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Small airway disease as a key
factor in COPD: new
perspectives and insights

Ruoyi Zhou, Haojie Wang, Yulu Zhang, Jieming Mai and
Liuliu Yang*

The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

Small airways—defined as bronchioles <2 mm in internal diameter that
lack cartilaginous support—are frequently involved in the earliest stages
of chronic obstructive pulmonary disease (COPD). While COPD is defined
per GOLD by persistent post-bronchodilator airflow limitation, small-airway
dysfunction can precede spirometric abnormality, motivating earlier, imaging-
and physiology-based detection (Agusti et al.,, 2023). Pathological progression
typically begins with loss and stenosis of terminal bronchioles, followed
by mucus retention/plugging, fibrotic remodeling, chronic inflammation,
microvascular abnormalities, and cellular senescence, ultimately resulting in
irreversible impairment of gas exchange. Early diagnosis remains difficult, but
a suite of advanced non-invasive modalities—including impulse oscillometry
system/forced oscillation techniques (IOS/FOT), single- and multiple-breath
washout tests, high-resolution CT with parametric response mapping (PRM),
nuclear medicine approaches (e.g., SPECT), dynamic measurements of lung
compliance, and Fluorine-19 (*°F) MRI-combined with artificial intelligence
markedly improve the sensitivity and specificity for detecting small-airway
disease. Therapeutic strategies that target cellular senescence and fibrotic
pathways—such as senolytics and antifibrotic interventions—are showing
promise, particularly approaches that clear senescent cells or block pro-fibrotic
signaling. The integration of single-cell omics, high-resolution microvascular
imaging, and molecularly targeted therapies is expected to accelerate
precision diagnostics and enable personalized early interventions. This review
summarizes recent insights into small-airway physiology, key pathophysiological
and molecular mechanisms, and current pharmacological strategies, and
emphasizes the clinical principle of “early detection, early diagnosis, early
intervention” for managing COPD-related small-airway disease.
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Background

Small airway disease (SAD) plays a central role in the pathogenesis of chronic
obstructive pulmonary disease (COPD), a role that has only recently been fully recognized
(2). Small airways, defined as small bronchi with an internal diameter less than 2 mm
and no cartilage support, comprise the majority of the distal airway cross-sectional area.
Due to their narrow lumen and lack of cartilage support, these airways are extremely
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sensitive to inhaled noxious particles and irritants, yet are
clinically invisible, earning them the nickname “silent zones (3).”
Early functional impairment of the small airways often precedes
the onset of clinical symptoms, abnormal lung function, or
radiographic changes.

Historically, SAD was considered a secondary manifestation
of established COPD. However, pathological and high-resolution
imaging evidence has changed this understanding: progressive
destruction and loss of terminal bronchioles can precede
alveolar parenchymal destruction or a significant decline in
overall lung function, suggesting that SAD may be the initial
step in the disease cascade (4, 5). A multimodal analysis (6)
found significant differences in CT small airway/gas trapping
indices (including PRM-calibrated fSAD), clinical symptoms,
and blood transcriptomic profiles between smokers with
COPD, asthma, and ACO. This study linked imaging-defined
SAD to molecular phenotypes, supporting the use of SAD
as a basis for phenotyping airway diseases and stratifying
diagnosis and treatment.

This paradigm shift also explains why patients with similar
traditional lung function measures exhibit significant differences
in the burden of airway structural damage and clinical outcomes.
Research has revealed that SAD reflects the convergence of
multiple pathological processes, including chronic inflammation,
mucus  hypersecretion,  epithelial-mesenchymal  transition
(EMT) and fibrotic remodeling, microvascular rarefaction,
epithelial barrier dysfunction, and cellular senescence. Signaling
pathways such as TGF-B, PI3K/Akt, and NF-«kB play key roles in
these processes, collectively regulating inflammation, mucus
EMT, fibrosis,

progressive airway narrowing and ultimately impairing gas

secretion, and cellular senescence, driving

exchange. These theoretical and mechanistic advances have
revealed several key clinical questions. While conventional

Abbreviations: SA, small airways; I0OS, impulse oscillometry; PRM, parameter
response mapping; ASM, airway smooth muscle; CS, cigarette smoke;
MMPS, matrix metalloproteinases; EMT, epithelial-mesenchymal transition;
NK1, neurokinin-1 receptor; CXCL8 C-X-C, chemokine ligand 8; IL-17A,
interleukin-17A; TNF-a, tumor necrosis factor-a; IL-1f, interleukin-18; SIgA,
secretory immunoglobulin; plgR, polymeric Ig receptor; SASP, senescence-
associated secretory phenotype; PAI-1, plasminogen activator inhibitor-1;
D + Q, Dasatinib + Quercetin; Antagomir, antisense oligonucleotides;
MMEF, the maximum mid-expiratory flow; LLN, below the lower limit
of normal; ROS, reactive oxygen species; LTB4, leukotriene B4; QCT,
quantitative computed tomography; DLCO, the diffusing capacity of the
lung for carbon monoxide; ECM, extracellular matrix; SAO, small airway
obstruction; FEV1, the forced expiratory volume in 1 s; FVC, the forced
vital capacity; RV, the residual volume; SBW, single-breath washout; MBW,
multiple-breath washout; TLC, total lung capacity; SllI, the third-phase
slope; LCI, the lung clearance index; FRC, functional residual capacity; CF,
cystic fibrosis; SAD, small airway disease; Cdyn, dynamic lung compliance;
HRCT, high-resolution computed tomography; HU, Hounsfield units; CV,
coefficient of variation; VDP, the ventilation defect percentage; ICS,
inhaled glucocorticoids; NF-kB, nuclear factor-kB; MAPK, mitogen-activated
protein kinase; IL-6, interleukin-6; TNF-a, tumor necrosis factor-a; HDACL,
histone deacetylase 1; ICS, inhaled glucocorticoids; GR, glucocorticoid
receptor; BECs, blood eosinophil counts; TGF-B, transforming growth
factor-p; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A;
EGCG, epigallocatechin gallate; a-SMA, a-smooth muscle actin; PDE4B,
phosphodiesterase 4B; IPF, idiopathic pulmonary fibrosis; SCs, senescent
cells; BCL-2, B-cell lymphoma-2; BCL-XL, B-cell lymphoma-extra large;
PI3K, phosphatidylinositol 3-kinase; HIF-1a, hypoxia-inducible factor-1a;
Collal type |, collagen al chain; GCV, ganciclovir; CXCL1-KC C-X-C,
chemokine ligand 1-keratinocyte chemoattractant; SA-p-Gal™, senescence-
associated p-galactosidase-positive.
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pulmonary function testing remains the cornerstone of diagnosing
airflow limitation, its sensitivity for early detection of SAD is
insufficient (7). Emerging physiological and imaging tools-such
as impulse oscillometry system single- and multiple-breath
washout tests, high-resolution CT (HRCT) combined with
parametric response mapping (PRM), molecular magnetic
resonance imaging, and targeted nuclear medicine imaging-
when combined with artificial intelligence applications, have
the potential to enhance detection capabilities. However,
further validation, standardization, and integration into clinical
workflows are required. In terms of treatment, anti-aging
drugs, anti-fibrosis drugs, and targeted interventions for the
above-mentioned signaling pathways have shown potential in
preclinical studies, but their translational applications still face
challenges such as target specificity, intervention timing, and
patient stratification.

Physiological characteristics of the
small airway

Small airways are defined as those with a diameter of less
than 2 mm and are considered part of the distal airway system,
comprising membranous bronchioles, respiratory bronchioles, and
alveolar ducts (8). The structures typically originate from the 8th
to 15th generations of branches and terminate in the terminal
bronchioles. They may range several centimeters in length and
exhibit an irregular oval cross-section. The tracheal wall is thin,
and contains smooth muscle and a minimal amount of cartilage
(9). The inner wall is lined by ciliated columnar epithelial cells.
The more distal respiratory bronchioles transition from columnar
to cuboidal epithelium and subsequently lead into the alveolar
ducts and cavities, which are lined with flat epithelium (10).
Additionally, dendritic cells and macrophages residing in the small
airways identify and eliminate pathogens, thereby forming an
immune barrier. In contrast to the large airways, gas flow in
large airways is predominantly turbulent, whereas small airways
exhibit predominantly laminar flow, characterized by a lower
Reynolds coeflicient. Therefore, alterations in gas density have
minimal or negligible effects on the resistance of small airways,
whereas gas density significantly influences the resistance of
large airways (9). Another physiological distinction between the
small and large airways is that the liquid lining of the small
airways possesses surfactant-like properties, particularly during
exhalation. This low surface tension prevents the small airways
from collapsing as lung volume decreases (11).These findings
suggest that active substances also play a role in regulating
gas diffusion distance and lubricating ciliary movement, thereby
helping to maintain airway patency. At the end of inspiration,
small airways are susceptible to collapse due to a decreased
pulling force, leading to dynamic alveolar closure, increased
dead space, and reduced gas exchange efficiency. Under normal
circumstances, small airways contribute approximately 10% of total
airway resistance. However, in the early stages of COPD, small
airway resistance significantly increases, reflecting small airway
dysfunction (9).
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Initiation phase

Epithelial damage—EMT
(epithelial-mesenchymal
transition)—impaired barrier
function—mucus obstruction

The small airway epithelium is the main defense barrier
of the respiratory tract against inhaled harmful particles
and pathogens. However, prolonged exposure to harmful
substances in cigarette smoke and air pollution leads to a
cyclical process of repeated damage and continuous repair of the
small airway epithelium. The main features of initial epithelial
injury are mucociliary dysfunction, goblet cell hyperplasia, and
disruption of tight junction proteins, changes that together
impair mucociliary clearance and compromise barrier integrity
(12). This pathologic progression not only enhances airway
hypersensitivity to exogenous stimuli, but also sets the stage for
a persistent inflammatory response. In a chronic inflammatory
microenvironment, damaged epithelial cells can initiate EMT
by activating multiple signaling pathways, such as transforming
growth factor-p (TGF-B), Wnt/B-catenin, and the Notch pathway
(13). EMT 1is a process of cellular phenotypic plasticity in
which epithelial cells gradually lose polarity and intercellular
connections and acquire a mesenchymal-like phenotype (including
enhanced migration ability and increased collagen deposition),
thereby driving early fibrosis and airway remodeling (14). At
the same time, STAT3 activation can amplify pro-fibrotic and
pro-inflammatory signals, while dysregulation of the PINKI-
Parkin pathway, responsible for mitochondrial quality control,
promotes epithelial damage and the progression of EMT by
increasing mitochondrial dysfunction and reactive oxygen species
(ROS) production. The above signaling pathways synergistically
promote epithelial-mesenchymal transition in this stage, laying
the molecular foundation for subsequent pathological changes
(15). The progression of EMT with fibrotic processes leads to
further deterioration of small airway barrier function. Firstly,
basement membrane thickening and collagen deposition increase
airway stiffness and decrease gas exchange efficiency. Secondly, a
compromised barrier promotes infiltration of inflammatory cells
and noxious particles into the deeper layers of the airway, thus
creating a self-perpetuating cycle of injury and inflammation (16).
Although molecular features of EMT (such as downregulation
of E-cadherin and upregulation of vimentin) are commonly
observed in the small airways of smokers, their exact contribution
to airway obstruction remains controversial (17). At the same time,
epithelial damage with impaired barrier function promotes the
secretion of abnormal mucus in small airways. In patients with
COPD, the incidence of small airway mucus plugging is elevated
and positively correlates with disease severity (18). Triggered
by initial epithelial injury, goblet cell proliferation, mucociliary
dysfunction, and up-regulation of mucin (e.g., MUC5AC and
MUCS5B) expression combine to further impair mucociliary
clearance (19-23). Cigarette smoke and air pollution directly
induce goblet cell proliferation and promote mucin secretion,
which in turn leads to mucus embolism. Simultaneously, secretory
immunoglobulin A (SIgA) levels on the surface of small airways
are reduced and polymeric immunoglobulin receptor (plgR)
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expression is decreased. Together, these changes compromise
the epithelial antimicrobial barrier and increase susceptibility
to infection (24-27). Mucus retention not only impedes airflow
on a physical level, but also provides a suitable environment
for pathogens to proliferate. This can exacerbate localized
inflammation, which in turn creates a self-perpetuating cycle of
pathology. This is the initial and critical stage in the progression
from small airway disease (SAD) to COPD (5). Therefore, the
pathological events from small airway epithelial injury to EMT,
barrier damage, and mucus plugging are intertwined, forming
a continuous pathological chain: epithelial injury-EMT/TGF-
B/STAT3/PINKI1-Parkin-barrier disruption-mucus plugging. This
is a chain reaction that reveals important molecular mechanisms
of early COPD lesions. Future interventions targeting the EMT
process (such as TGF-f inhibitors or drugs that regulate oxidative
stress) may provide new ideas for the early prevention and
treatment of COPD (28).

Expansion Phase

Immune cell recruitment — mediator
release — critical pathway activation—
transition to senescence

Small airway inflammation is induced by chronic exposure
to cigarette smoke and atmospheric particulate matter. These
stimuli activate airway epithelial cells and alveolar macrophages,
leading to the release of pro-inflammatory mediators (e.g., TNF-
o, IL-1B, IL-6) and chemokines (e.g., CXCL8, LTB4) (Figure 1),
which recruit neutrophils into the airway wall, ultimately driving
the inflammatory response in small airways (29). In the small
airways of COPD, neutrophils represent the predominant and
earliest infiltrating cells responding to cigarette smoke, followed
sequentially by the recruitment of macrophages and CD4"/CD8™
T lymphocytes. These immune cells exacerbate tissue injury
through cytotoxicity and the release of inflammatory mediators,
and are closely associated with the development of emphysema
(30-35). For instance, cigarette smoke and particulate matter
can amplify and perpetuate a chronic inflammatory milieu by
activating the NF-kB and p38 MAPK signaling pathways, thereby
driving the sustained secretion of cytokines such as TNF-a, IL-
18, IL-6, and IL-8. Currently, oxidative stress can activate the
PI3K/Akt/mTOR pathway, whose upregulation in the airways of
elderly COPD patients has been experimentally demonstrated.
This pathway further exacerbates the inflammatory response
by suppressing SIRT1/6 activity and enhancing NF-kB pathway
activity (31). Approximately 20%-40% of patients with COPD
exhibit an inflammatory phenotype characterized by eosinophilic
infiltration. This phenotype correlates strongly with small airway
dysfunction and often predicts a favorable response to inhaled
corticosteroid (ICS) therapy (36, 37). Chronic inflammation also
promotes goblet cell hyperplasia and hypertrophy of mucous
glands, thereby elevating both the volume and viscosity of secreted
mucus. The consequent formation of mucus plugs contributes to
the worsening of airflow obstruction (29, 38). Notably, persistent
inflammation and oxidative stress can drive DNA damage, telomere
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FIGURE 1

Top panels show enlarged small-airway cross-sections (left: near-normal; right: pathological changes including mucus plugging, epithelial injury,
inflammatory-cell infiltration, and focal fibrosis). The middle panel depicts a molecular—cellular cascade—exposure (e.g., cigarette smoke or air
pollution) — STAT3/TGF-B-driven epithelial-to-mesenchymal transition (EMT), PINK1-Parkin-related mitochondrial/autophagy dysfunction —
endothelial dysfunction—illustrating the principal sequence Initiation — Expansion — Remodeling. The lower panel lists imaging and physiological
modalities for early detection and phenotyping (HRCT-PRM, CT arterial pruning, 19F-MRI ventilation defect percentage (VDP), impulse oscillometry
system (IOS), multiple-breath washout [MBW], SPECT, and conventional spirometry), emphasizing the complementary roles of imaging and
functional assays in identifying individuals with functional small-airways disease (fSAD) and gas trapping despite preserved spirometry
(pre-COPD/early SAD). This diagram is conceptual; several mechanistic links remain to be confirmed by longitudinal and mechanistic studies.
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shortening, and the accumulation of reactive oxygen species (ROS),
thereby inducing cells to enter a state of senescence (39).

Cellular senescence,

the senescence-associated
secretory phenotype (SASP),
miR-34a, and sirtuins (SIRT1/6)

Chronic inflammation and oxidative stress induce epithelial
cells, fibroblasts, and endothelial cells into a senescent phenotype
through the ATM/ATR-p53/p21 pathway (39). Senescent cells
exhibit permanent growth arrest and secrete a group of pro-
inflammatory and pro-fibrotic factors, the senescence-associated
secretory phenotype (SASP), which mainly includes IL-6, IL-8,
MMP-9, MMP-12, etc. These factors can amplify inflammation,
promote ECM remodeling and induce functional decline of
adjacent cells in a paracrine manner (40, 41). Meanwhile,
microRNA-34a (miR-34a) has been reported to be upregulated in
the regulation of aging and oxidative stress, and promotes the
formation of aging phenotypes and the persistence of SASP by
downregulating SIRT1/6 (key deacetylases involved in antioxidant
and repair responses) (42-44). Within fibroblasts, SASP factors
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stimulate the accumulation of collagen and laminin, resulting
in subepithelial fibrosis and consequent stiffening of the airway
wall. Additionally, dysregulated iron metabolism amplifies ROS
production through the Fenton reaction, which in turn drives both
fibroblast senescence and extracellular matrix (ECM) remodeling
(45). Short peptides produced after ECM is cleaved by proteases
can act as damage-associated molecular patterns (DAMPs) or
direct chemokines, activating receptors such as TLRs, inducing
cytokine release and promoting neutrophil recruitment. Studies in
the lungs have shown that these short peptides can prevent immune
cell infiltration and affect the process of repairing fibrosis in
chronic severe lung cancer (46). Furthermore, emerging evidence
indicates that substance P, a neuropeptide, may mediate neurogenic
inflammation in response to epithelial irritation and damage
caused by cigarette smoke. This neurogenic response exacerbates
mucus hypersecretion and inflammatory cell infiltration in
the small airways (47). Moreover, studies have indicated a
potential role for substance P in mediating repair mechanisms
after epithelial damage in the small airways. Nevertheless,
aberrant overexpression of this neuropeptide may promote the
development of fibrosis (48). Treatment with a neurokinin 1 (NK1)
receptor antagonist attenuates airway inflammation and bronchial
hyperresponsiveness, leading to concomitant improvement in lung
function (49). A study found that the migration of airway smooth
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muscle cells in asthma model rats was significantly increased. The
NKI1 receptor antagonist WIN62577 can inhibit this migration
and reduce the expression of a-tubulin, suggesting that it can
alleviate airway remodeling (50). Another study showed that in
a bleomycin-induced rat pulmonary fibrosis model, the NKI1R
antagonist aprepitant significantly reduced the activity of the TGF-
p/Smad3 signaling pathway and the expression of inflammatory
cytokines (such as TNF-a and IFN-a), while increasing the level
of antioxidants, exerting anti-fibrotic and anti-inflammatory effects
(51). These results suggest that NKIR blockade may alleviate
disease progression by reducing airway inflammation, fibrosis, and
remodeling. However, the current relevant mechanism research
and clinical evidence are still in the preliminary stage.

In summary, the inflammation-senescence axis drives the
progression of small airway disease toward COPD, forming a
vicious cycle. In this cycle, chronic inflammation promotes the
release of pro-inflammatory mediators and chemokines, activates
key signaling pathways, and elevates ROS production, collectively
culminating in cellular senescence. Senescent cells release
the senescence-associated secretory phenotype (SASP), which
exacerbates inflammation, promotes extracellular matrix (ECM)
remodeling, and induces secondary senescence in neighboring
cells. This process establishes a self-perpetuating cycle that serves
as a persistent mechanism underlying small airway structural
damage and progressive airflow limitation, thereby driving disease
worsening. This process thereby establishes the pathological
foundation for subsequent airway structural remodeling. Emerging
evidence suggests that the NLRP3 inflammasome acts as a pivotal
amplifier of inflammation and is strongly implicated in the acute
exacerbations of chronic respiratory diseases. Upon stimulation
by reactive oxygen species (ROS), extracellular ATP, or lysosomal
destabilization, NLRP3 activation drives the maturation and
release of pro-inflammatory cytokines such as IL-1f and IL-
18, which in turn promote neutrophil recruitment and tissue
injury. This feed-forward mechanism establishes a ROS-IL-1p
amplification loop, thereby perpetuating airway inflammation and
contributing to recurrent exacerbations. Notably, experimental
data indicate that pharmacological or genetic inhibition of NLRP3
can effectively interrupt this cycle, dampening the inflammatory
cascade within the small airways. Furthermore, a combinatorial
approach targeting both NLRP3 activation and oxidative stress
has been proposed as a promising therapeutic strategy, with the
potential to restore small airway function, mitigate structural
injury, and ultimately prevent disease progression (52).

Remodeling phase

Proliferation of smooth muscle
cells—Fibrosis—Vascular Pruning

Airway smooth muscle (ASM) in COPD small airway
pathology exhibits cellular hyperplasia and
hypertrophy, leading to airway wall thickening, increased

commonly

airway contractility, and directly contributing to small airway
stenosis and airflow limitation (53). Epithelial and immune
cells release various pro-proliferative/pro-fibrotic factors (such
as TGF-p and PDGF) when epithelial injury and chronic
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inflammatory microenvironment occur. These factors stimulate
ASM proliferation and induce phenotypic transformation by
acting through the PI3K/Akt/mTOR and MAPK signaling
pathways. Additionally, tobacco-induced Oxidative stress is able
to amplify these pro-proliferative signals and further promote
ASM hyperplasia (53, 54). Concomitant with ASM hyperplasia,
local epithelium may undergo epithelial-mesenchymal transition
(EMT). Meanwhile, recruited or activated fibroblasts differentiate
into a-SMA-positive myofibroblasts, which synthesize large
amounts of type I/III collagen and laminin, resulting in excessive
sub-basement membrane ECM deposition and solidification of the
airway wall, thereby reducing lung compliance and exacerbating
irreversible stenosis (5, 54). In this process, the imbalance
between Matrix Metalloproteinases (MMPs) and Tissue Inhibitors
of Metalloproteinases (TIMPs) shows a “bidirectional effect”.
On one side, ECM degradation mediated by MMP leads to
elastic fiber rupture and emphysematous changes. On the other
side, ECM fragments and pro-fibrotic signals trigger fibroblast
activation and collagen deposition, ultimately resulting in spatially
heterogeneous remodeling characterized by the coexistence of
destruction and deposition (54, 55). The molecular mechanisms
of how STAT3 activation and PINKI-Parkin regulation of
mitochondria bridge epithelial damage and fibrosis have been
described in detail in the initial section and will not be repeated
here. From a biomechanical perspective, ASM hyperplasia and
ECM deposition alter local tissue tension and generate mechanical
compression, promoting distal capillary dysfunction and structural
loss (capillary rarefaction). Concurrently, chronic inflammation,
endothelial injury, and intermittent hypoxia also drive arteriolar
intima-media thickening (arterial remodeling). These two types
of vascular changes (arterial remodeling and capillary rarefaction)
negatively affect clinical outcome (FEV1, DLCO, etc.) by increasing
pulmonary vascular resistance or decreasing gas diffusion capacity,
respectively (56, 57). Further evidence from the COPDGene cohort
demonstrated that CT-based showed that “Arterial pruning”-
decrease in distal small arterial vessel volume-was associated with
emphysema progression, pulmonary function deterioration, and
adverse outcomes, suggesting that vascular pruning is not only
a concomitant change but also serves as an independent driving
factor of disease progression (56, 58). Longitudinal study evidence
from the COPDGene cohort indicates that, after excluding the
influence of baseline lung parenchymal destruction, baseline
arterial pruning can predict accelerated emphysema progression
and decline in lung function (56); And in smokers without
obvious COPD, the early presence of arterial pruning suggests
its pathogenic role in increasing pulmonary vascular resistance
and promoting right ventricular remodeling (58). Although the
pruning process is regulated by the inflammatory reaction (e.g.,
cigarette smoke-induced endothelial-mesenchymal transition)
(59, 60), and may be exacerbated by fibrosis compression (61), its
independent impact on the disease course and clinical outcome
highlights its core importance in the pathogenesis. Arterial
remodeling and capillary rarefaction are two distinct angiopathies,
each having unique physiological impacts. Arterial remodeling
is manifested by structural alterations in muscular arteries,
including intimal thickening and reduction in lumen diameter.
These changes can increase pulmonary vascular resistance, induce
pulmonary hypertension, lead to right ventricular dysfunction,
and consequently cause hemodynamic impairment and limited
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motor capabilities (62, 63). In contrast, capillary rarefaction
refers to decrease in capillary density. Gas exchange is directly
impaired by reducing diffusing capacity (DLCO) and disrupting
ventilation-perfusion matching, ultimately resulting in hypoxemia
and ventilation/perfusion ratio (V/Q) imbalance (64-66). It is
important that there is a synergistic effect between these two
lesions: hypertension secondary to arterial remodeling exacerbates
capillary loss, while capillary rarefaction further increases vascular
resistance, collectively contributing to clinical deterioration
in COPD patients.

In summary, ASM proliferation, ECM fibrosis, and vascular
pruning are spatiotemporally coupled. molecular signals driven
by epithelium/immune cells (TGF-B, STAT3, ROS, miRNA,
etc.) not only directly promote the functional activation of
smooth muscle and fibroblasts that leads to fibrosis, but also
exacerbate tissue hypoxia and progressive injury by altering tissue
mechanics and microvascular blood supply. Therefore, multi-
target comprehensive treatment for this axis holds significant
translational potential and merits further exploration in clinical
trials (15, 55, 56).

Single-cell omics unveils
molecular lineages and
remodeling mechanisms of the
small airways

In small airway stenosis, fibroblast-driven ECM remodeling
is the core of structural stenosis, while persistent inflammation
dominated by neutrophils and macrophages provides the cellular
and enzymatic basis for this process (such as MMPs and
ROS), promoting the degradation and redeposition of ECM
(67, 68). Recent single-cell and multimodal omics studies have
revealed, at both molecular and cellular levels, how distinct cell
populations aggregate early and orchestrate extracellular matrix
(ECM) remodeling. Single-cell atlases of terminal bronchioles
demonstrate that, in the early stages of COPD (GOLD I-II),
M1-like macrophages and neutrophils preferentially accumulate
at alveolar attachment sites, where their presence correlates with
elastic fiber degradation. These findings indicate that immune cell
infiltration and ECM injury occur in close temporal and spatial
proximity, synergistically driving the initiation of tissue destruction
(69). Multiple single-cell studies, including global scRNA-seq
analyses of COPD alveolar regions and airway terminals, have
uncovered a complex network of ligand-receptor interactions
among basal cells, resident fibroblasts, and immune cells. These
signaling pairs drive the coordinated expression of inflammatory
mediators and matrix-regulating factors, thereby exacerbating
ECM metabolic imbalance within the local microenvironment
and accelerating irreversible remodeling processes (70, 71).
A recent study integrating macro- and single-cell RNA-seq
data further demonstrated that significant expression changes
of RNA methylation regulatory factors and autophagy pathways
were present in immune cells of COPD patients, and that
methylation regulatory factors and autophagy-related genes were
upregulated in T cells and macrophages. Furthermore, such
epigenetic and autophagy signals were positively correlated with
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inflammatory factor levels, suggesting that epigenetic modifications
and cellular autophagy may serve as upstream regulatory points
linking environmental exposure to persistent immune homeostasis
imbalance and tissue damage (72).

Spirometry

In the absence of a non-invasive gold standard for diagnosing
small airway obstruction (SAD), traditional pulmonary function
tests remain the most commonly used screening tool in clinical
practice, mainly because they are easy to operate, reproducible and
low-cost (73). In 1972, the maximum mid-expiratory flow (MMEF)
was proposed as the best vital capacity parameter for identifying
small airway obstruction (SAO) (74). MMEF is commonly referred
to as the mean forced expiratory flow between 25% and 75% of
forced vital capacity (FEF 25%-75%), which represents the average
expiratory flow during this portion of forced vital capacity. It
represents the most sensitive measure of airflow in peripheral
airways and is indicative of airflow obstruction, which is reduced
in the early stages of SAD (75) and it is considered more accurate
in detecting small airway disease than the forced expiratory volume
in 1 s (FEV1) (76). Its use is grounded in the assumption that the
middle and posterior portions of the FVC reflect airflow in small
airways, which are susceptible to collapse at the end of expiration
due owing to the absence of cartilage support. However, the clinical
application of MMEF has remained controversial because of its
insufficient sensitivity and specificity for assessing small airways, as
well as its dependence on accurate measurement of the FVC (77).
To overcome this limitation, some researchers have proposed the
ratio of forced expiratory volume in 3 s (FEV3) to forced expiratory
volume in 6 s (FEV6) as an alternative indicator for assessing
small airway obstruction. The theoretical basis lies in the fact that
FEV3 can capture more expiratory volume than FEV1, thereby
including gas from the small airways (78, 79). Additionally, the use
of FEV6 eliminates the requirement for precise measurement of
FVC (80). Currently, the FEV3/FEV6 ratio has been demonstrated
to be highly sensitivity for early small airway disease associated
with airflow obstruction (3). In the multicenter COPD Genetic
Epidemiology (COPD Gene) study, which included former and
current smokers, a low FEV3/FEV6 (below the lower limit of
normal [LLN]) was linked to the presence of gas trapping on CT
imaging and a worse quality of life. This suggests its potential value
in clinical screening, especially for early risk identification of former
or current smokers. However, it remains uncertain whether these
findings translate into increased mortality (81). In addition, studies
from large cohorts (e.g., SPIROMICS) have shown that when
FEV3/FEVg is below the lower limit (LLN), HRCT/PRM-defined
gas trapping and functional small airways disease (fSAD) can be
detected even in smokers with normal FEV;/FVC, suggesting that
this simple and easily obtainable respiratory function indicator
can help identify potential early small airways lesions (82). Large
cohort analyses from the COPDGene cohort also showed that
fSAD quantified by CT-PRM was common in subjects who had
not yet developed airflow limitation diagnosed by spirometry and
was associated with accelerated FEV decline and adverse clinical
outcomes during follow-up, which reinforced the value of imaging
fSAD in early identification and risk stratification (83). Therefore,
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using FEV3/FEV as a preliminary screening in high-risk smoking
populations combined with imaging methods such as PRM can
help to early identify and stratify the management of individuals
with subclinical small airway disease. Owing to its simplicity
and low cost, spirometry remains the most commonly utilized
diagnostic method for patients with or at risk of developing COPD
in clinical management and epidemiological studies (84).

Single and multiple breath washout
experiments

Increased ventilation heterogeneity is a characteristic
physiological abnormality observed in respiratory diseases
such as asthma and COPD (85, 86). The single-breath washout
(SBW) maneuver involves a rapid exhalation to residual volume
(RV), followed by inhalation of 100% oxygen to total lung
capacity (TLC), and a subsequent exhalation from TLC back to
RV, during which inert gas is washed out from the lungs. The
most commonly assessed parameter is the slope of phase III
(SIII), which reflects the homogeneity of gas clearance across
lung regions and helps detect areas of hypoventilation and gas
trapping. The operation is relatively simple and can reflect the
closure of the small airways (87), but it requires the patient to
cooperate with maximal breathing. The results are easily affected
by factors such as age and obesity, and the sensitivity is relatively
limited. The single-breath washout (SBW) test is suitable for
patients capable of performing forced vital capacity maneuvers,
such as adults and older children. It requires only one deep
inhalation followed by a forced exhalation, making it simple to
administer and highly feasible for assessing obstructive diseases
such as COPD (88, 89). Studies have shown that the completion
rate of SBWZ among children is as high as over 92%, which is
significantly faster than MBW (83%) (89). Its limitations include
the need for a high level of patient cooperation, low sensitivity in
detecting mild small airway lesions, and the strong dependence
of single washout parameters (such as SIII) on the subject’s effort.
Multiple-breath washout (MBW) evaluates pulmonary gas mixing
and clearance over repeated inspiratory and expiratory cycles,
offering a comprehensive assessment of ventilation heterogeneity.
Because it requires only quiet tidal breathing-without breath-
holding or forced exhalation-it is particularly well suited for young
children, infants, and patients unable to perform spirometry (90).
Key parameters include the lung clearance index (LCI), Scond,
Sacin, and functional residual capacity (FRC), which respectively
reflect overall ventilation heterogeneity, convection-dependent
heterogeneity in the conducting airways, diffusion-dependent
heterogeneity in the peripheral airways and alveolar regions,
and theresting end-expiratory lung volume (91). Over the past
two decades, a large body of literature has emerged on the LCI,
demonstrating that it is more sensitive than spirometry in detecting
early obstructive lung disease in children with cystic fibrosis (CF)
(92-94). MBW testing is time-consuming (average 2-5 min per test
for healthy subjects (90), typically requires three or more repeats
to ensure data reliability (90), and requires specialized gas analysis
equipment and strict quality management. Nevertheless, MBW
is widely applied in children and in the screening of early-stage
conditions such as cystic fibrosis and primary ciliary dyskinesia, as

Frontiers in Medicine

10.3389/fmed.2025.1648612

it requires minimal patient coordination and is highly sensitive to
subclinical small airway disease (95-97). Clinically, the two can be
combined to evaluate small airway lesions, or combined with other
examinations for a more accurate diagnosis.

Impulse oscillometry system

Forced oscillations are pressure or flow signals, or waves,
that originate below the human hearing range, typically spanning
5-37 Hz, and are superimposed on normal tidal breathing,
providing information about resistance and reactance on the basis
of respiratory mechanics, i.e., airflow obstructions both inside
and outside the bronchi. The use of multiple wave frequencies
enables the exploration of the impedance frequency dependence
to more precisely describe the location of airway obstruction.
However, recent studies have shown that the impedance frequency
dependence increases with disease severity or is influenced by
the patient’s chest wall stiffness (87). This method tends to
underestimate the true condition of lung mechanics (98-103).
Currently, the latest pulse oscillation method is employed to
assess small airway size by analyzing the heterogeneity of low-
frequency resistance at 5-20 Hz (R5-R20), low-frequency reactance
at 5 Hz (X5), or the area under the reactance curve between
5 Hz and the resonant frequency (100). This is because, at high
oscillation frequencies (20 Hz), the signal is dominated by the
characteristics of the upper airways, whereas at low frequencies
(below 10 Hz), the signal reflects the entire tracheobronchial tree,
including small airway resistance. At lower oscillation frequencies,
reactance reflects the elastic properties of the parenchyma, airways,
and chest wall, whereas at higher frequencies, inertial forces become
predominant. At the resonant frequency (8 Hz), the elastic and
inertial forces are equal and opposite, at which point they cancel
each other out, and the pressure-flow relationship at this frequency
reflects only the resistance of the system (104). Compared with
spirometry, this method does not require much effort from the
patient. It can also accurately detect small airway disease in all age
groups (3, 105). In addition, impulse oscillometry has been shown
to be more sensitive than spirometry in detecting small airway
disease. Spirometry and impulse oscillomerty are recommended
in combination for hospitalized patients to assess small airway
function comprehensively and enable timely intervention (106).
The use of an impulse oscillome try system has been more
extensively studied in obstructive airway diseases. Recent studies
have demonstrated that impulse oscillometry can be utilized
to detect early manifestations of chronic obstructive pulmonary
disease (COPD) (107). It is more useful than emphysema in the
assessment of disease and can identify small airway dysfunction
in patients with normal pulmonary function but early symptoms
of chronic obstructive pulmonary disease (COPD) (76, 108).
Moreover, the incidence of respiratory symptoms has been shown
to be significantly greater in patients with small airway disease
(SAD), as defined by impulse oscillometry (76). Correlations
between impulse oscillometry (IOS) parameters and clinical
indicators, including the severity of bronchiectasis and the presence
of potential pathogenic microorganisms in sputum (109, 110).
Park demonstrated that impulse oscillometry (IOS) may be a
more sensitive method for predicting disease progression and
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prognosis than traditional lung function tests are. It can also
differentiate between small airway disease (SAD) and chronic
obstructive pulmonary disease (COPD), serving as an effective tool
for assessing the risk of acute exacerbations in both asthma and
COPD patients. In the clinical management of elderly patients
with chronic obstructive pulmonary disease (COPD), impulse
oscillometry (IOS) offers several advantages (111). A prospective
study demonstrated that patients with small airway disease (SAD)
defined by impulse oscillometry (IOS) experienced a more rapid
decline in lung function and a greater risk of acute exacerbations
(112). However, the consistency of results from oscillometric and
other small airway detection methods in diagnosing small airway
dysfunction remains a topic of ongoing discussion.

Frequency dependence of dynamic
lung compliance

Dynamic lung compliance (Cdyn) refers to the ratio of
changes in lung volume to the corresponding changes in airway
pressure during respiration. Unlike static compliance, which purely
reflects the elasticity of lung tissue and is not affected by airway
resistance, dynamic compliance reflects the combined effects of
lung tissue elastic resistance and airway resistance. In clinical
practice, pulmonary function tests are frequently used to measure
end-expiratory and end-inspiratory lung volumes and pressures in
real time. Dynamic compliance (Cdyn) is calculated by dividing
tidal volume by the difference between peak inspiratory pressure
and end-expiratory pressure (113). Dynamic compliance includes
the resistance to airflow through the airways in addition to the
elasticity of lung tissue and is therefore usually lower than static
compliance (114). Dynamic compliance reflects the combined
influence of lung tissue elasticity and airway resistance and is
commonly used in clinical practice to evaluate their interactive
effects. Under normal conditions, the time constants of each
alveolar unit are closely aligned, causing dynamic compliance to
remain nearly constant as the respiratory rate increases from a
resting state (*8-16 breaths/minute) to an active state (~60-120
breaths/minute). In other words, the normal lung time constant
(t = R-C) is both uniform and brief, ensuring synchronized
inflation and exhalation of each lung area and thereby maintaining
a constant Cdyn value regardless of changes in respiratory rate.
This phenomenon demonstrates that, in healthy individuals, the
respiratory rate and dynamic compliance are largely independent
(104). When small airway obstruction or dysfunction develops, this
uniformity is disrupted, resulting in the progressive appearance of
frequency-dependent dynamic compliance (115). An early study by
Woolcock (116) et al. found that even if the routine lung function
indicators of patients with chronic bronchitis or asthma were close
to normal, their dynamic compliance was significantly reduced at
higher respiratory rates, while there was no such change in the
healthy control group. These results suggest that airway obstruction
leads to uneven ventilation, preventing some lung regions from
being adequately deflated during rapid breathing, thereby reducing
overall compliance. Thus, in patients with small airways disease,
dynamic compliance typically decreases with increasing respiratory
rate, disrupting the normal rate independence. The frequency
dependence of dynamic compliance provides a sensitive indicator
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for the early diagnosis of small airway disease. As early as 1969,
Woolcock et al. discovered latent airway obstruction through
compliance testing at different respiratory rates (116). In recent
years, with growing attention to COPD and early small airway
disease, researchers have sought to integrate traditional compliance
measurements with novel respiratory impedance techniques, such
as oscillometry. The oscillometric low-frequency reactivity (AX)
is closely related to the elasticity of peripheral lung units and is
considered to reflect small airway patency and lung compliance
(108). Teixeira et al. (117) used oscillometry to measure the Cdyn
of patients with both chronic bronchitis and COPD, which was
significantly lower than that of the healthy control group. This
indicates that the decrease in dynamic compliance is related to
the severity of airflow limitation. In the future, we can try to
integrate static compliance and oscillometry to further improve the
sensitivity of early detection of small airway disease and provide
more basis for early intervention of COPD.

HRCT/CT and PRM

High-resolution computed tomography (HRCT) is the most
effective imaging modality for assessing small airway disease
(Figure 1). Direct signs of small airway disease observed on
high-resolution computed tomography (HRCT) scans result from
alterations in the airway wall or lumen. On HRCT scans, abnormal
small airways may present as tubular, nodular, or branching
linear structures. Indirect signs of small airway disease result
from alterations in the lung parenchyma distal to the affected
small airways and include air trapping, subsegmental atelectasis,
centrilobular emphysema, and nodules (118). However, the spatial
resolution of HRCT is limited (approximately 2 mm), making
it generally impossible to directly visualize the smaller terminal
bronchioles. As a result, early small airway lesions are often difficult
to detect on conventional HRCT images. In contrast, parametric
response mapping (PRM) is a quantitative imaging technique based
on the registration of paired inspiratory and expiratory scans (119).
This method classifies each registered lung voxel according to the
HU value of the inspiratory and expiratory CT: it not only identifies
the low-density area caused by emphysema, but also marks
the emphysematous gas retention area of the lung (functional
small airway disease, fSAD), and generates the corresponding 3D
map (120). Compared with traditional spirometry, PRM has the
advantages of spatial visualization and numerical reproducibility.
Many studies have used the volume percentage of fSAD in PRM
representing non-emphysematous gas retention (PRM®AP) as an
indicator for evaluating small airways (83, 121-124), including
analyses from large cohorts such as COPDGene. Small airway
disease is a transitional stage in the progression from normal
airways to emphysema in severe disease, as demonstrated by
the follow-up Parametric Response Mapping (PRM) study in the
SPIROMICS cohort, which used inspiratory and expiratory HRCT
scans to assess small airway disease (120, 125). A previous study
compared 78 COPD patients at different stages of SAD and
demonstrated that small airway stenosis and obstruction appear
earlier than emphysema, so HRCT has advantages in the early
diagnosis of COPD (126). The advantage of PRM is that it provides
spatially resolved functional imaging and reproducible quantitative
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indicators, which go beyond the capabilities of traditional lung
function tests (which can only give average results of the whole
lung) (120, 127). PRM analysis can clearly visualize the spatial
distribution of gas trapping and differentiate the causes of
gas trapping (small airway disease or emphysema), facilitating
the differential diagnosis of different COPD phenotypes (120).
Compared with simple lung function measurement, PRM also has
better reproducibility and objectivity (127). Therefore, in smokers
or other high-risk groups, when screening, grading, or follow-up
of early small airway lesions is required, PRM can be considered
to obtain more functional information than conventional HRCT.
However, PRM also has limitations. First, it requires two scans, one
for inspiration and one for expiration, which increases examination
time, cost, and radiation exposure (119), and therefore has not yet
become a routine examination method. Secondly, PRM results rely
on accurate image registration, and its measurements are based on
changes in lung parenchymal density, which may be interfered with
by changes in pulmonary vascular or other tissue density, affecting
the relevance of small airway disease detection (127). Furthermore,
PRM reflects functional gas trapping rather than direct structural
imaging, so anatomical details such as bronchial wall thickening
and mucus plugging require HRCT assessment. Overall, HRCT
and PRM are complementary examination methods, capable of
visualizing changes in lung structure and assessing small airway
dysfunction Therefore, combining patient information and HRCT
to assess SAD still has good predictive value. At the same
time, some studies have found that PRM™SAP may indicate early
alveolar attachment loss. Although previous studies support the
relationship between PRM and alveolar attachment (121), this
deserves further exploration. Currently, recent studies have shown
that generative Al techniques can be used to reliably assess small
airway disease using deep learning in inspiratory chest CT, without
the need for additional respiratory CT scans. The fSAD obtained
from inspiratory CT is strongly correlated with PRMAP and is
significantly associated with a decrease in FEV1, while providing
higher reproducibility (128).

SPECT

Quantitative single-photon emission computed tomography
(SPECT/CT) can objectively quantify regional heterogeneity in
human ventilation and is more sensitive than chest CT and lung
function tests in detecting early airway changes in COPD patients.
The coefficient of variation (CV) of the distribution of radioactive
tracer values inhaled during the test can generate heterogeneity
maps and density curves for small lung regions (129, 130). The
area under the coefficient of variation (CV) curve (AUC-CV) at
a predetermined threshold serves as a marker of ventilation in
homogeneity and may have clinical value in assessing the severity
and distribution of lung disease. Studies have shown that AUC-CV
values are sensitive to the presence of COPD, asthma, and airflow
obstruction, and are correlated with even mild abnormalities in
pulmonary function tests (PFTs), including in otherwise healthy
individuals. Therefore, measuring the AUC-CV value may serve
as an early marker of airway disease in active smokers at risk
for COPD (131, 132). A study by Juneau demonstrated that
the AUC-CV40% can serve not only as a marker for peripheral
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airway disease but also as a clinical indicator for respiratory
symptoms. It can also serve as an auxiliary tool for clinicians to
assess smokers with respiratory symptoms. However, whether this
marker can serve as a prognostic indicator for COPD requires
further investigation (133). In fact, although Technegas technology
has benefited more than 4.4 million patients in more than 60
countries since it was first used in Australia in the 1980s, it has
only recently been approved for use in some regions (such as
the United States) (134). In addition, current guidelines mainly
recommend SPECT/CT for evaluation of pulmonary embolism
rather than COPD screening (134). Current guidelines mainly
recommend SPECT/CT for the evaluation of pulmonary embolism,
rather than COPD screening (135). Therefore, SPECT ventilation
imaging is currently mostly used in special occasions such as
scientific research and preoperative evaluation of pulmonary
surgery, and has not yet been included in the routine diagnostic
process of COPD (136, 137). In summary, although SPECT/CT
ventilation imaging can help detect airway function changes early,
it is still mainly a research tool due to the high complexity of its
equipment and operation and strict requirements for tracers, and
its clinical practicality and maturity are limited.

Perfluoropropane-based 1°F MRI
and ventilation defect percentage
(VDP)

Perfluoropropane 19F MRI is emerging lung ventilation
imaging technique that uses inert fluorinated gases, which are
detectable in MRI (Figure 1), to depict lung ventilation distribution.
After subjects inhale a gas mixture containing approximately
79% perfluoropropane and undergo MRI scanning, the spatial
distribution of the 19F signal during lung inflation is obtained
and quantified as the ventilation defect percentage (VDP). Pippard
and Neal developed a novel technique to assess the ventilation
defect percentage (VDP), which reflects air trapping in the small
airways. The subjects inhaled perfluoropropane gas and underwent
fluorine-19 (*°F) MRI scans. Inspiratory fluorine-19 (*F) MR
images revealed regions of poor lung ventilation, as indicated by
the heterogeneity in the distribution of perfluoropropane. VDP was
calculated by dividing the volume of aerated lungs displayed on the
inspiratory fluorine-19 (\°F) MRI scan by the volume determined
on the proton MRI scan (excluding the trachea and large airways).
In their study, after bronchodilator inhalation, the VDP of asthma
patients decreased by an average of 33%, whereas that of COPD
patients decreased by an average of 14%. The FEV and FVC reflect
airway disease, whereas VDP provides insights into regional air
trapping and dead space, particularly in the small airways. Unlike
FEV1 and FVC, which mainly reflect global airflow limitation, VDP
can reflect local gas trapping and dead space, and is more sensitive
in small airway lesions. Compared with other detection methods,
such as hyperpolarized MRI or helium (He) MRI, perfluoropropane
19F MRI technology is straightforward, cost-effective, and capable
of accurately depicting the distribution of lung gas during both
inhalation and exhalation. It also demonstrates good tolerance
in test subjects and maintains high clinical safety. Furthermore,
perfluoropropane is an inert gas that is not metabolized and is
rapidly cleared through exhalation, making this method safer for
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lung imaging and ensuring that it does not cause lasting effects on
the body. Overall, this is a promising, investigational approach that
can sensitively detect regional ventilation defects, but its availability
is currently limited and has not yet been widely used in routine
clinical practice. This imaging technology aids in detecting the early
stages of COPD and asthma and may facilitate early intervention to
enhance outcomes and more effectively evaluate treatment effects
(138, 139). A review pointed out that although lung ventilation
imaging is the most common case of 19F MRI in clinical practice,
it is still relatively rare overall. In addition, the operation requires
the subject to hold their breath for a short time to obtain clear
images, which poses a tolerance challenge for patients with severe
COPD. To this end, the research team is developing fast imaging
and reconstruction algorithms to shorten scanning time and reduce
the need for breath holding (138).

Although conventional spirometry is widely used and
cost-effective, its sensitivity for detecting early small airway
disease (SAD) remains limited. Many patients with pathological
changes may still present with preserved FEV1 and FVC
values, thereby delaying the recognition of early or pre-COPD
phenotypes. Emerging techniques such as multiple-breath washout
(MBW) and impulse oscillometry (IOS) allow non-invasive
assessment of ventilation heterogeneity and peripheral airway
resistance, offering superior sensitivity for the early detection
of SAD.
response mapping (PRM),

Imaging-based approaches, including parametric
single-photon emission computed
tomography (SPECT), and !°F magnetic resonance imaging
(YE-MRI),

small airway obstruction and remodeling. However, their

provide high-resolution insights into regional
clinical application remains constrained by high costs, limited
availability, and the need for further validation. Overall, these
methods complement spirometry by bridging the diagnostic gap
between pre-COPD and early COPD, thereby facilitating earlier
intervention strategies and potentially improving patient outcomes

(Table 1).

TABLE 1 Comparison of different pairs of assays.

10.3389/fmed.2025.1648612

Therapeutic perspectives

Chronic airway inflammation represents the core pathological
basis and primary driving factor in the progression of chronic
obstructive pulmonary disease (COPD) and various small airway
diseases. It is characterized by inflammatory cell infiltration
and excessive production of proinflammatory cytokines, which
contribute to airway remodeling, airflow limitation, and acute
exacerbations of the disease (140, 141). Given this underlying
mechanism, anti-inflammatory therapy has emerged as a central
strategy in the management of these conditions, aiming to
reduce inflammation, alleviate symptoms, and slow disease
141).
function by targeting key inflammatory signaling pathways-such

progression (140, Anti-inflammatory drugs primarily
as nuclear factor-kB (NF-kB) and mitogen-activated protein kinase
(MAPK)-modulating the balance between proinflammatory
and anti-inflammatory mediators, inhibiting the activation and
migration of inflammatory cells, and ameliorating oxidative
stress and protease/antiprotease imbalance (141-143). These
agents can block the activation of NF-kB and MAPK pathways,
thereby reducing the transcription and release of proinflammatory
cytokines including interleukin-6 (IL-6) and tumor necrosis
factor-a (TNF-a). Additionally, they can modulate the redox
state via histone deacetylase 1 (HDACI1)-dependent mechanisms,
142,
144). Inhaled glucocorticoids (ICS) are a cornerstone of anti-

thereby attenuating oxidative damage in lung tissue (141,

inflammatory treatment in COPD. They exert their effects by
inhibiting the
transcription of proinflammatory genes (e.g., TNF-a, IL-6),

binding to the glucocorticoid receptor (GR),

and activating anti-inflammatory genes. COPD patients with
elevated blood eosinophil counts (BECs) show a better response
to ICS treatment, an effect associated with the suppression of
type 2 inflammatory pathways rather than direct reduction in
eosinophil numbers (145). Antifibrotic agents constitute a class
of compounds that interfere with the fibrotic process. Their
mechanisms include inhibiting the activation and proliferation
of fibroblasts and myofibroblasts, regulating extracellular matrix

Spirometry (including | Low (often normal in early Widely available
FEV,/FVC;FEV3/FEV) disease)
MBW Moderate-High Limited (specialized/research
centers)
108 Moderate Moderate availability

(selected centers)

HRCT/CT-PRM High (sensitive to fSAD) Requires advanced CT
capability and

post-processing

SPECT High Limited (nuclear medicine
centers)
19F-MRI Very High (highly sensitive to, ~ Very limited (research

regional ventilation defects) institutions)

Sensitivity*: refers to early SAD/pre-COPD (often with normal FEV/FVC).
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None Established; limited sensitivity for
early detection
None Moderate Increasing validation; mainly
research use
None Moderate Growing clinical adoption, esp.
pediatrics and COPD research
Yes ionizing radiation; PRM High Under validation; promising for
typically requires paired pre-COPD phenotyping
inspiratory + expiratory CT
(two scans)
Yes radiotracer exposure High Mainly research use; not routine
clinical practice
None High Early validation; investigational
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and promising; requires
breath-hold/technical
optimization
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(ECM) synthesis, and suppressing profibrotic inflammatory
responses. Specific actions involve blocking signaling pathways
such as transforming growth factor-f (TGF-B) and cyclic adenosine
monophosphate/protein kinase A (cAMP/PKA), reducing ECM
synthesis by inhibiting synthases, and modulating inflammatory
mediator secretion to alleviate inflammatory responses (146,
147). Studies indicate that targeting the TGF-p pathway can
inhibit fibroblast-to-myofibroblast differentiation and reduce ECM
deposition (148). For instance, pirfenidone inhibits TGF-B-induced
Smad3, p38, and protein kinase B (Akt) phosphorylation, thereby
suppressing fibroblast proliferation and collagen production
(146).Epigallocatechin gallate (EGCG), a green tea polyphenol,
demonstrates antifibrotic potential in respiratory diseases by
inhibiting the TGF-f1 pathway, downregulating «a-smooth
muscle actin (a-SMA) and collagen expression, and reducing
ECM deposition. In a bleomycin-induced pulmonary fibrosis
model, EGCG reduced hydroxyproline content and enhanced
antioxidant enzyme activity, mitigating pulmonary fibrosis (149).
BI 1015550, a phosphodiesterase 4B (PDE4B) inhibitor, exerts
antifibrotic effects by inhibiting TGF-B-stimulated myofibroblast
transformation and ECM protein expression in fibroblasts from
idiopathic pulmonary fibrosis (IPF) patients (150). Nintedanib,
a tyrosine kinase inhibitor, inhibits fibroblast proliferation and
exhibits synergistic effects with BI 1015550 (150, 151). Moreover,
nintedanib inhibits collagen fiber assembly, representing a novel
antifibrotic mechanism (151). Senolytics are small molecules or
biological agents that selectively induce apoptosis in senescent
cells (SCs) without affecting non-senescent cells (152). These
drugs were initially identified via a “network targeting” strategy:
senescent cells accumulate with age or disease and upregulate
anti-apoptotic pathways (SCAPs) such as B-cell lymphoma-2/extra
large (BCL-2/BCL-XL), phosphatidylinositol 3-kinase/protein
kinase B (PI3K/AKT), hypoxia-inducible factor-la (HIF-1a),
and receptor/tyrosine kinase-dependent pathways, counteracting
the pro-apoptotic effects of the senescence-associated secretory
phenotype (SASP) (152, 153). Senolytics eliminate senescent cells
by transiently inhibiting SCAPs, inducing mitochondrial outer
membrane permeabilization and caspase-mediated cell death,
while sparing healthy cells (153). In a bleomycin-induced mouse
model of pulmonary fibrosis (simulating IPF), the combination
of dasatinib and quercetin (D + Q) reduced senescent fibroblasts
and epithelial cells, decreased expression of fibrotic factors such
as type I collagen al chain (Collal) and TGF-B, and improved
lung compliance (154). Multiple in vivo and in vitro studies have
shown that senolytics (such as D + Q) can reduce the burden of
senescent cells in the respiratory epithelium or mouse models and
improve inflammatory indicators, but efficacy and safety data at
the population level are still limited and no consensus has been
reached. Some small sample or early trials have shown positive
signals, but data from larger-scale, randomized controlled trials are
still scarce, so its clinical feasibility and long-term risks need to be
carefully evaluated (155, 156). In a cigarette smoke-induced lung
injury model using p16-3MR mice, ganciclovir (GCV) eliminated
pl6™ senescent cells, inhibited neutrophil inflammation mediated
by the C-X-C chemokine ligand 1-keratinocyte chemoattractant
(CXCL1-KC) axis, and restored mitochondrial function. This
intervention reduced senescence-associated p-galactosidase-
positive (SA-B-Gal™) cells, reversed lung aging, diminished
neutrophil infiltration in bronchoalveolar lavage fluid, and
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ultimately attenuated smoke-induced alveolar enlargement,

highlighting its potential value in early COPD intervention (157).

Conclusion

Small airway disease (SAD) is present throughout the course of
COPD but plays a particularly critical role in its early development.
Three interrelated pathological mechanisms drive injury and
remodeling of the small airways. First, chronic inflammation-
primarily mediated by neutrophils and macrophages—directly
damages the epithelium and extracellular matrix (ECM) through
proteases (e.g., MMPs, elastase), chemokines, and reactive oxygen
species, thereby promoting structural destruction and airway
narrowing. Second, fibrosis and epithelial-mesenchymal transition
(EMT), activated by profibrotic pathways such as TGF-, induce
fibroblast-to-myofibroblast
ECM deposition. Third, the senescence-SASP axis, whereby

transdifferentiation and excessive
senescent cells amplify local inflammation and propagate paracrine
senescence through the secretion of SASP factors (e.g., IL-6,
IL-8, PAI-1, MMPs), synergistically accelerates remodeling and
functional decline. These mechanisms do not act in isolation but
continuously interact within the small airway microenvironment,
collectively driving the progression from SAD to overt COPD
(55, 158, 159).

To achieve “early detection, early diagnosis, and early
treatment,” the combination of HRCT and PRM has been shown
to differentiate functional small airway disease (fSAD) from
emphysema at the voxel level and predict subsequent functional
and structural progression. The latest deep learning methods can
even approximate PRM information using only inspiratory CT,
significantly reducing the need for additional respiratory scans
(119, 125). MBW and IOS are more sensitive for detecting airway
malfunction and peripheral airway resistance when spirometry is
normal (97, 160), and can be considered for use in outpatient
clinics or longitudinal follow-up. Furthermore, single-cell omics
has revealed the spatiotemporal landscape of small airway cell
subsets and immune-stromal interactions, laying the foundation
for linking imaging phenotypes with molecular mechanisms.
These complementary approaches enhance the sensitivity of small
airway detection.

Future therapeutic strategies for COPD should focus on
disrupting key pathogenic circuits of small airway disease.
Promising approaches include: senolytics or senomorphics to
attenuate SASP-driven inflammation and paracrine senescence;
microRNA-
restore

interventions to
anti-TGF-
B, and antioxidant therapies to limit ECM deposition and

or exosome-based precision

anti-senescence  pathways; antifibrotic,

oxidative damage; and targeting immune regulatory axes, such as

neutrophil chemotaxis/activation or PI3K3 signaling, to reduce
protease-mediated injury (55, 156, 159, 161).
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