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A machine learning and
nomogram-based study: effect
of applying biologically
formulated platelet-rich plasma
(PRP) on the degree of pain relief
after rotator cuff repair and
prediction modeling, integrating
biomedicine and artificial
intelligence

Jianguo Zhang, Jian Gao, Haoyu Feng and Wei Liu*

Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical
University, Tongji Shanxi Hospital, Taiyuan, China

Introduction: Rotator cuff repair, a common orthopedic surgery, often leads
to considerable postoperative pain that delays functional recovery. Platelet-rich
plasma (PRP) has been increasingly used as a biologically active autologous
therapy to promote tendon healing and reduce inflammation, but its analgesic
effects remain inconsistent across individuals. Conventional linear models may
fail to account for complex patient-specific interactions such as age, body mass
index (BMI), and preexisting inflammatory status.

Methods: We developed a machine learning—based prediction model combined
with a nomogram to assess the analgesic efficacy of PRP following rotator
cuff repair. Clinical and demographic variables were incorporated to capture
nonlinear relationships influencing pain reduction.

Results: The machine learning framework demonstrated improved predictive
accuracy compared with traditional models. The nomogram provided an
interpretable and clinically applicable visualization of individualized pain-relief
trajectories.

Discussion: This study highlights the potential of integrating machine learning
and nomogram approaches to enhance personalized prediction of PRP
analgesic response. Such individualized forecasting tools may support tailored
postoperative management strategies and optimize rehabilitation outcomes.
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Introduction

Rotator cuff tear is a common cause of shoulder dysfunction
and chronic pain, particularly among middle-aged and older
adults (1-4). Arthroscopic rotator cuff repair has become the
standard treatment for full-thickness and symptomatic partial-
thickness tears, aiming to restore shoulder function, relieve
pain, and improve quality of life (5-8). Despite advances in
surgical techniques and rehabilitation protocols, a significant
proportion of patients continue to experience moderate to severe
postoperative pain (9, 10), which can delay functional recovery,
impair rehabilitation adherence, could might have a role in
the development of chronic pain disorders. This emphasizes
how urgently customized, effective postoperative pain control
techniques are needed.

In recent years, platelet-rich plasma (PRP) has emerged as
a promising biological adjunct in musculoskeletal surgery (11,
12). PRP is an autologous blood-derived product with a high
concentration of platelets and a milieu of bioactive factors,
including transforming growth factor-p (TGF-f), platelet-derived
growth factor (PDGF), and vascular endothelial growth factor
(VEGF) (13-17), which are involved in tissue regeneration,
inflammation modulation, and analgesic responses. When
applied intraoperatively or postoperatively, PRP has been shown
to enhance tendon-to-bone healing and potentially reduce
inflammation-related pain (18, 19). Because of these biological
characteristics, PRP is a desirable option for enhancing results after
rotator cuff surgery.

Clinical data on PRP’s effectiveness in reducing pain,
however, is still conflicting. PRP has been shown in certain
randomized controlled trials and meta-analyses to significantly
reduce postoperative pain and speed up functional recovery,
but other studies have found no discernible difference when
compared to conventional care or a placebo (20-22). These
contradictory results might be the result of variations in PRP
preparation procedures, surgical methods, and application timing,
as well as underlying patient heterogeneity. More significantly, the
therapeutic value of PRP in individualized treatment planning is
limited because it is rarely discussed in the literature today on which
patients are most likely to benefit from it.

Even after controlling for relevant confounders, our initial
multivariate regression analysis indicates that PRP administration
is substantially related with higher postoperative pain alleviation.
Furthermore, we found that a number of other factors, including
age, smoking status, comorbidities, body mass index (BMI),
baseline visual analog scale (VAS) scores, and the severity of
rotator cuff damage, also have independent impacts on pain
outcomes. Higher BMI patients, for instance, frequently have
chronic inflammation and changed pain sensitivity, which may
affect how they perceive pain in the first place as well as how they
react to PRP therapy. The aforementioned results underscore the
necessity of multivariate risk stratification instruments that surpass
single-variable analysis.

Complex, non-linear interactions between several factors are
difficult for traditional statistical models, like logistic regression,
to capture. However, by automatically identifying latent patterns,
non-linear correlations, and variable interactions that may not
be immediately obvious with traditional methods, machine
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learning (ML) algorithms provide better performance in high-
dimensional data settings.

While logistic regression is a classical supervised machine
learning algorithm, it assumes linear relationships between
predictors and the log-odds of the outcome, which may limit
its ability to model complex non-linear interactions or higher-
order variable dependencies without explicit feature engineering.
In contrast, non-parametric machine learning methods such
as random forests and gradient boosting can automatically
detect latent patterns and non-linear interactions within high-
dimensional data, often yielding improved predictive performance
in complex clinical settings.

Additionally, ML-derived with
nomograms—graphical depictions of predictive models that

combining models
calculate the likelihood of a clinical event—offers a potent
way to generate personalized, easily comprehensible risk
evaluations for physicians.

In this study, we used multivariate logistic regression—
a widely used supervised machine learning algorithm—as the
basis for nomogram construction due to its interpretability and
clinical familiarity. We then compared its predictive performance
with other advanced machine learning models to explore
potential non-linear interactions that might not be captured by
parametric approaches.

In order to provide individualized estimates of postoperative
pain relief, we therefore set out to assess the effect of PRP
application on postoperative pain outcomes after arthroscopic
rotator cuff repair using real-world clinical data and create
a machine learning-based nomogram prediction model
that integrates PRP application with important clinical and
demographic variables. By doing this, we want to close the
gap between clinical application and biological justification
by providing a decision-support tool to help surgeons create
specialized perioperative pain management strategies and to direct
patient selection for PRP therapy.

By combining clinical epidemiology, biological information,
and artificial intelligence techniques, this multidisciplinary study
advances the area of orthopedic precision pain management. The
proposed model may ultimately enhance clinical decision-making,
optimize resource allocation, and improve patient outcomes by
identifying those who are most likely to benefit from PRP-
based interventions.

Materials and methods

In the PRP group, PRP was
intraoperatively using a standard two-step centrifugation protocol.

autologous prepared
Whole blood (approximately 20 mL) was collected from each
patient into citrate-containing tubes. The first centrifugation (soft
spin) was conducted at 1,500 rpm for 10 min to separate plasma
from red blood cells, followed by a second centrifugation (hard
spin) at 3,500 rpm for 10 min to concentrate the platelets. The
resulting PRP had a 4-5-fold increase in platelet concentration
compared to baseline whole blood levels.

A total volume of 4-5 mL of PRP was injected intraoperatively
at the tendon-to-bone interface around the repaired rotator cuff
footprint under direct arthroscopic visualization, immediately
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following suture anchor placement and prior to wound closure. No
additional PRP was administered postoperatively.

platelet-rich plasma was prepared using a standardized
two-step centrifugation method: 1500 rpm for 10 min,
followed by 3500 rpm for 10 min. The final PRP product was
applied intraoperatively at the tendon-bone interface after
rotator cuff repair.

Inclusion criteria were: age >18 years, complete baseline
and follow-up data, and no prior shoulder surgery or systemic
inflammatory disease. At 3 months after surgery, the main result
was pain alleviation, which was defined as a decrease of at least 50%
in the VAS score from the baseline.

A total of 240 patients (31 in the control group and 209 in the
PRP group) were included in the analysis. Patients with incomplete
baseline or follow-up data were excluded prior to analysis. No
patients were lost to follow-up at the 3 months assessment, and
there were no missing values for the included variables. Table 1
summarizes the baseline demographic and clinical characteristics
of the control group and PRP group.

The VAS is a standard 0-10 scale used to evaluate pain intensity,
where 0 represents “no pain” and 10 indicates “worst imaginable
pain.” Patients completed VAS assessments preoperatively (within
1 week before surgery) and at the 3 months postoperative follow-
up. Pain relief was defined as a >50% reduction in VAS scores
compared to baseline.

Sex, age, BMI, smoking status, diabetes, baseline pain ratings,
inflammatory markers (ESR, CRP), ASES scores, rotator cuff tear
grade, surgical method, and PRP application status were among the
clinical and demographic information gathered. Smoking history
(“smoke”) was defined as having a history of tobacco use and
continuing to smoke during the perioperative period, coded as
0=noand 1 = yes.

These variables were extracted from electronic medical records.
The ASES (American Shoulder and Elbow Surgeons) score
ranges from 0 to 100, with higher scores reflecting better
shoulder function. Inflammatory markers such as ESR and CRP
were measured using standard laboratory procedures during
preoperative clinical assessments.

For modeling purposes, sex was coded as a binary variable
(0 = female, 1 = male). Smoking status and diabetes were also
treated as binary variables (0 = no, 1 = yes).

Age and BMI were categorized based on clinically relevant
thresholds. Age was divided into three groups: <40 years (coded
as 1), 40-50 years (coded as 2), and >50 years (coded as 3). BMI
was categorized according to standard classification: <24 kg/m?
(normal, coded as 1), 24-28 kg/m2 (overweight, coded as 2), and
>28 kg/rn2 (obese, coded as 3), following Chinese health guidelines.

Variable selection was first carried out using the least absolute
shrinkage and selection operator (LASSO) regression with 10-fold
cross-validation to find the best predictors in order to prevent
overfitting and deal with multicollinearity. All variables were then
subjected to univariate logistic regression, and those with p < 0.10
were then included in a multivariate logistic model in order
to identify independent predictors. Statistically significant factors
were then incorporated into a nomogram to visualize individual
risk using the “rms” package in R. The performance of the
nomogram was evaluated by the area under the receiver operating
characteristic curve (AUC), concordance index (C-index), and
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TABLE1 Comparison of baseline demographic, clinical, and surgical
characteristics between the control and platelet-rich
plasma (PRP) groups.

Control(n, %) | PRP (n,
Age ) )

40-50 13 (41.9% 72 (34.4%

<40 10 (32.3%) 63 (30.1%)
>50 8(25.8%) 74 (35.4%)
Sex Female 16 (51.6%) 116 (55.5%)
Male 15 (48.4%) 93 (44.5%)
Steatosis No 18 (58.1%) 178 (85.2%)
Yes 31 (41.9%) 31 (14.8%)
Smoke No 22 (71.0%) 158 (75.6%)

Yes 9 (29.0%) 51 (24.4%)
Diabetes No 14 (45.2%) 104 (49.8%)
Yes 17 (54.8%) 105 (50.2%)
Surgical type Type 1 9 (29.0%) 72 (34.4%)
Type 2 12 (38.7%) 64 (30.6%)
Type 3 10 (32.3%) 73 (34.9%)
Rotator cuff Medium 23 (74.2%) 149 (71.3%)
Small 8(25.8%) 60 (28.7%)
BMI 24-28 14 (45.2%) 76 (36.4%)
<24 13 (41.9%) 92 (44.0%)
>28 4(12.9%) 41 (19.6%)
VAS 0-3 8 (25.8%) 73 (34.9%)
4-6 13 (41.9%) 69 (33.0%)
7-10 10 (32.3%) 67 (32.1%)
ESR Hight 9 (29.0%) 77 (36.8%)
Mildt 12 (38.7%) 67 (32.1%)
Normal 10 (32.3%) 65 (31.1%)
CRP Hight 13 (41.9%) 67 (32.1%)
Mildt 9 (29.0%) 70 (33.5%)
Normal 9 (29.0%) 72 (34.4%)
ASES High 13 (41.9%) 71 (34.0%)
Low 7 (22.6%) 71 (34.0%)
Medium 11 (35.5%) 67 (32.1%)

calibration plots. Internal validation was performed via 1,000
bootstrap resamples.

The same dataset was used to train a number of machine
learning models, including logistic regression, random forest
(RF), support vector machine (SVM), extreme gradient boosting
(XGBoost), and multilayer perceptron (MLP), in order to further
evaluate the prediction’s resilience and find non-linear connections.
Model performance was compared using AUC, sensitivity,
specificity, and total accuracy using 5-fold cross-validation.

Other continuous variables, including baseline VAS score, ESR,
CRP, and ASES score, were used in their original scale without
transformation or grouping.

This Figure 1 shows the LASSO coeflicient profiles of all
candidate predictors as a function of the logarithmic value of the
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FIGURE 1

Least absolute shrinkage and selection operator (LASSO) coefficient profile plot.

regularization parameter A. As \ increases (moving left to right),
more coefficients shrink toward zero, indicating regularization
strength. When log()) is sufficiently high, only a few variables
remain with non-zero coefficients. This penalization process helps
eliminate redundant or weakly associated variables. In our analysis,
13 variables initially entered the model, but as A increased, only six
variables retained non-zero coefficients, suggesting their stronger
association with the outcome of postoperative pain relief.

The 10-fold cross-validation error (binomial deviation) curve
for various A values is shown in this graphic. The ideal balance
between model complexity and prediction error is indicated by
the vertical dotted line on the left, which shows the value of
that minimizes the cross-validated error (A_min). Six variables
in all were chosen for additional modeling at this ideal x. We
chose N_min to optimize predictive information, even if the right
vertical line (optional \_lse) is more conservative and contains
fewer variables. The optimal value of A was determined through
10-fold cross-validation, as illustrated in Figure 2, which shows the
binomial deviation curve and the corresponding ) values.

This nomogram Figure 3 was created using multivariate
logistic regression to calculate each person’s unique likelihood of
experiencing considerable postoperative pain alleviation 3 months
after arthroscopic rotator cuff surgery, which is defined as a
reduction of at least 50% in VAS score. Sex, age, body mass index
(BMI), smoking status, PRP application, diabetes, baseline pain
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(VAS), inflammatory markers (ESR and CRP), functional status
(ASES score), rotator cuff tear classification, and surgery type are
among the many clinically significant indicators that are integrated.

A point scale representing each variable’s relative contribution
to the final forecast is aligned with it at the top. At the bottom of
the nomogram, the total score represents the anticipated likelihood
of postoperative pain alleviation. Clinicians can add up the points
allotted to each predictor based on the patient’s values.

The use of platelet-rich plasma, or PRP, had the most impact
on postoperative results out of all the predictors. PRP recipients
were given noticeably higher point values than non-receivers,
suggesting a robust positive correlation with pain alleviation.
This corroborates the findings of our multivariate analysis,
which showed that PRP was an independent protective factor
for postoperative pain, emphasizing its analgesic effectiveness in
relation to inflammatory management and tendon repair.

On the other hand, in line with established biological
and metabolic obstacles to healing, a greater body mass
index and higher preoperative pain or inflammatory scores
(such as ESR or CRP) tended to lower the likelihood of
postoperative pain reduction.

In order to facilitate individualized decision-making
concerning pain treatment techniques and the choice of PRP
candidates for rotator cuff surgery, this nomogram offers a simple,

interpretable clinical tool.
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Selection of optimal A via cross-validation.

Feature selection was initially performed using LASSO
regression to reduce dimensionality and identify variables with the
strongest association with postoperative pain relief. Six predictors
with non-zero coeflicients at the optimal \ were selected.

However, to enhance the clinical interpretability and retain
variables with established relevance in the literature and practice
(e.g., sex, smoking status, surgical method), we incorporated
additional clinically meaningful variables into the multivariate
logistic regression model used for nomogram construction.

This hybrid approach aimed to balance statistical parsimony
with clinical utility. To mitigate potential overfitting, we performed
internal validation using 1,000 bootstrap resamples and evaluated
model calibration and discrimination in both training and
validation cohorts.

The calibration curve for the modeling population, which is
utilized to assess the nomogram’s predictive ability in predicting
postoperative pain alleviation following rotator cuff injury, is
shown in Figure 4A. Three curves are shown on the chart: the
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bias-corrected curve (solid), the apparent curve (dotted), and the
ideal line (dashed). In the 0.2-0.5 range, where the observed
incidence of pain alleviation grows steadily with the projected
values, the bias-corrected curve closely resembles the ideal line over
the whole range of predicted probability (0.2-1.0). Even though
there are slight variations in the 0.5-1.0 range, they stay within
reasonable bounds, suggesting that the model exhibits decent
calibration and prediction accuracy in the training population. This
suggests that the nomogram can reliably estimate the probability of
postoperative pain relief and has potential for clinical application in
guiding prognosis and treatment planning.

The calibration curve for the validation population is
displayed in Figure 4B. The bias-corrected curve shows overall
agreement with the ideal line over the anticipated probability
range (0.2-1.0), much as the modeling cohort. The curve
closely resembles the ideal trend in the low to mid-range
(0.2-0.6), however, there are minor variations that are still
within a suitable range in the mid-to-high range (0.6-0.8).
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Nomogram for predicting the probability of postoperative pain relief in rotator cuff injury patients. Predictors include sex (0 = female, 1 = male), age
group (<40, 40-50, >50 years), body mass index (BMI: <24, 24-28, >28 kg/m?), smoking history (0 = no, 1 = yes), diabetes (0 = no, 1 = yes),
baseline VAS (Visual Analog Scale, 0-10), inflammatory markers [ESR, C-reactive protein (CRP)], functional status [acromioclavicular function score
(ASES) score, 0-100], rotator cuff tear classification, surgical type, and PRP application (0 = no, 1 = yes). The total score corresponds to the

(VAS) score at 3 months postoperatively.
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(B) Calibration curve in the validation cohort.

Calibration curves of the nomogram for predicting postoperative pain relief after rotator cuff injury. (A) Calibration curve in the modeling cohort;
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The curve progressively moves back toward the ideal line as
the anticipated probability rises over 0.8. These results show
that the model retains satisfactory calibration performance
in the external validation cohort following adjustment. The

nomogram’s generalizability and robustness are supported by the
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overall predictive agreement, notwithstanding the possibility of
occasional overestimation or underestimating in higher probability
ranges. Further refinement of the model, such as incorporating
additional clinical predictors, may enhance its accuracy in

complex scenarios.
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Both the training and validation groups underwent receiver
operating characteristic (ROC) curve analysis to assess the
nomogram’s discriminatory capacity in forecasting postoperative
pain reduction following rotator cuff surgery.

A reasonable degree of discriminating was shown by the
nomogram’s area under the ROC curve (AUC) of 0.726 in the
training cohort, as seen in Figure 5A. The AUC rose to 0.806 in
the validation cohort (Figure 5B), indicating that the nomogram
performed satisfactorily when applied to a separate dataset and
exhibiting strong prediction accuracy.

These results support the clinical utility of the model
in stratifying patients based on the likelihood of achieving
postoperative pain relief.

Artificial neural networks (ANN), decision trees (DT),
extra trees (ET), gradient boosting machines (GBM), K-nearest
neighbors (KNN), LightGBM, random forests (RF), support vector
machines (SVM), and XGBoost are among the nine popular
machine learning techniques used in predictive modeling that are
shown in Figure 6. These techniques are used for clinical feature-
related classification, and model performance is assessed. The
prediction accuracy, AUC value, and computed error of each model
show how differently they perform.

The image illustrates how some models, including as XGBoost
and Random Forest, perform better in terms of classification
accuracy and AUC (area under the curve), highlighting their
benefits when handling high-dimensional data and intricate non-
linear interactions.

Unlike traditional nomograms (based on statistical regression
analysis), which often assume linear correlations between
variables, machine learning models may automatically capture
complicated interaction effects in the data. Nomograms are
easily interpreted, but machine learning techniques—particularly
tree-based techniques like XGBoost and RF—offer more promise
in terms of precision and applicability.

XGBoost has
experiments, but lacks the intuitive interpretability of nomogram.

shown excellent performance in several

In contrast, SVMs and LightGBMs perform somewhat less well,
but still provide valuable predictive results for specific tasks.

AUC =0.726

True positive rate
06 08 1.0
1

04
1

02

T T T T T T
0.4 0.6 0.8

False positive rate

FIGURE 5

10.3389/fmed.2025.1647551

The top 13 characteristics from a trained LightGBM model
are displayed in Figure 7A in order of relevance; thicker bars
denote a larger relative contribution to the model’s prediction.
The feature-wise classification performance is shown in Figure 7B,
where the mean AUC score and 95% CI for each feature
were calculated by modeling it separately. Red highlights the
top 13 traits with the greatest AUC values, indicating their
potent discriminative power. When combined, the two panels
offer contrasting viewpoints for finding reliable predictors in
ensuing machine learning modeling: model-derived significance
and standalone classification usefulness.

In the LightGBM model, all available predictors (n = 13) were
ranked by relative importance, with BMI, diabetes, and baseline
ASES score among the top-ranked variables. PRP application also
appeared within the top tier of predictors, although it did not
have the highest relative importance in this specific algorithm.
It should be noted that feature importance rankings may vary
between algorithms due to differences in calculation methods, and
the Light GBM ranking reflects only one model’s perspective. Across
multiple models, including logistic regression and SHAP analyses,
PRP consistently emerged as a statistically significant and clinically
relevant predictor of postoperative pain relief.

The AdaBoost model’s efficacy in predicting pain reduction
following rotator cuff injury is illustrated by the ROC curves in
Figure 8A. The X-axis shows the false positive rate (1-specificity),
while the Y-axis shows the true positive rate (sensitivity). With
an AUC of 0.990, the training set (purple curve) shows very high
prediction accuracy, suggesting that the model fits the training
data well; the test set (green curve) shows an AUC of 0.560,
suggesting that the model generalizes poorly on the test data and
that overfitting may be an issue. This discrepancy between the
training and test set performance indicates potential overfitting
of the AdaBoost model. The AdaBoost model showed a high
training AUC (0.990) but a low test AUC (0.560), indicating
potential overfitting. This is likely due to its sensitivity to noise
and small sample sizes, suggesting that boosting may not be
optimal for this clinical dataset. Future optimization might include
parameter tuning, feature selection, or ensemble approaches to
mitigate overfitting risks. The stochastic classifier’s performance is

AUC = 0.806

08 1.0

True positive rate
0.6

04

02

0.0

T T T T T T
0.4 0.6 08

False positive rate

Receiver operating characteristic (ROC) curves of the nomogram for predicting postoperative pain relief following rotator cuff repair. (A) ROC curve
in the training cohort, with an s area under the curve (AUC) of 0.726. (B) ROC curve in the validation cohort, with an AUC of 0.806.
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FIGURE 6

Comparison of nine machine learning models for predicting clinical outcomes.

shown by the red dashed line. The figure shows that although the
AdaBoost model performs well on the training set, it has limited
generalization ability on new data, and further optimization of the
model is needed to improve its prediction ability on unknown data.
The performance of many models on the test set is displayed
in Figure 8B as various colored curves, each of which represents
the model’s ROC curve and associated AUC values. Among the
models are Artificial Neural Networks (ANN), Random Forest,
LightGBM, Gradient Boost, XGBoost, Support Vector Machine
(SVM), K Nearest Neighbors (KNN), Decision Trees, and Extra
Trees. The rate of true positives (sensitivity) is shown on the y-axis,
while the rate of false positives (1-specificity) is shown on the x-axis.
The random classifier’s reference line is shown by the red dashed
line. The difference in each model’s predictive capacity is shown by
the AUC values, which range from 0.502 (SVM) to 0.601 (KNN),
with SVM doing badly and KNN performing best on the test set.
The performance of the various models on the training set is
displayed in Figure 8E as curves of various colors, each of which
represents a model’s AUC value. The training sets AUC values,
which range from 0.756 (KNN) to 0.990 (Extra Trees), are likewise
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usually high, much like the test set model comparison graph.
Strong fit is demonstrated by the Random Forest, XGBoost, and
Extra Trees models, which perform better on the training set. The
random classifier’s baseline is also shown by the red dashed line.
Even if all models perform well on the training set, this figure
demonstrates that a major problem with them is still their inability
to generalize to the test set.

These ROC curve comparisons help us to evaluate the
performance of different machine learning models in the prediction
of pain relief after rotator cuff injury, reflecting the differences
in the classification ability of each model and its performance on
training and test data.

The accuracy, sensitivity, specificity, positive and negative
predictive values, F1 score, and Kappa coefficient of the various
machine learning models on the test set are displayed in Figure 8C.
Different colored lines represent each model’s performance, with
ANNs (Artificial Neural Networks) outperforming the others
in a number of parameters, particularly sensitivity and positive
predictive value, which are both comparatively high. In contrast,
SVM and XGBoost exhibit subpar performance on these criteria.
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FIGURE 7
Feature importance ranking from the LightGBM model. (A) Top 13 predictors ranked by relative importance, with thicker bars indicating greater
contribution to the model's prediction. (B) Feature-wise classification performance showing mean AUC score. A total of 13 predictors were
included: age group (<40, 40-50, >50 years), sex (0 = female, 1 = male), BMI group (<24, 24-28, >28 kg/m?), smoking history (0 = no, 1 = yes),
diabetes (0 = no, 1 = yes), baseline visual analog scale (VAS) score (0-10), ESR, C-reactive protein (CRP), acromioclavicular function score (ASES)
functional score (0-100), rotator cuff tear grade, surgical type, and, platelet-rich plasma (PRP) application (0 = no, 1 = yes). Bars represent the
relative contribution of each variable to model classification performance.

Opverall, there was a significant range in the models’ performance
metrics across the test set, suggesting that the models’ performance
was inconsistent across many criteria.

The distribution of the test set samples’ projected values using
Principal Component Analysis (PCA) is displayed in Figure 8D.
The Y-axis shows the value of the first principal component (PC1),
while the X-axis shows the expected values for benign (benign).
Purple dots indicate benign samples, whereas green dots indicate
malignant (malignant) samples. The categorization boundaries are
shown by the dashed lines. There is a clear distinction between the
anticipated values of benign and malignant samples, as seen by the
distribution in the figure, which displays the model’s discriminating
in predicting benign and malignant samples.

Figure 8F shows the performance of different machine learning
models on the training set, with metrics such as accuracy,
sensitivity, and specificity. Compared to the performance of the
models on the test set, the models on the training set usually
perform better, with generally higher AUC values. Extra Trees

Frontiers in Medicine 09

and ANN perform the best on the training set, while the other
models such as Decision Trees and SVMs are relatively weaker.
This figure reflects the adaptability of each model on the training
set, but also suggests the need to focus on generalization ability to
avoid overfitting.

Figure 8G this figure is similar to Figure 8F and shows the
predictive value of the training set samples in relation to principal
component analysis. The green dots indicate malignant samples
and the purple dots indicate benign samples. x-axis indicates the
predicted benign values and y-axis indicates the first principal
component (PC1). This suggests that the model is better at
differentiating between the training set’s categories.

In order to assist clinicians in forecasting postoperative pain
relief based on patient characteristics and to provide decision
support for individualized treatment and care, we developed a
machine learning model in this study for predicting pain relief in

patients following rotator cuff injuries.
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FIGURE 8
Comparison of machine learning models for predicting postoperative pain relief after rotator cuff repair. (A) Receiver operating characteristic (ROC)
curve of AdaBoost model in the training and test sets. (B) ROC curves of multiple machine learning models in the test set. (C) Performance metrics
(accuracy, sensitivity, specificity, etc.) of different models in the test set. (D) Principal component analysis (PCA) distribution of predicted values in the
test set. (E) ROC curves of multiple machine learning models in the training set. (F) Performance metrics of different models in the training set.
(G) PCA distribution of predicted values in the training set.

We interpreted and examined the model’s prediction findings
using SHAP values (Shapley Additive Explanations). A machine
learning model may be interpreted using SHAP values, which
provide us insight into how each feature contributes to the
final prediction outcomes. This allows us to further improve the
algorithm and clearly show which features are most crucial for
predicting pain alleviation following rotator cuff injuries.

BMI (body mass index), diabetes, platelet-rich plasma (PRP),
acromioclavicular function score (ASES), and C-reactive protein
(CRP) had the biggest effects on the model’s predictive outcomes,
according to the feature importance analysis in Figure 9A. This
suggests that these factors are crucial for evaluating postoperative
pain relief. In particular, PRP and ASES may be connected to the
patient’s shoulder function and postoperative recovery, whereas
BMI and diabetes have a greater place in the model and may be
directly tied to the patient’s underlying health state.

Frontiers in Medicine

Figure 9B demonstrates the distribution of SHAP values
corresponding to each feature, further revealing the ways in which
different features influence the predicted outcomes of the model.
For example, BMI and diabetes had a large positive or negative
effect on the predictive value of pain relief, and the different SHAP
value intervals illustrate the different roles of these features in
different patient groups.

By illustrating the relationships between characteristics,
Figure 9C aids in our comprehension of how certain feature
combinations affect prediction results. For instance, diabetes and
BMI together may affect pain management differently, which gives
us information on how to best tailor treatment plans.

The visual examination of feature contributions using various
models is displayed in Figures 9D through 9G. These numbers
demonstrate that PRP had a significant favorable impact in a
number of models, suggesting that it is a significant predictor of
postoperative pain alleviation. Furthermore, although their effects
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importance ranked by mean SHAP values; (B) SHAP summary plot showing feature-level contributions across patients; (C) SHAP dependence plots
illustrating feature interactions and non-linear effects; (D) SHAP force plot example highlighting the contribution of, platelet-rich plasma (PRP) and
other factors; (E) SHAP force plot example highlighting the contribution of surgical type and related features; (F) SHAP force plot example
highlighting the contribution of body mass index (BMI), diabetes, and C-reactive protein (CRP); (G) SHAP force plot example showing combined
feature effects including BMI, diabetes, PRP, CRP, and surgical type.

may be minimal, variables including age, ASES score, and kind of

surgery also play a part in certain models.

Discussion

The purpose of this study was to assess the impact of
platelet-rich plasma (PRP) on postoperative pain relief after
rotator cuff repair by combining nomogram modeling and
machine learning. Additionally, we developed a personalized
prediction model to help clinicians identify patients who
would benefit most from PRP treatment. Optimizing pain
management techniques and enhancing recovery results are the

goals of this strategy.

We developed a prediction model that takes into consideration
the intricate, non-linear connections between several variables
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affecting pain alleviation following surgery by fusing clinical data
with cutting-edge machine learning techniques. Tree-based models
like random forest (RF) and extreme gradient boosting (XGBoost)
are excellent at capturing these complicated connections, but
traditional statistical techniques like logistic regression frequently
fail to adequately capture these complex relationships. In addition
to increasing prediction accuracy, this method takes into account
a variety of clinical and demographic characteristics that are
frequently disregarded in conventional models, including age, BMI,
smoking status, comorbidities, and baseline inflammatory markers.

Our findings indicate that PRP application is significantly
associated with postoperative pain relief, consistent with existing
clinical evidence suggesting that PRP promotes tendon healing
and modulates inflammation (22-26). However, the effectiveness
of PRP treatment was influenced by factors such as BMI, diabetes,
and baseline inflammatory markers. These findings highlight the
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need for personalized treatment strategies. For example, patients
with higher BMI tend to experience prolonged inflammation and
altered pain sensitivity (27-29), potentially influencing both their
baseline pain perception and their response to PRP treatment.

Using SHAP (Shapley Additive Explanations) analysis, we
provided detailed insights into feature importance and their
contributions to the model’s predictions. It was discovered that the
combination of characteristics like diabetes and BMI significantly
affected the results of pain alleviation, highlighting the necessity of
tailored treatment strategies.

We created a nomogram that combines important indicators,
such as preoperative pain levels, BMI, and PRP administration,
giving physicians a simple, intuitive tool for forecasting pain
alleviation results. The model’s robustness was further confirmed
using calibration plots, which demonstrated a strong correlation
between expected and actual results and proved the model’s
dependability for clinical use.

Furthermore, we evaluated the performance of several machine
learning models and discovered that, with higher AUC values,
XGBoost and random forest performed well. This demonstrates
how well these models work with complicated, high-dimensional
data. However, models like the multilayer perceptron (MLP) and
support vector machine (SVM) did not perform well, suggesting
that not all machine learning models are appropriate for this
particular prediction job.

The model’s capacity to distinguish between various patient
groups was further validated by principal component analysis
(PCA), underscoring the promise of machine learning in seeing
patterns in clinical data that could be difficult to find with
traditional techniques.

This study has some limitations, such as its retrospective
methodology and possible biases in data collecting, despite its
encouraging results. The model’s robustness will need to be
confirmed by external validation in other cohorts, and more
improvements are needed to enhance performance in more
complicated situations or when several factors interact non-
linearly. To improve the prediction effectiveness of the model,
future studies should include more variables like genetic markers
or more thorough imaging data.

To sum up, our work shows that postoperative pain alleviation
after rotator cuff reconstruction may be predicted with machine
learning algorithms and nomogram-based techniques, both of
which are feasible and successful. We offer important insights
into the function of biologic treatments in musculoskeletal surgery
by including PRP administration as a significant predictor. This
multidisciplinary approach represents a significant step toward
precision medicine in orthopedic surgery, with the potential to
enhance patient outcomes and optimize resource allocation, even
though more validation and improvement are required.

The AdaBoost model showed a high training AUC (0.990) but a
low test AUC (0.560), indicating potential overfitting. This is likely
due to its sensitivity to noise and small sample sizes, suggesting that
boosting may not be optimal for this clinical dataset.”

This study has limitations. Its retrospective single-center design
may introduce selection bias and unmeasured confounding, despite
strict eligibility criteria and multivariable adjustment. External
validation on independent, multi-center datasets is still needed to
confirm the robustness and generalizability of the model.
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In summary, this study is the first to integrate biologically
formulated PRP application with machine learning-based
nomogram modeling to predict postoperative pain relief after
rotator cuff repair. By combining clinical, demographic, and
biological factors, our approach provides an innovative and
interpretable tool for individualized pain management. This
multidisciplinary integration of biomedicine and artificial
intelligence not only enhances prediction accuracy but also offers
practical guidance for clinical decision-making and future research.

Conclusion

This study demonstrated that PRP administration significantly
improves postoperative pain relief following rotator cuff repair. By
integrating clinical variables and machine learning algorithms, a
nomogram-based model was developed to assist personalized
treatment planning. While the model showed promising
performance, external validation and refinement are warranted to

enhance generalizability.
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