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The value of cough sound 
monitoring via an audio-enabled 
smartwatch for OSA screening in 
COPD patients: a cross-sectional 
exploratory study
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Shanshan Wei , Meng Zhang , Zhou Jin , Jiping Liao * and 
Guangfa Wang *

Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China

Objective: The purpose of this study is to explore the value of cough sounds 
and forced exhalation sounds monitored by smartwatches with audio collection 
capabilities for screening obstructive sleep apnea (OSA) in patients with chronic 
obstructive pulmonary disease (COPD).
Methods: Stable COPD patients were recruited from an outpatient clinic. All 
participants completed questionnaires and underwent pulmonary function 
testing and overnight polysomnography (PSG). A novel smartwatch capable of 
collecting audio signals was worn to continuously monitor peripheral oxygen 
saturation (SpO₂), heart rate (HR), heart rate variability (HRV), and respiratory rate 
(RR). Additionally, voluntary cough and forced exhalation sounds were recorded 
twice daily. Audio data were denoised, segmented, and analyzed using time- 
and frequency-domain features. Correlations between audio features and OSA 
diagnosis/severity were assessed and a predicting model were developed based 
on these data.
Results: Among the 29 participants with stable COPD, 26 underwent PSG, and 
17 were diagnosed with comorbid OSA. Multiple cough and forced exhalation 
subfeatures correlated significantly with OSA diagnosis and apnea and hypopnea 
index (AHI). Cough sounds showed the highest correlation with OSA diagnosis 
(r = −0.6629, p < 0.001). A logistic regression model using a cough sound 
subfeature (the median of MFCC_35) achieved 92% accuracy with a Cohen’s 
kappa value of 0.8276 in predicting OSA in COPD patients.
Conclusion: This study demonstrates a strong association between cough 
sounds and OSA risk in COPD patients. Cough sounds recorded by smartwatches 
may serve as a valuable tool for screening OSA in COPD patients, contributing 
to the management of patients with overlap syndrome.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) and obstructive 
sleep apnea (OSA) are both common chronic respiratory diseases with 
widespread impact. COPD, characterized by irreversible airflow 
limitation and progressive decline in lung function, most commonly 
presents with symptoms such as shortness of breath, chronic cough 
(sometimes with sputum), and fatigue (1, 2). It is one of the leading 
causes of disease burden, mortality, and healthcare resource 
consumption worldwide (2). OSA is characterized by recurrent upper 
airway collapse during sleep, leading to intermittent hypoxia, sleep 
fragmentation, and sympathetic activation (3). It is closely associated 
with multiple systemic conditions, including cardiovascular and 
metabolic diseases, and is often regarded as an upstream risk factor 
for these disorders (4).

With factors such as population aging, rising obesity rates, air 
pollution, and persistently high smoking prevalence, the prevalence 
of both diseases continues to increase (5–8). In 2019, approximately 
391.9 million people worldwide were affected by COPD (2, 9), and 
around 1 billion people were affected by OSA (10). The coexistence of 
COPD and OSA is referred to as “overlap syndrome (OS)” (11). 
Overlap syndrome is relatively uncommon in the general population 
(prevalence: 1.0–3.6%) (12), but its prevalence significantly increases 
among patients diagnosed with obstructive sleep apnea (prevalence of 
OS: 7.6–55.7%) or chronic obstructive pulmonary disease (prevalence 
of OS: 2.9–65.9%) (12, 13).

Patients with OSA-COPD overlap syndrome (OS) typically 
experience more severe respiratory symptoms and poorer quality of 
life, with a higher relative risk of exacerbations, hospitalization, and 
mortality compared to patients with either disease alone (11, 14). 
Raising awareness, prompt screening, and timely initiating treatment 
can improve the overall prognosis of OS patients (11, 14). The 
American Thoracic Society recommends a screening strategy to 
identify OSA in COPD patients with chronic stable hypercapnia (13).

Therefore, screening and early detection of OSA in COPD 
patients is of importance. Currently, smart wearable devices are 
gaining increasing significance in health monitoring and chronic 
disease management (15). Many studies have also explored the use of 
smart wearable devices for screening COPD and OSA separately (16, 
17). These studies primarily rely on classic physiological parameters, 
including peripheral oxygen saturation (SpO2), respiratory rate (RR), 
heart rate (HR), heart rate variability (HRV), and activity levels 
(18–23).

In terms of using audio data for screening COPD, some studies have 
utilized microphones, smartphones, or dedicated sensors to monitor 
audio data such as cough sounds for COPD diagnosis and lung function 
prediction (24–26). Our research team has been using a new smart 
watch with audio collection capabilities, which collects audio data from 
cough sounds and breath sounds of COPD patients to assess the severity 
of COPD (27). When it comes to using audio signals for screening OSA, 
the most commonly used audio signal is snoring during sleep (28). Until 
now, there is no research on using cough sounds for screening OSA. If 
monitoring cough sounds and breath sounds can be used to predict 
COPD severity while screening for OSA, it would undoubtedly 
be  beneficial for the early identification of OSA in COPD patients, 
facilitating the management of overlap syndrome (OS).

Thus, we  conducted the present study based on our previous 
research (27), aiming to preliminarily explore the potential value of 

monitoring daytime cough and forced exhalation sounds for 
screening OSA.

2 Methods

2.1 Study population

Patients with suspected chronic obstructive pulmonary disease 
(COPD) were recruited from the outpatient clinic of the Department 
of Respiratory and Critical Care Medicine at Peking University First 
Hospital between June and August 2022. Inclusion criteria required 
participants to be over 18 years old, in a stable COPD condition, and 
capable of independently operating a mobile phone. Exclusion criteria 
included patients with other chronic respiratory conditions, a history 
of lobectomy or lung transplantation, pleural diseases, severe 
comorbidities, malnutrition (body mass index, BMI <18 kg/m2), 
bilateral wrist and hand edema or injury, unable to wear a smartwatch. 
The detailed inclusion and exclusion criteria are provided in our 
previously published article (27).

All participants provided written informed consent before the 
study commenced. The study adhered to the ethical guidelines of the 
Declaration of Helsinki and was approved by the Ethics Committee of 
Peking University First Hospital (Approval Number: 2022083). It was 
registered on www.clinicaltrials.gov (NCT05551169).

2.2 Clinical examinations

Demographic information such as age, gender, height, and 
weight was collected, and participants completed questionnaires 
including the COPD Assessment Test (CAT) and the modified 
Medical Research Council (mMRC) dyspnea scale. Pulmonary 
function tests, the 6-min walk test (6MWT), electrocardiogram 
(ECG), and arterial blood gas analysis were performed. The BODE 
index was assessed. Overnight polysomnography (PSG) study 
was conducted.

Based on the results of the pulmonary function tests, COPD 
patients were classified according to the GOLD criteria: GOLD 1: 
FEV₁ ≥ 80% of predicted value, GOLD 2: 50% ≤ FEV₁ < 80% of 
predicted value, GOLD 3: 30% ≤ FEV₁ < 50% of predicted value, and 
GOLD 4: FEV₁ < 30% of predicted value. Based on the PSG study 
results, OSA was diagnosed and classified by severity using the apnea-
hypopnea index (AHI): AHI ≥ 5 events/h: diagnosis of OSA, AHI ≥ 5 
and < 15 events/h: mild OSA, AHI ≥ 15 and <30 events/h: moderate 
OSA, AHI ≥ 30 events/h: severe OSA.

2.3 Wearing the smartwatch and signal 
recording

Each participant was provided with a smartwatch (Watch GT3/
Watch 3, Huawei, China) and was required to wear it continuously for 
7–14 days. The device automatically collected photoplethysmography 
(PPG) and acceleration (ACC) signal data to calculate RR, SpO2, HR, 
and HRV.

Participants were also instructed to record cough and forced 
exhalation sounds twice daily.
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The recordings were conducted in a quiet environment with the 
participants in a resting state. Subjects maintained a normal seated 
posture, with their left hand placed flat on the table approximately 
30 cm directly in front of the face. For cough sound recording, 
participants were instructed to slightly open their mouths, take a deep 
breath, and then cough forcefully two to three times. This procedure 
was repeated three to five times. For exhalation sound recording, 
participants took a deep breath and then exhaled as quickly and 
forcefully as possible through pursed lips, continuing for more than 
6 s until no further airflow was expelled. After a 1-min interval, the 
procedure was repeated at least three times. A schematic diagram is 
shown in Figure 1. The standardized procedures for data collection are 
detailed in our previously published article (27).

2.4 Signal extraction and data analysis of 
smartwatch data

2.4.1 Physiological parameters
The photoplethysmography (PPG) and acceleration (ACC) signals 

collected by the smartwatch were processed using digital signal 
processing techniques such as filtering to remove noise and extract 
relevant features. Key physiological parameters including HR, RR, 
SpO2, and HRV were derived.

Data collected during the monitoring period were summarized 
using statistical indicators such as mean, standard deviation, median, 
25th percentile, 75th percentile, and variability measures (including 
daily and weekly variability). The detailed methods of calculation are 
described in our previously published article (27).

2.4.2 Audio parameters
The collected audio data were first denoised using speech signal 

processing techniques. Then, audio segmentation algorithms were 

applied to extract individual audio segments. For each segment, 
multidimensional feature extraction methods were used to obtain 
both time-domain and frequency-domain characteristics. These 
included commonly used speech signal features such as Mel 
Frequency Cepstral Coefficients (MFCC), spectral features, chroma 
(pitch-related) features, time-domain features, and higher-order 
features. Each type of feature yielded multiple sub-features across 
different spectrums and audio frames. These sub-features were 
then aggregated using statistical measures such as mean 
and variance.

A total of 772 features were extracted from the cough sounds and 
1,295 from the forced exhalation sounds. For each participant, all 
extracted features during the monitoring period were further 
aggregated using statistical functions including mean, standard 
deviation, median, 25th percentile, and 75th percentile. As a result, 
the statistically aggregated cough sound features comprised 3,860 
sub-features (772 × 5), and the forced exhalation sound features 
comprised 6,475 sub-features (1,295 × 5). Detailed values can 
be  found in our previously published article and 
Supplementary material (27).

2.5 Statistical analysis and data processing 
methods

Count variables were presented as frequencies and 
percentages. Continuous variables with a normal distribution 
were expressed as means and standard deviations (SD), while 
those with a non-normal distribution were expressed as medians 
and interquartile ranges (IQR). For group comparisons, 
chi-square tests, t-tests and Mann–Whitney U tests were used for 
two-group comparisons. For comparisons among three groups, 
chi-square tests, analysis of variance (ANOVA), and Kruskal–
Wallis H tests were applied.

To explore the correlation between smartwatch-derived 
physiological and audio parameters and clinical data, univariate 
analysis was first performed. Pearson correlation analysis was used for 
normally distributed continuous variables, while Spearman correlation 
analysis was applied to non-normally distributed continuous variables 
and categorical variables.

The subfeature of smartwatch-derived physiological and audio 
parameters showing the strongest correlation with OSA indicators 
in the univariate analysis was selected as the representative feature 
and included in the regression model and predictive models. A 
logistic regression model was used for the prediction of OSA 
diagnosis, while a linear regression model was employed for the 
prediction of AHI. Variable selection was performed using 
bidirectional stepwise regression combined with the Akaike 
information criterion (AIC). Multicollinearity was assessed for the 
variables included in the AIC-selected optimal models, and features 
with high collinearity were excluded accordingly. Multiple models 
were compared, and the best-performing model was selected for 
further analysis. The data processing workflow is illustrated in 
Figure 2.

All statistical analyses were performed using R version 4.3.2 
(R Foundation for Statistical Computing, Vienna, Austria). A 
p-value less than 0.05 was considered statistically significant for 
all tests.

FIGURE 1

Schematic diagram of the sound recording procedure.
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3 Results

3.1 Baseline demographics and clinical 
characteristics

A total of 31 patients with suspected COPD were screened, of 
whom 29 met the inclusion and exclusion criteria and were enrolled 
in the study. Of these, 26 participants underwent overnight 
polysomnography (PSG). Based on the PSG results, patients were 
categorized into two groups: those with comorbid obstructive sleep 
apnea (COPD-OSA overlap syndrome group, n = 17) and those 
without OSA (COPD group, n = 9) (Figure 3).

The COPD-OSA group had significantly higher proportions of 
male participants, smokers, and higher BMI compared to the COPD-
only group (100% vs. 66.7%, 100% vs. 55.6%; 25.8 ± 3.7 vs. 22.5 ± 1.6, 
p < 0.05, respectively). There were no significant differences between 
the two groups in terms of age, CAT score, mMRC score, BODE 
index, 6-min walk distance (6MWD), or GOLD classification 
(p > 0.05) (Table 1).

3.2 Correlation analysis and predictive 
modeling of smartwatch physiological 
parameters and audio data with 
OSA-related indicators

Physiological parameters collected by the smartwatch, including 
SpO2, RR, HR, and HRV, as well as audio data such as cough and 
exhalation sounds, were analyzed in relation to OSA diagnosis and 
AHI. From these six categories of smartwatch data, the most strongly 
correlated subfeatures are selected as predictive variables to construct 
predictive models.

3.2.1 Correlation analysis between physiological 
and audio data with OSA diagnosis, and 
predictive model development

3.2.1.1 Correlation analysis between physiological and 
audio data with OSA diagnosis

Using AHI ≥ 5 as the diagnostic criterion, smartwatch-monitored 
SpO₂, HRV, cough sounds, and exhalation sounds showed significant 

correlations with OSA diagnosis. RR and HR did not demonstrate 
significant correlations with OSA diagnosis.

Among these, the subfeatures most strongly associated with OSA 
diagnosis were as follows: for SpO₂, the upper quartile value during 
monitoring (all_SpO2_75%); for HRV, the median power of the very 
low frequency band in 0–0.04 Hz band (psdVlf_median); for cough 
sounds, the median value of the Mel-frequency cepstral coefficient 
(MFCC_35_median) during monitoring; and for exhalation sounds, 
the median value of the polynomial fitting coefficient (Poly 
Coef_1292_median) during monitoring. The abbreviations of the 
subfeatures and their corresponding explanations can be found in 
Supplementary Table S1. Cough sounds showed the highest 
correlation (r = −0.6629, p < 0.001), followed by exhalation sounds 
(r = 0.6090, p < 0.001) (Figure 4). Comparisons of these four features 
between the two groups are presented in Table 2.

3.2.1.2 Predictive model for OSA diagnosis
The above four subfeatures most strongly correlated with OSA 

diagnosis, HRV (psdVlf_median), exhalation sound (Poly_Coef_1292_
median), cough sound (MFCC_35_median), and SpO₂ (all_
SpO2_75%) were initially included as predictor variables in a logistic 
regression model. After variable selection using the Akaike information 
criterion (AIC), HRV was excluded, resulting in a refined model that 
included subfeatures from SpO₂, cough sound, and exhalation sound.

Multicollinearity analysis revealed strong collinearity between these 
cough and exhalation sound sub-features. To address this, two separate 
models were constructed: SpO₂ + cough sound, and SpO₂ + exhalation 
sound. The SpO₂ + cough sound model outperformed the other, with 
an overall accuracy of 0.88 (95% CI: 0.6878–0.9745), Cohen’s kappa of 
0.7492, specificity of 100%, sensitivity of 82.4%, and AUC of 0.897. In 
comparison, the SpO₂ + exhalation sound model achieved an accuracy 
of 0.84 (95% CI: 0.6392–0.9546), Cohen’s kappa of 0.6552, specificity of 
87.5%, sensitivity of 82.4%, and AUC of 0.890.

Thus, the SpO₂ + cough sound model was selected for further 
analysis. The SpO₂ subfeature (all_SpO2_75%) was found to 
be statistically insignificant and was removed. Only the cough sound 
subfeature (MFCC_35_median) was preserved in the final optimized 
model. This logistic regression model achieved an accuracy of 92.0%, 
a sensitivity of 88.2%, a specificity of 100%, an AUC of 0.890, and a 
Cohen’s kappa value of 0.8276  in diagnosing OSA among COPD 
patients (Figure 5).

FIGURE 2

Workflow of data processing.
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3.2.2 Correlation analysis between physiological 
and audio data with AHI, and predictive model 
development

3.2.2.1 Selection of the strongest subfeatures from 
smartwatch parameters correlated with AHI

Following the above method, the subfeatures of SpO₂, RR, HR, 
HRV, exhalation sound, and cough sound that showed the strongest 
correlations with AHI were analyzed. RR and HR showed no 
significant correlation with AHI (p > 0.05, respectively). In contrast, 
SpO₂, HRV, cough sound, and exhalation sound were significantly 
correlated with AHI. The subfeatures exhibiting the strongest 
correlations were as follows: SpO₂ subfeature all_SpO2_75% 
(r = −0.440, p = 0.02), HRV subfeature validRriNum_sd (r = −0.541, 
p = 0.01), cough sound subfeature Spectral Contrast_556_sd 
(r = −0.652, p < 0.001), and exhalation sound subfeature Poly 
Coef_1292_median (r = 0.664, p < 0.001).

3.2.2.2 Predictive model for AHI
The above subfeatures most strongly correlated with AHI were 

used as predictor variables to construct the predictive model. After 
performing bidirectional stepwise regression and variable selection 
based on the Akaike information criterion (AIC), the optimal 

predictive model for AHI was determined. The final model retained 
HRV (validRriNum_sd), cough sound feature (Spectral_
Contrast_556_sd), and exhalation sound feature (Poly_Coef_1292_
median). The multiple linear regression equation for predicting AHI 
is as follows (Figure 6):

	

AHI 14.364 4.017 HRV 5.728 exhalation sound
4.516 cough sound

= − × + ×
− ×

The predictive model achieved a root mean square error (RMSE) 
of 10.64 events/h, a mean absolute error (MAE) of 7.48 events/h, and 
an R2 (coefficient of determination) of 0.5236.

4 Discussion

This study demonstrates that cough and forced exhalation 
sounds in patients with COPD contain signal parameters associated 
with OSA, indicating potential value for screening and assessment 
of overlap syndrome. Multiple parameters derived from cough and 
forced exhalation sounds were found to be related to the diagnosis 
and AHI. A regression model based on a cough sound subfeature 

FIGURE 3

Participant enrollment flow diagram.
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(MFCC_35_median) showed high accuracy in predicting 
OSA. These findings offer new insights for the early detection of 
OSA and the management of overlap syndrome in COPD patients.

Identifying coexisting obstructive sleep apnea (OSA) in patients 
with chronic obstructive pulmonary disease (COPD) holds 
significant clinical value. The management of patients with overlap 
syndrome (OS) differs from that of patients with COPD alone. OS 
patients often present with multiple comorbidities and have a higher 

risk of developing cardiovascular diseases (CVD) and experiencing 
acute exacerbations of COPD (29, 30). Moreover, the survival rate of 
OS patients receiving nocturnal positive airway pressure therapy is 
significantly lower if they do not receive appropriate treatment (29, 
30). The American Thoracic Society recommends a screening 
strategy to identify OSA in COPD patients with chronic stable 
hypercapnia (31). Despite its impact, OSA-COPD overlap syndrome 
has not yet received sufficient attention in clinical practice (11). Early 

TABLE 1  Characteristics of participants in COPD group and COPD-OSA group.

Characteristic All (N = 26) COPD (N = 9) COPD-OSA (N = 17) p-value

Age (years) 67.2 ± 6.1 68.0 ± 6.0 66.7 ± 6.3 0.617

Sex (male) 23 (88.5) 6 (66.7) 17 (100) 0.032

BMI (kg/m2) 24.6 ± 3.5 22.5 ± 1.6 25.8 ± 3.7 0.004

Smoking history 0.008

 � Never smoked 4 (15.4) 4 (44.4) 0 (0)

 � Former/current smoker 22 (84.6) 5 (55.6) 17 (100.0)

Hypertension 12 (46.2) 3 (33.3) 9 (52.9) 0.429

Cardiovascular disease 3 (11.5) 0 (0) 3 (17.6) 0.529

Diabetes 4 (15.4) 0 (0) 4 (23.5) 0.263

FEV1% (%) 72.6 (50.0, 84.7) 79.7 (34.4, 84.1) 72.3 (59.5, 87.3)* 0.419

FVC% (%) 99.2 ± 15.9 100.3 ± 17.9 98.6 ± 15.4 0.795

FEV1/FVC 0.6 (0.5, 0.6) 0.6 (0.3, 0.6) 0.6 (0.5, 0.6) 0.235

Blood gas analysis

 � PaO2 (mmHg) 84.2 ± 7.8 91.1 ± 7.8 80.8 ± 5.2 0.001

 � PaCO2 (mmHg) 39.8 ± 3.9 38.9 ± 2.5 40.3 ± 4.5 0.411

GOLD grade 0.063

 � 1 10 (38.5) 4 (44.4) 6 (35.3)

 � 2 10 (38.5) 1 (11.1) 9 (52.9)

 � 3 + 4 6 (23.1) 4 (44.4) 2 (11.8)

CAT score 3.0 (2.0, 4.3) 3.0 (1.0, 10.0) 3.0 (2.0, 4.0) 0.847

mMRC score 0.220

 � 0 18 (69.2) 6 (66.7) 12 (70.6)

 � 1 5 (19.2) 3 (33.3) 2 (11.8)

 � ≥2 3 (11.5) 0 (0) 3 (17.6)

BODE index 1.0 (0, 2.0) 1.0 (0, 3.0) 1.0 (0, 1.5) 0.610

BODE group 0.302

 � 0–2 21 (80.8) 6 (66.7) 15 (88.2)

 � ≥2 5 (19.2) 3 (33.3) 2 (11.8)

6MWD (m) 448.0 ± 96.5 467.3 ± 82.0 437.6 ± 104.2 0.468

6MWD group 0.628

 � ≥350 21 (80.8) 8 (88.9) 13 (76.5)

 � ≤349 5 (19.2) 1 (11.1) 4 (23.5)

SpO2 mean 93.5 (92.5, 95.0) 94.3 (93.0, 96.0) 93.2 (92.2, 94.5) 0.099

SpO2 lowest 88.0 (83.0, 91.0) 91.0 (88.5, 92.5) 87.0 (80.5, 88.0) 0.001

ODI 8.6 (3.6, 24.8) 1.3 (0.6, 4.1) 19.1 (8.6, 32.5) <0.001

AHI 8.3 (1.8, 20.6) 1.3 (0.5, 2.6) 17.0 (8.3, 31.1) <0.001

Data were presented as numbers and percentages [n (%)], mean and standard deviation (mean ± SD), median with upper and lower quartiles [median (Q1, Q3)]. BMI, body mass index; FEV1, 
forced expiratory volume in 1 s; FVC, forced vital capacity; FEV1/FVC, the ratio of FEV1 to FVC; ODI, oxygen desaturation index (≥3% desaturations); AHI, apnea-hypopnea index.
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screening and recognition of OSA in COPD patients are of 
great importance.

As an emerging data source, audio signals have also attracted 
growing attention in recent years. Compared to traditional 
physiological signals, audio signals may offer greater specificity and 
can exhibit stable patterns even in complex environments. Much 
research has been carried out in this field, and sound signals have 
come to play an increasingly important role in the monitoring and 
management of chronic diseases (27, 32, 33).

In recent years, the application of intelligent wearable devices in 
chronic disease management has become increasingly widespread and 
rapidly developed (15). With advances in monitoring technology and 
algorithms, their capabilities have expanded from tracking basic 

physiological parameters (such as HR, SpO2 and physical activity) to 
new parameters and more complex analyses including sound signals. 
Previous studies have frequently utilized the built-in microphones of 
smartphones to collect audio data. For instance, some research has 
used forced exhalation sounds recorded via smartphone microphones 
to screen for COPD (34). Similarly, other studies have employed 
smartphone-based cough sound monitoring for predicting COPD 
diagnosis, lung function, and airway obstruction (25, 35, 36). 
Smartwatches, as the most common type of wearable smart device, 
offer a new avenue for such applications. In our previous study, 
we initially used a novel smartwatch capable of audio monitoring to 
collect cough and forced exhalation sounds, demonstrating its 
potential to assess the severity of COPD (27). However, no studies 

FIGURE 4

Correlation between smartwatch-derived SpO₂, HRV, exhalation sounds, and cough sounds, as illustrated by boxplots and density plots. In the 
boxplots, the three lines of the box represent the median, 25th percentile, and 75th percentile, respectively. The black dots indicate outliers. In the 
density plots, the x-axis represents the range of data values, while the y-axis indicates the density.

TABLE 2  Comparison of smartwatch data between the COPD group and the COPD-OSA group.

Parameters ALL (N = 26) COPD (N = 9) COPD-OSA (N = 17) p

HRV (psdVlf_median) 44.7 (27.4, 78.3) 31.1 (20.0, 40.6) 57.5 (29.5, 132.9) 0.036

SpO2 (all_SpO2_75%) 97.0 (97.0, 98.0) 98.0 (97.0, 98.0) 97.0 (97.0,97.0) 0.013

Exhalation sounds (Poly 

Coef_1292_median)

0.0083 ± 0.0035 0.0058 ± 0.0015 0.0096 ± 0.0036 0.006

Cough sounds (MFCC_35_median) 2.51 ± 2.68 4.74 ± 1.24 1.33 ± 2.48 0.001

Values are presented as mean ± standard deviation, frequency (percentage), or median (lower quartile, upper quartile).
Poly Coef_1292_median is defined as the median value of the polynomial fitting coefficient of forced exhalation sounds during the monitoring period.
MFCC_35_median refers to the median value of the Mel-frequency cepstral coefficient of cough sounds recorded during the monitoring period.
psdVlf_median refers to the median of psdVlf during the monitoring period. psdVlf is the very low frequency power in the 0–0.04 Hz band.
all_SpO2_75% refers to the 75th percentile of SpO2 during the monitoring period.
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FIGURE 6

Scatter plot comparing predicted AHI values from the regression model with the actual measured values. The predictive formula is as follows: 
AHI = 14.364 − 4.017 × HRV + 5.728 × exhalation sound − 4.516 × cough sound.

have yet explored the use of cough and forced exhalation sounds for 
OSA screening.

In the context of OSA, although direct evidence is currently 
lacking, several indirect findings and theoretical considerations (37) 
support the possibility that OSA may influence cough and forced 
exhalation sounds. Obesity, a major risk factor for OSA, can lead to 
fat accumulation in the pharyngeal region, which may cause upper 
airway narrowing and affect the aerodynamic characteristics of 
airflow—potentially altering the acoustic properties of respiratory 
sound (38).

In addition, patients with OSA often experience laryngopharyngeal 
reflux (LPR), which can result in pharyngeal wall edema (39, 40). OSA 

is also closely associated with chronic cough, and continuous positive 
airway pressure (CPAP) therapy has been shown to improve chronic 
cough in OSA patients (40, 41). Chronic cough itself may further 
contribute to changes in acoustic features such as those of the 
cough sounds.

In this study, we found that multiple subfeatures of both cough and 
forced exhalation sounds were associated with OSA diagnosis. 
Specifically, around 100–200 subfeatures from each sound type showed 
significant correlations with the diagnosis of OSA. Through regression 
analysis and the development of the optimal predictive model, 
we found that the regression model based on cough sound subfeatures 
demonstrated high accuracy in identifying OSA among COPD 
patients. These findings highlight the significant screening potential of 
cough sounds for detecting OSA in patients with COPD.

Given the increasing role of cough sounds monitored by wearable 
smart devices in the early screening and disease monitoring of COPD 
patients, utilizing the same signals for both COPD screening and OSA 
risk assessment would undoubtedly be of significant importance for 
the detection and management of the overlap syndrome (OS).

In the present study, we used daytime cough sounds to screen for 
OSA, a condition characterized by respiratory events that primarily 
occur during sleep. This raises an important question about whether 
daytime acoustic signals can predict nighttime respiratory events. 
Previous studies have explored the relationship between daytime speech 
and the risk of OSA (42–45). These findings suggest the potential utility 
of wakeful vocal signals as convenient screening tools for assessing the 
risk and severity of OSA (42–45). However, it is important to note that 
these methods are currently limited to screening purposes only and 
cannot replace clinical diagnosis. The use of daytime acoustic signals 
may offer a more accessible and non-invasive approach to OSA screening.

FIGURE 5

Receiver operating characteristic (ROC) curve for OSA diagnosis 
using the cough sound feature (MFCC_35_median) as the predictor. 
The model achieved an AUC of 0.890. At the optimal cutoff 
threshold of 0.678, the model reached a sensitivity of 88.2% and 
specificity of 100%.
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This study is still in its preliminary exploration stage and has several 
limitations that need to be addressed in future research. First, the sample 
size of this study is small, which may introduce sampling bias and affect 
the stability and representativeness of the results. Therefore, a larger 
sample size is needed to validate our findings. Second, due to the lack of 
a normal control group or a pure OSA group, it remains unclear whether 
the cough sound features identified are specific to COPD-OSA overlap 
or are common to OSA in general. Therefore, our conclusions are 
limited to the COPD population and cannot be extrapolated beyond this 
group. Third, differences in microphone sensitivity, sampling rate, and 
built-in noise reduction algorithms may exist across devices. The current 
results are primarily based on the devices used in this study. Future 
research should validate the model’s generalizability and robustness in 
various smart devices. Last but not least, due to the exploratory nature 
of this study and in order to record audio data more clearly and 
accurately, we chose voluntary coughs. However, spontaneous coughs 
may better reflect the patient’s actual pathological state.

In summary, this study innovatively proposes using a smartwatch 
to collect cough and forced exhalation sounds to assess the risk of 
OSA in COPD patients. This method provides a new perspective on 
traditional sleep apnea monitoring with wearable devices, which 
usually involves the use of pulse oximetry and snoring sounds.

Given the widespread use of wearable devices in home-based 
chronic disease management and the common occurrence of cough as 
a symptom in chronic respiratory conditions, this method can help in 
the early identification of OSA in patients with existing chronic airway 
inflammatory diseases. In future studies, in addition to expanding the 
sample size and including healthy controls and general OSA patients 
as comparisons, it would be valuable to explore the use of spontaneous 
cough audio features for OSA screening, in addition to voluntary 
cough. Furthermore, the mechanisms linking OSA and cough sounds 
remain to be explored in greater depth through basic research.
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