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Angiopoietin-1 induces survival
and proliferation of hair follicle
dermal papilla cells through
integrin aSP1 signaling

Jang-Hyuk Yun*

College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University,
Chuncheon, Republic of Korea

Background: Androgenetic alopecia is a common form of hair loss primarily
mediated by dihydrotestosterone (DHT), which induces apoptosis and inhibits
proliferation in dermal papilla cells (DPCs). Current treatments, such as minoxidil
and finasteride, often show limited efficacy and can cause adverse effects,
underscoring the need for safer and more targeted therapies.

Methods: This study investigated the protective and proliferative effects of
angiopoietin-1 (Angl) on human follicle dermal papilla cells (HFDPCs) under
DHT-induced stress. Apoptosis and proliferation were assessed using flow
cytometry and BrdU assays. Western blotting was used to examine intracellular
signaling pathways. The expression and functional relevance of Tie and
integrin receptors were evaluated using gene expression analysis and blocking
antibodies.

Results: Angl significantly reduced DHT-induced apoptosis and restored
proliferation in HFDPCs. These effects were mediated via activation of the PI3K/
AKT and MAPK/ERK1/2 pathways through integrin a5p1. Neither Tie-1 nor Tie-2
receptors were detected in HFDPCs, indicating that Angl acts through a Tie-2-
independent mechanism. Given the well-established role of Angl in promoting
vascular stability via the Tie-1-Tie-2 axis in endothelial cells, it is plausible that
Angl may also support follicular health indirectly by enhancing perifollicular
vascularization.

Conclusion: Angl enhances HFDPC survival and proliferation through integrin
a5p1-mediated signaling. In addition to its direct protective effects on DPCs,
Angl may promote angiogenic support in the hair follicle microenvironment.
These findings position Angl as a potential dual-action therapeutic candidate
for androgenetic alopecia.

KEYWORDS

angiopoietin-1, human follicle dermal papilla cells, integrin «5p1, survival,
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1 Introduction

Androgenetic alopecia, often referred to as male pattern baldness, is characterized by the
miniaturization of hair follicles owing to the influence of dihydrotestosterone (DHT), a potent
derivative of testosterone that transforms thick terminal hairs into thin vellus hairs (1).
Without treatment, the condition results in gradual and progressive hair thinning (2). This is
the leading cause of hair loss, and its incidence tends to increases with age (3-5). Male pattern
baldness can negatively impact mental well-being, contributing to issues like persistent
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self-consciousness, age-related anxiety, and a lack of energy, affecting
individuals of both sexes (6-8). Currently, the U. S. Food and Drug
Administration (FDA) has approved minoxidil (MNX) and finasteride
as treatments for hair loss. Nevertheless, even with the use of these
treatments, many individuals continue to struggle with hair loss.
Moreover, MNX may cause adverse reactions such as itching and
contact dermatitis (9), while the side effects of finasteride include
headaches, dizziness, skin irritation, and sexual dysfunction (10-13).
Accordingly, there is a growing need for alternative hair loss therapies
that offer both effectiveness and a reduced risk of side effects.

The hair follicle, an epidermal appendage, consists of both
epidermal and dermal sections. At the base of the follicle lies the
dermal papilla, a crucial dermal component essential for hair follicle
development and growth cycles (14-17). Notably, the DP has the
unique capacity to initiate new hair follicle formation and regulate the
number of matrix cells, influencing hair size and density (18-23).
Thus, it is proposed that enhancing the number of DP cells or
inhibiting their apoptosis may contribute to preventing hair loss by
promoting hair thickness and density. Vascular endothelial growth
factor (VEGF), a key angiogenic factor primarily recognized for
stimulating blood vessel formation, has also been shown to directly
increase DP cell proliferation in hair follicles (24). However, the effects
of other angiogenic factors on DP cells remain largely unexplored,
warranting further investigation.

Angiopoietin-1 (Angl) is a protein that plays an important role in
vascular development and angiogenesis along with VEGE. Both Angl
and VEGF are angiogenic factors that are involved in survival,
proliferation, migration, and tube formation by activating AKT or
ERK1/2 in various types of endothelial cells (25-29). Angl and VEGF
bind to Tie-2 receptor and integrin or VEGF receptors, respectively,
transmit downstream signaling, and perform various actions
including angiogenesis (26-28, 30-33). Although Angl and VEGF act
specifically on endothelial cells, VEGF is known to be involved in the
survival or proliferation of various cells including DP cells (24, 34-36).
However, the effect of Angl on DP cells is completely unknown.
Therefore, we aimed to investigate the effect of Angl on DP cells and
the related mechanism.

In this study, it was demonstrated that Angl prevented the
survival and proliferation of human follicle dermal papilla cells
(HFDPCs) decreased by DHT. In addition, Angl induced the survival
of HFDPCs through the AKT pathway and the proliferation through
the ERK1/2 pathway. In addition, Angl was found to be involved in
the survival and proliferation of HFDPCs through integrin «5f81, not
Tie-2. These results suggest that the Angl/integrin a5p1 axis can be a
potential treatment for androgenetic alopecia by preventing the
survival and proliferation of HFDPCs decreased by DHT.

2 Materials and methods

2.1 Cell cultures

Human follicle dermal papilla cells (PromoCell, Heidelberg,
Germany) and human dermal microvascular endothelial cells
(PromoCell) were cultured in a follicle dermal papilla cell growth
medium and endothelial cell growth medium (both from PromoCell),
respectively. The cells were incubated at 37 °C in a humidified
atmosphere containing 5% CO.,.
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2.2 Reagents and antibodies

Recombinant human Angl, Ang2, and VEGF were purchased
from R&D Systems (Minneapolis, MA, USA). MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium  bromide),
Wortmannin, PD98059, SB202190, anti-Tie-1, anti-Tie-2, Gly-Arg-
Gly-Asp-Ser (GRGDS) peptide, and functional blocking antibodies
against integrins ol-6, av, pl, and a5p1l were purchased from
Millipore-Sigma (St. Louis, MO, USA). Other reagents and antibodies
used were: anti-cleaved caspase-3, anti-Bax, anti-Bcl-2, anti-Bcl-xL,
anti-phospho-AKT, anti-AKT, anti-phospho-ERK1/2, anti-ERK1/2,
anti-phospho-p38, anti-p38, anti-integrin o4, anti-integrin «5, anti-
integrin av, anti-integrin p1, anti-integrin B3, anti-integrin p4, and
anti-integrin p5 (Cell signaling Technology, Danvers, MA, USA), anti-
fB-tubulin and peroxidase-conjugated secondary antibodies (Santa
Cruz Biotechnology, Dallas, TX, USA), Muse® Annexin V & Dead
Cell Assay Kit (FITC) (Luminex Corporation, Austin, TX, USA), and
5’-bromodeoxy-2’-uridine (BrdU) cell proliferation ELISAs (Roche,
Indianapolis, IN, USA).

2.3 Cell viability assay

Cell viability was measured using the MTT assay kit (Millipore-
Sigma). About 5 x 10° cells were plated in 96-well plates for 24 h and
treated with indicated reagents for 48 h. Thereafter, the cells were
treated with 100 pL of MTT (5 mg/mL) for 3 h. The formazan levels
were measured using the absorbance at 570 nm.

2.4 Apoptosis assay

The apoptotic effect was assessed using the Annexin-V-FITC/PI
double-staining assay, following the instructions provided by the
manufacturer (Muse® Annexin V & Dead Cell Assay Kit). Cells
(3% 10°) were treated with the indicated agents for 48 h. Post
incubation, cells were collected in 1 mL of medium containing 1%
fetal bovine serum (FBS). Subsequently, the cell suspension (100 pL)
was mixed with Muse® Annexin V & Dead Cell reagent and vortexed
for 5s. The mixture was then incubated for 20 min at room
temperature and analyzed using the Muse™ Cell Analyzer. Data were
processed using the Muse Analysis Software, and cells positive for
annexin-V only or annexin-V/PI double staining were considered
apoptotic. Each experiment was conducted in triplicate.

2.5 Western blot analysis

Cells were harvested and lysed in radioimmunoprecipitation assay
(RIPA) buffer (Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with a protease and phosphatase inhibitor cocktail
(Thermo Fisher Scientific). Protein concentration was determined
using the bicinchoninic acid (BCA) assay (Thermo Fisher Scientific),
and equal amounts of protein (30 pg per lane) were resolved on
10-12% SDS-polyacrylamide gels. Following electrophoresis, proteins
were transferred onto nitrocellulose membranes (0.45 pm pore size;
GE Healthcare, Chicago, USA) using a semi-dry blotting system (Bio-
Rad, Hercules, CA, USA). Membranes were blocked in 5% non-fat dry
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milk diluted in TBST buffer (Tris-buffered saline with 0.1% Tween-20)
for 1h at room temperature. Primary antibodies were diluted (1:
1000 in 5% BSA in TBST) and incubated overnight at 4 °C. Following
three washes with TBST (10 min each), membranes were incubated
with HRP-conjugated anti-rabbit or anti-mouse secondary antibodies
(Santa Cruz Biotechnology, diluted 1: 5,000 in 5% non-fat dry milk/
TBST) for 1 h at room temperature. Bands were visualized using an
enhanced chemiluminescence (ECL) detection reagent (Thermo Fisher
Scientific) and imaged using the ImageQuant LAS 500 system
(GE Healthcare).

2.6 BrdU ELISA proliferation assay

To measure cell proliferation, a Cell Proliferation BrdU ELISA kit
(Roche) was used according to the manufacturer’s protocol. Cells
treated with the indicated agents for 48 h were labeled with 10 pM
BrdU for 1 h. The anti-BrdU peroxidase conjugated antibody was then
incubated for 90 min. After washing, the bound peroxidase was
detected based on the substrate reaction, which was measured
at 450 nm.

2.7 Real-time quantitative PCR

All RNA was extracted from cells and tissues using the RNeasy
Plus Mini kit (Qiagen). cDNAs were generated from RNAs (1 pg)
using 2.5 pM oligo-dT primers, 1 mM dNTPs, and MuLV reverse
transcriptase. QRT-PCR assays were performed in the qPCR Master
Mix for SYBR Green PCR Master Mix (Applied Biosystems). qRT-PCR
was performed using the following primers: TIE2 (forward:
5-GCTTGCTCCTTTCTGGAACTGT-3" and reverse: 5- CGC
CACCCAGAGGCAAT-3"); TIEI (forward: 5-AGAACCTAGCC
TCCAAGATT-3"and reverse: 5-ACTGTAGTTCAGGGACTCAA-3");
ITGA4 (forward: 5-GCTTCTCAGATCTGCTCGTG-3" and reverse:
5-GTCACTTCCAACGAGGTTTG-3'); ITGA5 (forward: 5-TGCAG
TGTGAGGCTGTGTACA-3" and reverse: 5-GTGGCCACCTGAC
GCTCT-3"); ITGAV (forward: 5-AATCTTCCAATTGAGG
ATATCAC-3" and reverse: 5-AAAACAGCCAGTAGCAACAAT-3");
ITGBI (forward: 5-GAAGGGTTGCCCTCCAGA-3" and reverse:
5-GCTTGAGCTTCTCTGCTGTT-3"); ITGB3 (forward: 5-CCGTG
ACGAGATTGAGTCA-3" and reverse: 5’-AGGATGGACTTTCCA
CTAGAA-3");ITGB4(forward:5-AGACGAGATGTTCAGGGACC-3’
and reverse: 5-GGTCTCCTCTGTGATTTGGAA-3"); ITGB5
(forward: 5-GGAGCCAGAGTGTGGAAACA-3" and reverse:
5-GAAACTTTGCAAACTCCCTC-3"); and ACTB (forward: 5-GGG
AAATCGTGCGTGACATT-3" and reverse: 5-AGTTTCGTGGAT
GCCACAGG-3"). A mean quantity was estimated from triplicate
qRT-PCR reactions following normalization to the control gene.

2.8 Statistical analysis

Statistical analyses were performed using the GraphPad Prism
software (GraphPad. Inc., La Jolla, CA, USA). Depending on the
experimental design, unpaired two-tailed Student’s -test (assuming
unequal variances), one-way analysis of variance, or two-way analysis
of variance followed by Tukey’s post-hoc test was used. A p-value of
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less than 0.05 was considered statistically significant. All quantitative
data are presented as the mean + standard deviation.

3 Results

3.1 Angl increases survival and proliferation
in HFDPCs

Initially, an MTT assay was conducted to assess whether angiogenic
factors, including Angl and Ang2, influence the viability of HFDPCs.
When HFDPCs were treated with Angl for 48 h, similar to VEGE, it
enhanced cell viability, whereas Ang2 had no effect (Figure 1A).

Next, to accurately assess whether the enhancement in cell viability
induced by Angl was associated with cell survival or proliferation,
Muse® Annexin V & Dead Cell Assay Kit-based cytometric analysis,
western blot analysis, and the BrdU cell proliferation ELISA assay were
conducted. Angl inhibited DHT-induced apoptosis in HFDPCs
(Figure 1B). Similarly, Angl prevented DHT-induced increases in
cleaved caspase-3 and proapoptotic Bax levels, as well as DHT-induced
decreases in antiapoptotic Bcl-2 levels in HFDPCs (Figures 1C,D).
However, neither angl nor DHT affected antiapoptotic Bcl-xL levels
in HFDPCs (Figures 1C,D). In addition, Angl increased the
proliferation of HFDPCs even when treated alone and prevented the
decrease in HFDPCs proliferation caused by DHT (Figure 1E). These
results demonstrate that Angl prevents DHT-induced increase in
apoptosis and decrease in proliferation of HFDPCs.

3.2 Angl induces survival through the AKT
pathway and proliferation through the
ERK1/2 pathway in HFDPCs

Next, the mechanisms through which Angl promotes survival and
proliferation in HFDPCs were explored. Angl is widely recognized for
activating AKT, ERK1/2, and p38 in endothelial cells (37, 38), with
these signaling pathways playing a key role in survival or proliferation
(37, 39). Based on this, it was hypothesized that Angl may similarly
regulate survival or proliferation in HFDPCs through these pathways.

Ang]l enhanced the phosphorylation of AKT, ERK1/2, and p38 in
HFDPCs following treatment for 15, 30, and 60 min (Figure 2A). When
treated with DHT, HFDPCs exhibited reduced phosphorylation of AKT
and ERK1/2, while p38 phosphorylation remained unchanged
(Figures 2B,C). Furthermore, Angl inhibited the DHT-induced
reduction in AKT and ERKI/2 phosphorylation in HFDPCs
(Figures 2B,C). To investigate whether Angl-induced activation of AKT,
ERK1/2, and p38 plays a role in apoptosis or proliferation, the AKT
inhibitor Wortmannin, the ERK1/2 inhibitor PD98059, and the p38
inhibitor SB202190 were utilized. Wortmannin blocked Angl-induced
AKT phosphorylation in HFDPCs with no impact on the
phosphorylation of ERK1/2 or p38 (Supplementary Figure 1A). PD98059
blocked Angl-induced ERK1/2 phosphorylation with no impact on the
phosphorylation of AKT or p38 (Supplementary Figure 1A), while
SB202190 blocked Angl-induced p38 phosphorylation with no impact
on the phosphorylation of AKT or ERK1/2 (Supplementary Figure 1B).
Interestingly, Wortmannin fully blocked Angl-mediated survival under
DHT treatment in HFDPCs, whereas PD98059 and SB202190 had no
effect (Figure 2D). Furthermore, Wortmannin fully prevented the
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Angl-induced reduction in cleaved caspase-3 and pro-apoptotic Bax
levels, as well as the increase in anti-apoptotic Bcl-2 levels under DHT
treatment in HFDPCs (Figures 2E,F). In contrast, PD98059 fully
inhibited Angl-driven proliferation in HFDPCs, while neither
Wortmannin nor SB202190 contributed to proliferation. (Figure 2G).
These findings indicate that Angl promotes survival via the AKT
pathway and drives proliferation through the ERK1/2 pathway
in HFDPCs.
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3.3 HFDPCs lack Tie-2 receptors but
express a variety of integrins

Western blot and qRT-PCR were subsequently performed to
examine the presence of Tie-2 and integrins, which serve as receptors
for Angl, in HFDPCs. Notably, since Tie-2 is specifically and highly
expressed in endothelial cells (40), HDMECs, a type of endothelial
cell, were utilized. Interestingly, neither Tie-1 nor Tie-2, both members
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FIGURE 2 (Continued)

(n = 5). n.s, not significant. *p < 0.05 by two-way ANOVA.

loading control. (B) Western blot analysis for pAKT, AKT, pERK1/2, ERK1/2, pp38, and p38 were performed on lysates obtained from HFDPCs treated
with Angl (300 ng/mL) and/or DHT (2 uM) for 30 min. p-tubulin was used as a loading control. (C) Quantitative densitometric analysis in (B) to calculate
the ratio of each protein to p-tubulin (n = 3). n.s, not significant. *p < 0.05 by two-way ANOVA. (D—G) HFDPCs preincubated with Wortmannin (1 uM),
PD98059 (25 pM), or SB202190 (10 pM) for 1 h and then treated with Angl (300 ng/mL) and/or DHT (2 pM) for 48 h. (D) Apoptosis of HFDPCs was
analyzed using annexin-V/PI staining and flow cytometry. Bar graph represents mean + SD (n = 3). n.s, not significant. *p < 0.05 by two-way ANOVA.
(E) Western blot analysis was performed on lysates from HFDPCs to detect cleaved caspase-3, Bax, Bcl-2, and Bcl-xL. f-tubulin was used as a loading
control. (F) Quantitative densitometric analysis in (E) to calculate the ratio of each protein to p-tubulin (n = 3). n.s, not significant. *p < 0.05 by two-way
ANOVA. (G) Cell proliferation of HFDPCs was determined by 5-bromodeoxy-2’-uridine (BrdU) proliferation ELISA. Bar graph represents mean + SD

of the Tie receptor family, were expressed in HFDPCs (Figures 3A,B).
Furthermore, the mRNA expression of Tie-2 and Tie-1 was nearly
HFDPCs HDMECs
(Supplementary Figure 2A). In contrast, integrin a4, a5, av, 1, f3, p4,

undetectable  in compared  to
and P5 were prominently expressed in HFDPCs, with their mRNA
levels also being significantly detectable (Figures 3C,D and
Supplementary Figure 2B). These findings indicate that the Tie-2
receptor is absent in HFDPCs, while integrins are present.

3.4 Angl promotes survival and
proliferation in HFDPCs via the integrin
a5p1 receptor

Since Tie-2 is absent in HFDPCs and multiple integrins are
expressed, it was hypothesized that Angl contributes to survival
and proliferation via these integrins, with an aim to identify the
specific integrin involved. To determine whether Angl promotes
the survival and proliferation of HFDPCs through integrins, the
Gly-Arg-Gly-Asp-Ser (GRGDS) peptide was utilized to inhibit
integrins that recognize the Arg-Gly-Asp (RGD) sequence.
GRGDS inhibited the activation of Akt and ERK1/2, which
contribute to Angl-induced survival and proliferation in
HFDPCs, while also reducing p38 activation. (Figure 4A). Next,
various « integrin neutralizing antibodies were used to identify
the specific integrin involved in Angl-induced survival and
proliferation in HFDPCs. Among the tested neutralizing
antibodies, only integrin «5 inhibited Angl-induced
phosphorylation of AKT, ERK1/2, and p38 (Figure 4B). Since
integrin a5 can form a heterodimer with integrin p1, a neutralizing
antibody for integrin Bl and an integrin a5f1 neutralizing
antibody were used to investigate whether Angl promotes survival
and proliferation through integrin a5p1 in HFDPCs. The
neutralizing antibodies for integrin f1 and integrin a5p1 inhibited
Angl-induced phosphorylation of AKT, ERK1/2, and p38 in
HEDPCs (Figure 4C). Furthermore, the integrin a5p1 neutralizing
antibody completely blocked Angl-mediated survival under DHT
treatment in HFDPCs (Figure 4D). Additionally, it fully prevented
the Angl-induced decrease in cleaved caspase-3 and pro-apoptotic
Bax levels, while also inhibiting the increase in anti-apoptotic
Bcl-2 levels under DHT treatment in HFPDCs (Figure 4E and
Supplementary Figure 3A). The integrin a5f1 neutralizing
antibody also fully inhibited Angl-mediated proliferation under
DHT treatment in HFPDCs (Figure 4F). These results indicate
that Angl mediates survival and proliferation in HFDPCs through
integrin a5p1.
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4 Discussion

Androgenetic alopecia is the most common form of hair loss
worldwide, characterized by the progressive miniaturization of terminal
hairs after puberty. It affects over 80% of men and nearly 50% of women
by the age of 70, with prevalence varying among ethnic groups—White
individuals being the most affected, followed by Asians and Black
individuals (41). Androgenetic alopecia is primarily driven by DHT, a
potent androgen derived from testosterone through the action of
5a-reductase. Upon binding to androgen receptors in hair follicles, DHT
promotes miniaturization by damaging DPCs, which are essential for
hair follicle maintenance and cycling (42-44). This leads to the
transformation of thick, pigmented terminal hairs into fine, vellus hairs
and eventually results in follicular atrophy and visible hair loss.

Previous studies have demonstrated that DHT induces apoptosis
in DPCs by upregulating pro-apoptotic factors, including cleaved
caspase-3 and Bax, while downregulating anti-apoptotic proteins such
as Bcl-2 (45). In line with these findings, our study showed that DHT
increased apoptosis and suppressed proliferation in HFDPCs.
Importantly, Angl significantly reversed these effects by restoring cell
viability, inhibiting apoptosis, and promoting proliferation
(Figures 1B-E), highlighting its potential as a protective agent against
androgen-induced cellular damage.

Angl, a well-characterized member of the angiopoietin family, plays
a crucial role in angiogenesis, vascular stabilization, and endothelial cell
survival. It typically signals through the Tie-2 receptor and integrins such
as 51, avP3, and avf5 (27). In endothelial cells, Ang1-Tie-2 interaction
activates downstream pathways, including PI3K/AKT and MAPK/ERK,
which mediate cell survival and anti-inflammatory responses. However,
our data revealed that Tie-2 is not expressed in HFDPCs (Figures 3A,B
and Supplementary Figure 2A), suggesting that Angl acts through an
alternative mechanism in these cells. Instead, we observed that HFDPCs
express a variety of integrin subunits, including a4, o5, av, 1, f3, 4, and
B5 (Figures 3C,D and Supplementary Figure 2B), consistent with previous
reports on DPCs (46, 47). Functional assays identified integrin a5p1 as
the key mediator through which Angl enhances both survival and
proliferation under DHT-induced stress (Figures 4D-F). These results
establish integrin a581 as a novel conduit for Angl signaling in HFDPCs,
independent of the Tie-2 receptor.

To further contextualize these findings, it is noteworthy that hair
follicle growth is also regulated by additional survival and metabolic
pathways such as autophagy. Recent studies have demonstrated that small
molecules capable of activating autophagy stimulate hair regeneration
(48), and isoquercitrin has been shown to promote hair growth through
autophagy and angiogenesis via the AMPK-IGF-1R axis (49). While our
study primarily focused on the PI3K/AKT and MAPK/ERK cascades
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FIGURE 3

HFDPCs do not express Tie-2 receptors, but they exhibit a variety of integrin receptors. (A) Western blot analysis for Tie-2 and Tie-1 were performed
on lysates obtained from HFDPCs and HDMECs. -tubulin was used as a loading control. (B) Quantitative densitometric analysis in (A) to calculate the
ratio of each protein to p-tubulin (n = 3). *p < 0.05 by Student t test. (C) Western blot analysis for Integrin a4, o5, av, p1, p3, p4, and B5 were performed
on lysates obtained from HFDPCs and HDMECs. B-tubulin was used as a loading control. (D) Quantitative densitometric analysis in (C) to calculate the

ratio of each protein to p-tubulin (n = 3). *p < 0.05 by Student t test

downstream of integrin 51, it is plausible that Ang1-mediated signaling
may interface with autophagy-related mechanisms, thereby further
contributing to the protection and regeneration of dermal papilla cells.
While our findings emphasize the integrin-mediated effects of
Angl in DPCs, it is important to consider the broader biological
context of angiopoietin signaling. Although Tie-1 and Tie-2 were not
expressed in HFDPCs, these receptors are critical regulators of vascular
stability and remodeling, particularly in endothelial cells. Tie-1, unlike
Tie-2, does not bind angiopoietins directly but modulates Tie-2 activity

Frontiers in Medicine

via heterodimerization and conformational regulation (27). Tie-1 is
predominantly expressed under basal vascular conditions and may act
as a negative regulator of Tie-2 activation (50). However, under
pathological conditions such as hypoxia or inflammation, Tie-1
becomes phosphorylated and can either enhance or inhibit Tie-2
signaling depending on the context. Studies have shown that Tie-1
deficiency leads to increased vascular permeability and compromised
endothelial integrity (28, 40). Our previous work demonstrated that
hypoxia-induced phosphorylation of Tie-1 attenuates Angl-Tie-2
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Angl promotes survival and proliferation of HFDPCs via integrin a5p1 receptor. (A) HFDPCs preincubated with GRGDS (0.5 mg/mlL) for 1 h and then
treated with Angl (300 ng/mL) for 30 min. Western blot analysis for pAKT, AKT, pERK1/2, ERK1/2, pp38, and p38 were performed on lysates obtained
from HFDPCs. B-tubulin was used as a loading control. (B,C) HFDPCs preincubated with various integrin-blocking antibodies (5 pg/mL, a4, a5, av, 1,
a5p1) for 1 h and then treated with Angl (300 ng/mL) for 30 min. Western blot analysis for pAKT, AKT, pERK1/2, ERK1/2, pp38, and p38 were performed
on lysates obtained from HFDPCs. p-tubulin was used as a loading control. (D—F) HFDPCs preincubated with integrin a5p1-blocking antibody (5 ug/
mL) for 1 h and then treated with Angl (300 ng/mL) and/or DHT (2 uM) for 48 h. (D) Apoptosis of HFDPCs was analyzed using annexin-V/PI staining
and flow cytometry. Bar graph represents mean + SD (n = 3). n.s, not significant. *p < 0.05 by two-way ANOVA. (E) Western blot analysis was
performed on lysates from HFDPCs to detect cleaved caspase-3, Bax, Bcl-2, and Bcl-xL. B-tubulin was used as a loading control. (F) Cell proliferation

of HFDPCs was determined by 5’-bromodeoxy-2’-uridine (BrdU) proliferation ELISA. Bar graph represents mean + SD (n = 5). n.s, not significant.
*p < 0.05 by two-way ANOVA.
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signaling, underscoring its role as a dynamic, context-dependent
modulator of vascular function (28).

Given that the dermal papilla is located within a highly vascularized
microenvironment, Angl may also indirectly contribute to hair follicle
health by promoting angiogenesis and vascular stabilization in adjacent
endothelial cells via the Tie-1-Tie-2 axis. Vascular supply is essential
for initiating and maintaining the anagen phase of the hair growth
cycle (51-53), and reduced perifollicular vascularization has been
implicated in androgenetic alopecia pathogenesis (54). Therefore, Angl
may serve dual functions: (1) directly protecting DPCs through
integrin a5p1-mediated signaling and (2) indirectly supporting
follicular viability by enhancing the surrounding vascular network.

For comparison, minoxidil—the most widely used FDA-approved
treatment for androgenetic alopecia—was originally developed as an
antihypertensive agent. Its hair growth—promoting effect is attributed
to increased perifollicular blood flow and VEGF induction, thereby
enhancing angiogenesis (55, 56). Similarly, Angl is a potent
angiogenic factor capable of promoting microvascular remodeling
and endothelial stabilization (27, 57). Although our study did not
directly assess Angl-induced angiogenesis, it is plausible that Angl
contributes to hair regeneration not only by protecting DPCs but also
by facilitating vascular support within the follicular niche. This dual
action may offer a mechanistic advantage over current therapies.

In conclusion, our study demonstrates that Angl counteracts
the detrimental effects of DHT on HFDPCs by suppressing
apoptosis and restoring proliferation via PI3K/AKT and MAPK/
ERK1/2 signaling pathways. These effects are mediated through
integrin 51, independently of the classical Tie-2 receptor. While
Tie-1 and Tie-2 are not expressed in HFDPCs, their roles in
regulating endothelial stability remain essential to the in vivo
follicular microenvironment. Future in vivo studies incorporating
endothelial-mesenchymal interactions will be important to fully
elucidate whether Angl’s direct cellular effects are complemented
by its vascular functions, potentially offering a comprehensive
strategy for the treatment of androgenetic alopecia.
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