0.05). PQ-10 s, PQ interval measured over 10 s; PQ-5 min, PQ interval measured over 5 min; QRS-10 s, QRS 
complex duration measured over 10 s; QRS-5 min, QRS complex duration measured over 5 min; QRS-Axis-10 s, QRS axis deviation measured over 
10 s; QRS-Axis-5 min, QRS axis deviation measured over 5 min; QTc-10 s, Corrected QT interval measured over 10 s; QTc-5 min, Corrected QT interval 
measured over 5 min; QTd-10 s, QT dispersion measured over 10 s; QTd-5 min, QT dispersion measured over 5 min.
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Although SMOTE introduces synthetic samples, its application 
was necessary to mitigate the substantial class imbalance across the 
patient subgroups, particularly for patients without comorbidities or 
medication use. To ensure that this oversampling did not introduce 
artificial or non-physiological patterns, we evaluated model robustness 
using 5-fold cross-validation for the 10-s and 5-min ECG recordings 
and classifiers. Classification accuracy (~0.70–0.91) remained 
consistent, with QTc, QTd, and PQ intervals contributing to all 
models. These features are well-established in cardiovascular 
physiology, particularly in diabetes-related arrhythmic risk, which 
supports the physiological validity of our results (33, 52, 69). 
Medication-induced ECG changes (e.g., QTc prolongation with 
antidepressants or PQ changes with antihypertensives) corresponded 
with established electrophysiological causes, confirming that the 
patterns observed were not synthetic oversampling.

The medication usage improved classification accuracy but may 
also add bias, confusing ECG biomarker contributions independent 
of treatment effects. To explore the possibility of medication-induced 
bias in ECG interpretation, the treatment-naïve subgroups, i.e., 
patients without any medication, were analyzed. In these subgroups, 
QTd-10 s, PQ-10 s, and QRS-Axis-10 s were consistently ranked 
among the top features, with classification accuracies of 0.86 and 0.88 
for 10-s and 5-min recordings, respectively (70, 71). When medication 
variables were more present in groups with comorbidities (HT, CVD, 
and HT + CVD), the permutation importance revealed that both key 
ECG and medication features remained more predictive or equally 
important. These findings indicate that medication status does not 
affect biomarker interpretation but enhances precision by 
distinguishing disease-related from pharmacologically related 
ECG changes.

Exclusion criteria were relaxed to match real-world screening 
conditions where individuals had several comorbidities and continued 
medication use. This design makes ECG biomarker evaluation in 
varied clinical groups more practical. But it introduces possible 
confounders and increases unpredictability. While our dataset 
originates from an Australian clinical screening population, several 
factors support its broader applicability. The ECG dataset was 
previously validated through peer-reviewed studies using spatial 
modeling and clustering to assess the representativeness of larger rural 
and regional populations (72–74). Our model uses clinically universal 
ECG biomarkers that are commonly used in clinical cardiology. 
Additionally, our investigation examined ECG biomarkers and 
medication use, rather than HbA1c, body mass index (BMI), lipid 
profiles, or diabetes duration. These metrics can adjust for 
confounders, give metabolic and physiological context, and improve 
ECG biomarker interpretation. Clinical and biochemical markers 
should be  included in future studies as well as test the model on 
diverse populations to improve diagnostics and risk classification. 
Future studies should examine whether ECG-based risk assessment, 
combined with continuous glucose monitoring, heart rate variability, 
or blood pressure variability, can be applied in larger multiethnic 
groups to enhance diagnostic performance. Our findings so far 
demonstrate that short ECGs can be easily integrated into routine 
healthcare workflows to detect diabetes-related cardiac risk early.

This study highlights the clinical relevance of ECG-based 
screening in diabetes management, particularly for patients with 
hypertension and cardiovascular disease, to detect early conduction 

abnormalities. While antihypertensive and lipid-lowering drugs may 
help stabilize cardiac function, their effects on QTc and QTd warrant 
further investigation. Machine learning models that incorporate ECG 
biomarkers and medication history can enhance diabetes 
classification and facilitate early risk detection. Future research 
should investigate the effects of specific antidiabetic agents on ECG 
parameters and evaluate alternative treatments to mitigate cardiac 
complications in T2DM. Additionally, longitudinal studies are 
needed to examine how ECG biomarkers evolve over time in diabetic 
patients and how treatment regimens influence these changes. 
Investigating gender-based differences in diabetes-related ECG 
alterations could also provide new insights, as our findings suggest 
higher QRS-Axis variability in male patients with prediabetes 
(p = 0.006).

5 Conclusion

In this study, comorbidities, medication use, and cardiac 
electrophysiological changes are examined with type 2 diabetes, 
prediabetes, and healthy controls. Integrating ECG biomarkers with 
pharmacological profiles, including antihypertensive, lipid-lowering, 
antiplatelet, and depression-specific medications, provided our 
machine learning models with good classification accuracy. This 
highlights the importance of physiological and treatment-related 
diabetes risk stratification. T2DM patients with hypertension and 
cardiovascular disease showed the most ECG abnormalities, including 
longer QTc, QTd, and QRS-Axis, suggesting arrhythmogenic and 
conduction risks. Five-minute ECG records were more predictive, but 
10-s recordings were good for diabetes classification, indicating their 
application in scalable screening systems. These findings suggest that 
rapid, non-invasive ECG tests and advanced analytics improve early 
diabetes detection, disease progression, and personalized treatment. 
Future research should evaluate the advantages of combining ECG data 
with continuous glucose monitoring, heart rate variability, or wearable 
device outputs in larger multiethnic groups. The electrophysiological 
impact of diabetes therapy may be revealed by studying how GLP-1 
receptor agonists and SGLT2 inhibitors influence ECG markers.
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