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A machine learning and
nomogram-based study: effect
of applying biologically
formulated platelet-rich plasma
(PRP) on the degree of pain relief
after rotator cuff repair and
prediction modeling, integrating
biomedicine and artificial
intelligence
Jianguo Zhang, Jian Gao, Haoyu Feng and Wei Liu*

Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical
University, Tongji Shanxi Hospital, Taiyuan, China

Introduction: Rotator cuff repair, a common orthopedic surgery, often leads

to considerable postoperative pain that delays functional recovery. Platelet-rich

plasma (PRP) has been increasingly used as a biologically active autologous

therapy to promote tendon healing and reduce inflammation, but its analgesic

effects remain inconsistent across individuals. Conventional linear models may

fail to account for complex patient-specific interactions such as age, body mass

index (BMI), and preexisting inflammatory status.

Methods: We developed a machine learning–based prediction model combined

with a nomogram to assess the analgesic efficacy of PRP following rotator

cuff repair. Clinical and demographic variables were incorporated to capture

nonlinear relationships influencing pain reduction.

Results: The machine learning framework demonstrated improved predictive

accuracy compared with traditional models. The nomogram provided an

interpretable and clinically applicable visualization of individualized pain-relief

trajectories.

Discussion: This study highlights the potential of integrating machine learning

and nomogram approaches to enhance personalized prediction of PRP

analgesic response. Such individualized forecasting tools may support tailored

postoperative management strategies and optimize rehabilitation outcomes.

KEYWORDS

machine learning, nomogram, platelet-rich plasma (PRP), rotator cuff injuries, pain
relief
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Introduction 

Rotator cu tear is a common cause of shoulder dysfunction 
and chronic pain, particularly among middle-aged and older 
adults (1–4). Arthroscopic rotator cu repair has become the 
standard treatment for full-thickness and symptomatic partial-
thickness tears, aiming to restore shoulder function, relieve 
pain, and improve quality of life (5–8). Despite advances in 
surgical techniques and rehabilitation protocols, a significant 
proportion of patients continue to experience moderate to severe 
postoperative pain (9, 10), which can delay functional recovery, 
impair rehabilitation adherence, could might have a role in 
the development of chronic pain disorders. This emphasizes 
how urgently customized, eective postoperative pain control 
techniques are needed. 

In recent years, platelet-rich plasma (PRP) has emerged as 
a promising biological adjunct in musculoskeletal surgery (11, 
12). PRP is an autologous blood-derived product with a high 
concentration of platelets and a milieu of bioactive factors, 
including transforming growth factor-β (TGF-β), platelet-derived 
growth factor (PDGF), and vascular endothelial growth factor 
(VEGF) (13–17), which are involved in tissue regeneration, 
inflammation modulation, and analgesic responses. When 
applied intraoperatively or postoperatively, PRP has been shown 
to enhance tendon-to-bone healing and potentially reduce 
inflammation-related pain (18, 19). Because of these biological 
characteristics, PRP is a desirable option for enhancing results after 
rotator cu surgery. 

Clinical data on PRP’s eectiveness in reducing pain, 
however, is still conflicting. PRP has been shown in certain 
randomized controlled trials and meta-analyses to significantly 
reduce postoperative pain and speed up functional recovery, 
but other studies have found no discernible dierence when 
compared to conventional care or a placebo (20–22). These 
contradictory results might be the result of variations in PRP 
preparation procedures, surgical methods, and application timing, 
as well as underlying patient heterogeneity. More significantly, the 
therapeutic value of PRP in individualized treatment planning is 
limited because it is rarely discussed in the literature today on which 
patients are most likely to benefit from it. 

Even after controlling for relevant confounders, our initial 
multivariate regression analysis indicates that PRP administration 
is substantially related with higher postoperative pain alleviation. 
Furthermore, we found that a number of other factors, including 
age, smoking status, comorbidities, body mass index (BMI), 
baseline visual analog scale (VAS) scores, and the severity of 
rotator cu damage, also have independent impacts on pain 
outcomes. Higher BMI patients, for instance, frequently have 
chronic inflammation and changed pain sensitivity, which may 
aect how they perceive pain in the first place as well as how they 
react to PRP therapy. The aforementioned results underscore the 
necessity of multivariate risk stratification instruments that surpass 
single-variable analysis. 

Complex, non-linear interactions between several factors are 
diÿcult for traditional statistical models, like logistic regression, 
to capture. However, by automatically identifying latent patterns, 
non-linear correlations, and variable interactions that may not 
be immediately obvious with traditional methods, machine 

learning (ML) algorithms provide better performance in high-
dimensional data settings. 

While logistic regression is a classical supervised machine 
learning algorithm, it assumes linear relationships between 
predictors and the log-odds of the outcome, which may limit 
its ability to model complex non-linear interactions or higher-
order variable dependencies without explicit feature engineering. 
In contrast, non-parametric machine learning methods such 
as random forests and gradient boosting can automatically 
detect latent patterns and non-linear interactions within high-
dimensional data, often yielding improved predictive performance 
in complex clinical settings. 

Additionally, combining ML-derived models with 
nomograms—graphical depictions of predictive models that 
calculate the likelihood of a clinical event—oers a potent 
way to generate personalized, easily comprehensible risk 
evaluations for physicians. 

In this study, we used multivariate logistic regression— 
a widely used supervised machine learning algorithm—as the 
basis for nomogram construction due to its interpretability and 
clinical familiarity. We then compared its predictive performance 
with other advanced machine learning models to explore 
potential non-linear interactions that might not be captured by 
parametric approaches. 

In order to provide individualized estimates of postoperative 
pain relief, we therefore set out to assess the eect of PRP 
application on postoperative pain outcomes after arthroscopic 
rotator cu repair using real-world clinical data and create 
a machine learning-based nomogram prediction model 
that integrates PRP application with important clinical and 
demographic variables. By doing this, we want to close the 
gap between clinical application and biological justification 
by providing a decision-support tool to help surgeons create 
specialized perioperative pain management strategies and to direct 
patient selection for PRP therapy. 

By combining clinical epidemiology, biological information, 
and artificial intelligence techniques, this multidisciplinary study 
advances the area of orthopedic precision pain management. The 
proposed model may ultimately enhance clinical decision-making, 
optimize resource allocation, and improve patient outcomes by 
identifying those who are most likely to benefit from PRP-
based interventions. 

Materials and methods 

In the PRP group, autologous PRP was prepared 
intraoperatively using a standard two-step centrifugation protocol. 
Whole blood (approximately 20 mL) was collected from each 
patient into citrate-containing tubes. The first centrifugation (soft 
spin) was conducted at 1,500 rpm for 10 min to separate plasma 
from red blood cells, followed by a second centrifugation (hard 
spin) at 3,500 rpm for 10 min to concentrate the platelets. The 
resulting PRP had a 4–5-fold increase in platelet concentration 
compared to baseline whole blood levels. 

A total volume of 4–5 mL of PRP was injected intraoperatively 
at the tendon-to-bone interface around the repaired rotator cu 
footprint under direct arthroscopic visualization, immediately 
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following suture anchor placement and prior to wound closure. No 
additional PRP was administered postoperatively. 

platelet-rich plasma was prepared using a standardized 
two-step centrifugation method: 1500 rpm for 10 min, 
followed by 3500 rpm for 10 min. The final PRP product was 
applied intraoperatively at the tendon–bone interface after 
rotator cu repair. 

Inclusion criteria were: age ≥18 years, complete baseline 
and follow-up data, and no prior shoulder surgery or systemic 
inflammatory disease. At 3 months after surgery, the main result 
was pain alleviation, which was defined as a decrease of at least 50% 
in the VAS score from the baseline. 

A total of 240 patients (31 in the control group and 209 in the 
PRP group) were included in the analysis. Patients with incomplete 
baseline or follow-up data were excluded prior to analysis. No 
patients were lost to follow-up at the 3 months assessment, and 
there were no missing values for the included variables. Table 1 
summarizes the baseline demographic and clinical characteristics 
of the control group and PRP group. 

The VAS is a standard 0–10 scale used to evaluate pain intensity, 
where 0 represents “no pain” and 10 indicates “worst imaginable 
pain.” Patients completed VAS assessments preoperatively (within 
1 week before surgery) and at the 3 months postoperative follow-
up. Pain relief was defined as a ≥50% reduction in VAS scores 
compared to baseline. 

Sex, age, BMI, smoking status, diabetes, baseline pain ratings, 
inflammatory markers (ESR, CRP), ASES scores, rotator cu tear 
grade, surgical method, and PRP application status were among the 
clinical and demographic information gathered. Smoking history 
(“smoke”) was defined as having a history of tobacco use and 
continuing to smoke during the perioperative period, coded as 
0 = no and 1 = yes. 

These variables were extracted from electronic medical records. 
The ASES (American Shoulder and Elbow Surgeons) score 
ranges from 0 to 100, with higher scores reflecting better 
shoulder function. Inflammatory markers such as ESR and CRP 
were measured using standard laboratory procedures during 
preoperative clinical assessments. 

For modeling purposes, sex was coded as a binary variable 
(0 = female, 1 = male). Smoking status and diabetes were also 
treated as binary variables (0 = no, 1 = yes). 

Age and BMI were categorized based on clinically relevant 
thresholds. Age was divided into three groups: <40 years (coded 
as 1), 40–50 years (coded as 2), and >50 years (coded as 3). BMI 
was categorized according to standard classification: <24 kg/m2 

(normal, coded as 1), 24–28 kg/m2 (overweight, coded as 2), and 
≥28 kg/m2 (obese, coded as 3), following Chinese health guidelines. 

Variable selection was first carried out using the least absolute 
shrinkage and selection operator (LASSO) regression with 10-fold 
cross-validation to find the best predictors in order to prevent 
overfitting and deal with multicollinearity. All variables were then 
subjected to univariate logistic regression, and those with p < 0.10 
were then included in a multivariate logistic model in order 
to identify independent predictors. Statistically significant factors 
were then incorporated into a nomogram to visualize individual 
risk using the “rms” package in R. The performance of the 
nomogram was evaluated by the area under the receiver operating 
characteristic curve (AUC), concordance index (C-index), and 

TABLE 1 Comparison of baseline demographic, clinical, and surgical 
characteristics between the control and platelet-rich 
plasma (PRP) groups. 

Variable Category Control (n, %) PRP (n, %) 

Age 40–50 13 (41.9%) 72 (34.4%) 

<40 10 (32.3%) 63 (30.1%) 

>50 8 (25.8%) 74 (35.4%) 

Sex Female 16 (51.6%) 116 (55.5%) 

Male 15 (48.4%) 93 (44.5%) 

Steatosis No 18 (58.1%) 178 (85.2%) 

Yes 31 (41.9%) 31 (14.8%) 

Smoke No 22 (71.0%) 158 (75.6%) 

Yes 9 (29.0%) 51 (24.4%) 

Diabetes No 14 (45.2%) 104 (49.8%) 

Yes 17 (54.8%) 105 (50.2%) 

Surgical type Type 1 9 (29.0%) 72 (34.4%) 

Type 2 12 (38.7%) 64 (30.6%) 

Type 3 10 (32.3%) 73 (34.9%) 

Rotator cu Medium 23 (74.2%) 149 (71.3%) 

Small 8 (25.8%) 60 (28.7%) 

BMI 24–28 14 (45.2%) 76 (36.4%) 

<24 13 (41.9%) 92 (44.0%) 

≥28 4 (12.9%) 41 (19.6%) 

VAS 0–3 8 (25.8%) 73 (34.9%) 

4–6 13 (41.9%) 69 (33.0%) 

7–10 10 (32.3%) 67 (32.1%) 

ESR High↑ 9 (29.0%) 77 (36.8%) 

Mild↑ 12 (38.7%) 67 (32.1%) 

Normal 10 (32.3%) 65 (31.1%) 

CRP High↑ 13 (41.9%) 67 (32.1%) 

Mild↑ 9 (29.0%) 70 (33.5%) 

Normal 9 (29.0%) 72 (34.4%) 

ASES High 13 (41.9%) 71 (34.0%) 

Low 7 (22.6%) 71 (34.0%) 

Medium 11 (35.5%) 67 (32.1%) 

calibration plots. Internal validation was performed via 1,000 
bootstrap resamples. 

The same dataset was used to train a number of machine 
learning models, including logistic regression, random forest 
(RF), support vector machine (SVM), extreme gradient boosting 
(XGBoost), and multilayer perceptron (MLP), in order to further 
evaluate the prediction’s resilience and find non-linear connections. 
Model performance was compared using AUC, sensitivity, 
specificity, and total accuracy using 5-fold cross-validation. 

Other continuous variables, including baseline VAS score, ESR, 
CRP, and ASES score, were used in their original scale without 
transformation or grouping. 

This Figure 1 shows the LASSO coeÿcient profiles of all 
candidate predictors as a function of the logarithmic value of the 
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FIGURE 1 

Least absolute shrinkage and selection operator (LASSO) coefficient profile plot. 

regularization parameter λ. As λ increases (moving left to right), 
more coeÿcients shrink toward zero, indicating regularization 
strength. When log(λ) is suÿciently high, only a few variables 
remain with non-zero coeÿcients. This penalization process helps 
eliminate redundant or weakly associated variables. In our analysis, 
13 variables initially entered the model, but as λ increased, only six 
variables retained non-zero coeÿcients, suggesting their stronger 
association with the outcome of postoperative pain relief. 

The 10-fold cross-validation error (binomial deviation) curve 
for various λ values is shown in this graphic. The ideal balance 
between model complexity and prediction error is indicated by 
the vertical dotted line on the left, which shows the value of λ 
that minimizes the cross-validated error (λ_min). Six variables 
in all were chosen for additional modeling at this ideal λ. We 
chose λ_min to optimize predictive information, even if the right 
vertical line (optional λ_1se) is more conservative and contains 
fewer variables. The optimal value of λ was determined through 
10-fold cross-validation, as illustrated in Figure 2, which shows the 
binomial deviation curve and the corresponding λ values. 

This nomogram Figure 3 was created using multivariate 
logistic regression to calculate each person’s unique likelihood of 
experiencing considerable postoperative pain alleviation 3 months 
after arthroscopic rotator cu surgery, which is defined as a 
reduction of at least 50% in VAS score. Sex, age, body mass index 
(BMI), smoking status, PRP application, diabetes, baseline pain 

(VAS), inflammatory markers (ESR and CRP), functional status 
(ASES score), rotator cu tear classification, and surgery type are 
among the many clinically significant indicators that are integrated. 

A point scale representing each variable’s relative contribution 
to the final forecast is aligned with it at the top. At the bottom of 
the nomogram, the total score represents the anticipated likelihood 
of postoperative pain alleviation. Clinicians can add up the points 
allotted to each predictor based on the patient’s values. 

The use of platelet-rich plasma, or PRP, had the most impact 
on postoperative results out of all the predictors. PRP recipients 
were given noticeably higher point values than non-receivers, 
suggesting a robust positive correlation with pain alleviation. 
This corroborates the findings of our multivariate analysis, 
which showed that PRP was an independent protective factor 
for postoperative pain, emphasizing its analgesic eectiveness in 
relation to inflammatory management and tendon repair. 

On the other hand, in line with established biological 
and metabolic obstacles to healing, a greater body mass 
index and higher preoperative pain or inflammatory scores 
(such as ESR or CRP) tended to lower the likelihood of 
postoperative pain reduction. 

In order to facilitate individualized decision-making 
concerning pain treatment techniques and the choice of PRP 
candidates for rotator cu surgery, this nomogram oers a simple, 
interpretable clinical tool. 
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FIGURE 2 

Selection of optimal λ via cross-validation. 

Feature selection was initially performed using LASSO 
regression to reduce dimensionality and identify variables with the 
strongest association with postoperative pain relief. Six predictors 
with non-zero coeÿcients at the optimal λ were selected. 

However, to enhance the clinical interpretability and retain 
variables with established relevance in the literature and practice 
(e.g., sex, smoking status, surgical method), we incorporated 
additional clinically meaningful variables into the multivariate 
logistic regression model used for nomogram construction. 

This hybrid approach aimed to balance statistical parsimony 
with clinical utility. To mitigate potential overfitting, we performed 
internal validation using 1,000 bootstrap resamples and evaluated 
model calibration and discrimination in both training and 
validation cohorts. 

The calibration curve for the modeling population, which is 
utilized to assess the nomogram’s predictive ability in predicting 
postoperative pain alleviation following rotator cu injury, is 
shown in Figure 4A. Three curves are shown on the chart: the 

bias-corrected curve (solid), the apparent curve (dotted), and the 
ideal line (dashed). In the 0.2–0.5 range, where the observed 
incidence of pain alleviation grows steadily with the projected 
values, the bias-corrected curve closely resembles the ideal line over 
the whole range of predicted probability (0.2–1.0). Even though 
there are slight variations in the 0.5–1.0 range, they stay within 
reasonable bounds, suggesting that the model exhibits decent 
calibration and prediction accuracy in the training population. This 
suggests that the nomogram can reliably estimate the probability of 
postoperative pain relief and has potential for clinical application in 
guiding prognosis and treatment planning. 

The calibration curve for the validation population is 
displayed in Figure 4B. The bias-corrected curve shows overall 
agreement with the ideal line over the anticipated probability 
range (0.2–1.0), much as the modeling cohort. The curve 
closely resembles the ideal trend in the low to mid-range 
(0.2–0.6), however, there are minor variations that are still 
within a suitable range in the mid-to-high range (0.6–0.8). 
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FIGURE 3 

Nomogram for predicting the probability of postoperative pain relief in rotator cuff injury patients. Predictors include sex (0 = female, 1 = male), age 
group (<40, 40–50, >50 years), body mass index (BMI: <24, 24–28, ≥28 kg/m2), smoking history (0 = no, 1 = yes), diabetes (0 = no, 1 = yes), 
baseline VAS (Visual Analog Scale, 0–10), inflammatory markers [ESR, C-reactive protein (CRP)], functional status [acromioclavicular function score 
(ASES) score, 0–100], rotator cuff tear classification, surgical type, and PRP application (0 = no, 1 = yes). The total score corresponds to the 
estimated probability of achieving ≥50% reduction in visual analog scale (VAS) score at 3 months postoperatively. 

FIGURE 4 

Calibration curves of the nomogram for predicting postoperative pain relief after rotator cuff injury. (A) Calibration curve in the modeling cohort; 
(B) Calibration curve in the validation cohort. 

The curve progressively moves back toward the ideal line as 
the anticipated probability rises over 0.8. These results show 

that the model retains satisfactory calibration performance 

in the external validation cohort following adjustment. The 

nomogram’s generalizability and robustness are supported by the 

overall predictive agreement, notwithstanding the possibility of 
occasional overestimation or underestimating in higher probability 

ranges. Further refinement of the model, such as incorporating 

additional clinical predictors, may enhance its accuracy in 

complex scenarios. 
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Both the training and validation groups underwent receiver 
operating characteristic (ROC) curve analysis to assess the 
nomogram’s discriminatory capacity in forecasting postoperative 
pain reduction following rotator cu surgery. 

A reasonable degree of discriminating was shown by the 
nomogram’s area under the ROC curve (AUC) of 0.726 in the 
training cohort, as seen in Figure 5A. The AUC rose to 0.806 in 
the validation cohort (Figure 5B), indicating that the nomogram 
performed satisfactorily when applied to a separate dataset and 
exhibiting strong prediction accuracy. 

These results support the clinical utility of the model 
in stratifying patients based on the likelihood of achieving 
postoperative pain relief. 

Artificial neural networks (ANN), decision trees (DT), 
extra trees (ET), gradient boosting machines (GBM), K-nearest 
neighbors (KNN), LightGBM, random forests (RF), support vector 
machines (SVM), and XGBoost are among the nine popular 
machine learning techniques used in predictive modeling that are 
shown in Figure 6. These techniques are used for clinical feature-
related classification, and model performance is assessed. The 
prediction accuracy, AUC value, and computed error of each model 
show how dierently they perform. 

The image illustrates how some models, including as XGBoost 
and Random Forest, perform better in terms of classification 
accuracy and AUC (area under the curve), highlighting their 
benefits when handling high-dimensional data and intricate non-
linear interactions. 

Unlike traditional nomograms (based on statistical regression 
analysis), which often assume linear correlations between 
variables, machine learning models may automatically capture 
complicated interaction eects in the data. Nomograms are 
easily interpreted, but machine learning techniques—particularly 
tree-based techniques like XGBoost and RF—oer more promise 
in terms of precision and applicability. 

XGBoost has shown excellent performance in several 
experiments, but lacks the intuitive interpretability of nomogram. 
In contrast, SVMs and LightGBMs perform somewhat less well, 
but still provide valuable predictive results for specific tasks. 

The top 13 characteristics from a trained LightGBM model 
are displayed in Figure 7A in order of relevance; thicker bars 
denote a larger relative contribution to the model’s prediction. 
The feature-wise classification performance is shown in Figure 7B, 
where the mean AUC score and 95% CI for each feature 
were calculated by modeling it separately. Red highlights the 
top 13 traits with the greatest AUC values, indicating their 
potent discriminative power. When combined, the two panels 
oer contrasting viewpoints for finding reliable predictors in 
ensuing machine learning modeling: model-derived significance 
and standalone classification usefulness. 

In the LightGBM model, all available predictors (n = 13) were 
ranked by relative importance, with BMI, diabetes, and baseline 
ASES score among the top-ranked variables. PRP application also 
appeared within the top tier of predictors, although it did not 
have the highest relative importance in this specific algorithm. 
It should be noted that feature importance rankings may vary 
between algorithms due to dierences in calculation methods, and 
the LightGBM ranking reflects only one model’s perspective. Across 
multiple models, including logistic regression and SHAP analyses, 
PRP consistently emerged as a statistically significant and clinically 
relevant predictor of postoperative pain relief. 

The AdaBoost model’s eÿcacy in predicting pain reduction 
following rotator cu injury is illustrated by the ROC curves in 
Figure 8A. The X-axis shows the false positive rate (1-specificity), 
while the Y-axis shows the true positive rate (sensitivity). With 
an AUC of 0.990, the training set (purple curve) shows very high 
prediction accuracy, suggesting that the model fits the training 
data well; the test set (green curve) shows an AUC of 0.560, 
suggesting that the model generalizes poorly on the test data and 
that overfitting may be an issue. This discrepancy between the 
training and test set performance indicates potential overfitting 
of the AdaBoost model. The AdaBoost model showed a high 
training AUC (0.990) but a low test AUC (0.560), indicating 
potential overfitting. This is likely due to its sensitivity to noise 
and small sample sizes, suggesting that boosting may not be 
optimal for this clinical dataset. Future optimization might include 
parameter tuning, feature selection, or ensemble approaches to 
mitigate overfitting risks. The stochastic classifier’s performance is 

FIGURE 5 

Receiver operating characteristic (ROC) curves of the nomogram for predicting postoperative pain relief following rotator cuff repair. (A) ROC curve 
in the training cohort, with an s area under the curve (AUC) of 0.726. (B) ROC curve in the validation cohort, with an AUC of 0.806. 
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FIGURE 6 

Comparison of nine machine learning models for predicting clinical outcomes. 

shown by the red dashed line. The figure shows that although the 
AdaBoost model performs well on the training set, it has limited 
generalization ability on new data, and further optimization of the 
model is needed to improve its prediction ability on unknown data. 

The performance of many models on the test set is displayed 
in Figure 8B as various colored curves, each of which represents 
the model’s ROC curve and associated AUC values. Among the 
models are Artificial Neural Networks (ANN), Random Forest, 
LightGBM, Gradient Boost, XGBoost, Support Vector Machine 
(SVM), K Nearest Neighbors (KNN), Decision Trees, and Extra 
Trees. The rate of true positives (sensitivity) is shown on the y-axis, 
while the rate of false positives (1-specificity) is shown on the x-axis. 
The random classifier’s reference line is shown by the red dashed 
line. The dierence in each model’s predictive capacity is shown by 
the AUC values, which range from 0.502 (SVM) to 0.601 (KNN), 
with SVM doing badly and KNN performing best on the test set. 

The performance of the various models on the training set is 
displayed in Figure 8E as curves of various colors, each of which 
represents a model’s AUC value. The training set’s AUC values, 
which range from 0.756 (KNN) to 0.990 (Extra Trees), are likewise 

usually high, much like the test set model comparison graph. 
Strong fit is demonstrated by the Random Forest, XGBoost, and 
Extra Trees models, which perform better on the training set. The 
random classifier’s baseline is also shown by the red dashed line. 
Even if all models perform well on the training set, this figure 
demonstrates that a major problem with them is still their inability 
to generalize to the test set. 

These ROC curve comparisons help us to evaluate the 
performance of dierent machine learning models in the prediction 
of pain relief after rotator cu injury, reflecting the dierences 
in the classification ability of each model and its performance on 
training and test data. 

The accuracy, sensitivity, specificity, positive and negative 
predictive values, F1 score, and Kappa coeÿcient of the various 
machine learning models on the test set are displayed in Figure 8C. 
Dierent colored lines represent each model’s performance, with 
ANNs (Artificial Neural Networks) outperforming the others 
in a number of parameters, particularly sensitivity and positive 
predictive value, which are both comparatively high. In contrast, 
SVM and XGBoost exhibit subpar performance on these criteria. 
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FIGURE 7 

Feature importance ranking from the LightGBM model. (A) Top 13 predictors ranked by relative importance, with thicker bars indicating greater 
contribution to the model’s prediction. (B) Feature-wise classification performance showing mean AUC score. A total of 13 predictors were 
included: age group (<40, 40–50, >50 years), sex (0 = female, 1 = male), BMI group (<24, 24–28, ≥28 kg/m2), smoking history (0 = no, 1 = yes), 
diabetes (0 = no, 1 = yes), baseline visual analog scale (VAS) score (0–10), ESR, C-reactive protein (CRP), acromioclavicular function score (ASES) 
functional score (0–100), rotator cuff tear grade, surgical type, and, platelet-rich plasma (PRP) application (0 = no, 1 = yes). Bars represent the 
relative contribution of each variable to model classification performance. 

Overall, there was a significant range in the models’ performance 
metrics across the test set, suggesting that the models’ performance 
was inconsistent across many criteria. 

The distribution of the test set samples’ projected values using 
Principal Component Analysis (PCA) is displayed in Figure 8D. 
The Y-axis shows the value of the first principal component (PC1), 
while the X-axis shows the expected values for benign (benign). 
Purple dots indicate benign samples, whereas green dots indicate 
malignant (malignant) samples. The categorization boundaries are 
shown by the dashed lines. There is a clear distinction between the 
anticipated values of benign and malignant samples, as seen by the 
distribution in the figure, which displays the model’s discriminating 
in predicting benign and malignant samples. 

Figure 8F shows the performance of dierent machine learning 
models on the training set, with metrics such as accuracy, 
sensitivity, and specificity. Compared to the performance of the 
models on the test set, the models on the training set usually 
perform better, with generally higher AUC values. Extra Trees 

and ANN perform the best on the training set, while the other 

models such as Decision Trees and SVMs are relatively weaker. 
This figure reflects the adaptability of each model on the training 

set, but also suggests the need to focus on generalization ability to 

avoid overfitting. 
Figure 8G this figure is similar to Figure 8F and shows the 

predictive value of the training set samples in relation to principal 
component analysis. The green dots indicate malignant samples 
and the purple dots indicate benign samples. x-axis indicates the 

predicted benign values and y-axis indicates the first principal 
component (PC1). This suggests that the model is better at 
dierentiating between the training set’s categories. 

In order to assist clinicians in forecasting postoperative pain 

relief based on patient characteristics and to provide decision 

support for individualized treatment and care, we developed a 

machine learning model in this study for predicting pain relief in 

patients following rotator cu injuries. 
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FIGURE 8 

Comparison of machine learning models for predicting postoperative pain relief after rotator cuff repair. (A) Receiver operating characteristic (ROC) 
curve of AdaBoost model in the training and test sets. (B) ROC curves of multiple machine learning models in the test set. (C) Performance metrics 
(accuracy, sensitivity, specificity, etc.) of different models in the test set. (D) Principal component analysis (PCA) distribution of predicted values in the 
test set. (E) ROC curves of multiple machine learning models in the training set. (F) Performance metrics of different models in the training set. 
(G) PCA distribution of predicted values in the training set. 

We interpreted and examined the model’s prediction findings 
using SHAP values (Shapley Additive Explanations). A machine 

learning model may be interpreted using SHAP values, which 

provide us insight into how each feature contributes to the 

final prediction outcomes. This allows us to further improve the 

algorithm and clearly show which features are most crucial for 

predicting pain alleviation following rotator cu injuries. 
BMI (body mass index), diabetes, platelet-rich plasma (PRP), 

acromioclavicular function score (ASES), and C-reactive protein 

(CRP) had the biggest eects on the model’s predictive outcomes, 
according to the feature importance analysis in Figure 9A. This 
suggests that these factors are crucial for evaluating postoperative 

pain relief. In particular, PRP and ASES may be connected to the 

patient’s shoulder function and postoperative recovery, whereas 
BMI and diabetes have a greater place in the model and may be 

directly tied to the patient’s underlying health state. 

Figure 9B demonstrates the distribution of SHAP values 
corresponding to each feature, further revealing the ways in which 
dierent features influence the predicted outcomes of the model. 
For example, BMI and diabetes had a large positive or negative 
eect on the predictive value of pain relief, and the dierent SHAP 
value intervals illustrate the dierent roles of these features in 
dierent patient groups. 

By illustrating the relationships between characteristics, 
Figure 9C aids in our comprehension of how certain feature 
combinations aect prediction results. For instance, diabetes and 
BMI together may aect pain management dierently, which gives 
us information on how to best tailor treatment plans. 

The visual examination of feature contributions using various 
models is displayed in Figures 9D through 9G. These numbers 
demonstrate that PRP had a significant favorable impact in a 
number of models, suggesting that it is a significant predictor of 
postoperative pain alleviation. Furthermore, although their eects 
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FIGURE 9 

Shapley Additive Explanations (SHAP) analysis of feature importance and contribution to machine learning model predictions: (A) overall feature 
importance ranked by mean SHAP values; (B) SHAP summary plot showing feature-level contributions across patients; (C) SHAP dependence plots 
illustrating feature interactions and non-linear effects; (D) SHAP force plot example highlighting the contribution of, platelet-rich plasma (PRP) and 
other factors; (E) SHAP force plot example highlighting the contribution of surgical type and related features; (F) SHAP force plot example 
highlighting the contribution of body mass index (BMI), diabetes, and C-reactive protein (CRP); (G) SHAP force plot example showing combined 
feature effects including BMI, diabetes, PRP, CRP, and surgical type. 

may be minimal, variables including age, ASES score, and kind of 
surgery also play a part in certain models. 

Discussion 

The purpose of this study was to assess the impact of 
platelet-rich plasma (PRP) on postoperative pain relief after 
rotator cu repair by combining nomogram modeling and 
machine learning. Additionally, we developed a personalized 
prediction model to help clinicians identify patients who 
would benefit most from PRP treatment. Optimizing pain 
management techniques and enhancing recovery results are the 
goals of this strategy. 

We developed a prediction model that takes into consideration 
the intricate, non-linear connections between several variables 

aecting pain alleviation following surgery by fusing clinical data 
with cutting-edge machine learning techniques. Tree-based models 
like random forest (RF) and extreme gradient boosting (XGBoost) 
are excellent at capturing these complicated connections, but 
traditional statistical techniques like logistic regression frequently 
fail to adequately capture these complex relationships. In addition 
to increasing prediction accuracy, this method takes into account 
a variety of clinical and demographic characteristics that are 
frequently disregarded in conventional models, including age, BMI, 
smoking status, comorbidities, and baseline inflammatory markers. 

Our findings indicate that PRP application is significantly 
associated with postoperative pain relief, consistent with existing 
clinical evidence suggesting that PRP promotes tendon healing 
and modulates inflammation (22–26). However, the eectiveness 
of PRP treatment was influenced by factors such as BMI, diabetes, 
and baseline inflammatory markers. These findings highlight the 
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need for personalized treatment strategies. For example, patients 
with higher BMI tend to experience prolonged inflammation and 
altered pain sensitivity (27–29), potentially influencing both their 
baseline pain perception and their response to PRP treatment. 

Using SHAP (Shapley Additive Explanations) analysis, we 
provided detailed insights into feature importance and their 
contributions to the model’s predictions. It was discovered that the 
combination of characteristics like diabetes and BMI significantly 
aected the results of pain alleviation, highlighting the necessity of 
tailored treatment strategies. 

We created a nomogram that combines important indicators, 
such as preoperative pain levels, BMI, and PRP administration, 
giving physicians a simple, intuitive tool for forecasting pain 
alleviation results. The model’s robustness was further confirmed 
using calibration plots, which demonstrated a strong correlation 
between expected and actual results and proved the model’s 
dependability for clinical use. 

Furthermore, we evaluated the performance of several machine 
learning models and discovered that, with higher AUC values, 
XGBoost and random forest performed well. This demonstrates 
how well these models work with complicated, high-dimensional 
data. However, models like the multilayer perceptron (MLP) and 
support vector machine (SVM) did not perform well, suggesting 
that not all machine learning models are appropriate for this 
particular prediction job. 

The model’s capacity to distinguish between various patient 
groups was further validated by principal component analysis 
(PCA), underscoring the promise of machine learning in seeing 
patterns in clinical data that could be diÿcult to find with 
traditional techniques. 

This study has some limitations, such as its retrospective 
methodology and possible biases in data collecting, despite its 
encouraging results. The model’s robustness will need to be 
confirmed by external validation in other cohorts, and more 
improvements are needed to enhance performance in more 
complicated situations or when several factors interact non-
linearly. To improve the prediction eectiveness of the model, 
future studies should include more variables like genetic markers 
or more thorough imaging data. 

To sum up, our work shows that postoperative pain alleviation 
after rotator cu reconstruction may be predicted with machine 
learning algorithms and nomogram-based techniques, both of 
which are feasible and successful. We oer important insights 
into the function of biologic treatments in musculoskeletal surgery 
by including PRP administration as a significant predictor. This 
multidisciplinary approach represents a significant step toward 
precision medicine in orthopedic surgery, with the potential to 
enhance patient outcomes and optimize resource allocation, even 
though more validation and improvement are required. 

The AdaBoost model showed a high training AUC (0.990) but a 
low test AUC (0.560), indicating potential overfitting. This is likely 
due to its sensitivity to noise and small sample sizes, suggesting that 
boosting may not be optimal for this clinical dataset.” 

This study has limitations. Its retrospective single-center design 
may introduce selection bias and unmeasured confounding, despite 
strict eligibility criteria and multivariable adjustment. External 
validation on independent, multi-center datasets is still needed to 
confirm the robustness and generalizability of the model. 

In summary, this study is the first to integrate biologically 
formulated PRP application with machine learning–based 
nomogram modeling to predict postoperative pain relief after 
rotator cu repair. By combining clinical, demographic, and 
biological factors, our approach provides an innovative and 
interpretable tool for individualized pain management. This 
multidisciplinary integration of biomedicine and artificial 
intelligence not only enhances prediction accuracy but also oers 
practical guidance for clinical decision-making and future research. 

Conclusion 

This study demonstrated that PRP administration significantly 
improves postoperative pain relief following rotator cu repair. By 
integrating clinical variables and machine learning algorithms, a 
nomogram-based model was developed to assist personalized 
treatment planning. While the model showed promising 
performance, external validation and refinement are warranted to 
enhance generalizability. 
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