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1 Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 
Anhui, China, 2 Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China, 3 College 
of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China 

Purpose: To investigate the risk factors for advanced-stage hepatic fibrosis in 

Wilson’s disease (WD), and developed a predictive nomogram to screen high 

risk patients with WD for early prevention and intervention. 

Methods: We retrospectively analyzed clinical data from WD in The First 

Affiliated Hospital of Anhui University of Chinese medicine between January 

2010 and December 2024. Patients were divided into advanced hepatic fibrosis 

and non-advanced fibrosis groups according liver stiffness measurement. 

Identification of the independent risk factors for advanced hepatic fibrosis in 

WD was conducted through univariate and multivariate Cox regression analyses, 

followed by the construction of the clinical predictive model. The discriminative 

power, calibration, and clinical utility of the model were validated by receiver 

operating characteristic, calibration curves, and decision curve analysis (DCA). 

Results: The study cohort comprised 221 patients. Notably, CER, LN, HDL-C, TG, 

PLT, Sex, and Apo-A1 were identified as independent risk factors for advanced 

hepatic fibrosis in WD patients undergoing long-term maintenance therapy. The 

C-index demonstrated excellent discriminative capacity [training cohort: area 

under the curve (AUC) values of 0.918 at 36 months, 0.914 at 60 months, and 

0.935 at 84 months; validation cohort: AUC values of 0.906, 0.917, and 0.888 

at corresponding time points]. Calibration curves exhibited strong alignment 

between predicted and observed outcomes. The DCA quantified clinical benefit 

probability thresholds across varying time intervals. 

Conclusion: The nomogram predictive model demonstrated high accuracy 

and provides a practical tool for the early identification and risk prediction 

of advanced hepatic fibrosis in WD patients undergoing long-term 

maintenance therapy. 
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1 Introduction 

Wilson’s disease (WD) is a rare, autosomal recessive genetic 
disorder resulting from mutations in the ATP7B gene. These 
mutations disrupt normal hepatic copper metabolism, leading to 
the accumulation of copper in the liver and subsequent deposition 
in extrahepatic tissues. The clinical presentation typically 
included hepatic manifestations—ranging from asymptomatic 
hepatomegaly to acute or chronic liver failure—progressive 
extrapyramidal symptoms, neuropsychiatric disturbances, and 
the presence of Kayser–Fleischer rings due to corneal copper 
deposition. Additional common clinical presentations include 
hemolytic anemia, osteoarticular manifestations, and hematuria 
(1). The liver, which is the primary organ involved in copper 
metabolism, is pathologically impaired during the early stages 
of WD, resulting in copper accumulation. Accumulation of 
copper subsequently initiates hepatocytic inflammatory responses, 
including autophagy and apoptosis (2, 3). Pathologically, WD 
is a progressive disorder: notably, at the initial stages, it is 
predominantly characterized by hepatocytic lipid droplet 
accumulation and steatosis, leading to hepatic inflammatory 
responses and fibrosis, and culminating in liver cirrhosis (4). 
Notably, clinical studies indicate that approximately 35%–45% of 
WD patients—including asymptomatic patients and those with 
various clinical phenotypes—present with established cirrhosis at 
the time of diagnosis (3, 5), with cirrhosis-related complications 
emerging as primary contributors to disease-related mortality (4). 

Hepatic fibrosis, characterized by the pathological deposition 
of extracellular matrix components in response to chronic liver 
injury, represents both a pivotal intermediate stage in the 
progression of WD-related hepatic pathology toward cirrhosis and 
a potentially reversible pathological phase within the spectrum 
of liver damage (6, 7). Clinical evidence has shown that 
timely intervention can eectively inhibit or reverse fibrotic 
progression. However, this requires stage-specific therapeutic 
strategies, including anti-inflammatory and hepatoprotective 
therapies during the initial stages, and intensified targeted 
antifibrotic regimens during advanced phases (8). Notably, clinical 
practice guidelines established by the European Association for 
the Study of the Liver (EASL) (9) indicate that patients with 
advanced hepatic fibrosis exhibit significantly elevated risks of 
decompensated cirrhosis and hepatocellular carcinoma (HCC), 
thereby underscoring the need for timely intervention to improve 
the prognostic outcomes of the disease. 

Advanced clinical predictive models employing machine 
learning technology have significantly enhanced the accuracy 
of dynamic risk assessment by systematically integrating 
multidimensional clinical patient data (10). Notably, compared to 
traditional univariate assessment approaches, this model eectively 
captures complex interactions among multifactorial parameters, 
demonstrating superior sensitivity and specificity in predicting 
the progression of hepatic fibrosis. Despite the initial progress 
in the development of predictive models for WD-related hepatic 
conditions—such as the hepatic fibrosis prediction model for 
patients with lipid metabolism disorders established by Zhao et al. 
(11) and the serum non-ceruloplasmin-bound copper prediction 
model developed by Tao et al. (12)—a significant gap remains 
in the availability of robust, quantitative predictive tools for 

advanced hepatic fibrosis. Consequently, this study aims to develop 
a risk prediction model for advanced hepatic fibrosis through 
retrospective cohort analysis, incorporating baseline clinical 
parameters and medical history characteristics of WD patients. 
This model is anticipated to provide quantitative evidence for the 
early identification of high-risk patients, thereby informing the 
development of personalized intervention strategies and ultimately 
improving the long-term prognosis for patients with WD. Notably, 
the predictive model is developed by strategically incorporating 
routine laboratory indices to ensure clinical applicability, which 
aligns with practical healthcare requirements. 

2 Materials and methods 

2.1 Enrollment of participants 

This was a retrospective study involving the collection of 
routine admission laboratory parameters and medical history data 
of WD patients receiving long-term maintenance therapy at the 
First Aÿliated Hospital of Anhui University of Chinese Medicine 
between January 2010 and December 2024. The sample size was 
221 patients, determined using the formula 

n = z 2s 2/d2 

where z = confidence interval, n = sample size, d = margin of 
error, and σ = standard deviation set to 0.5. However, this sample 
size was also dependent on the maximum patient capacity of 
the medical center. 

Patients were randomly assigned to either a training (70%) 
or a validation (30%) cohort using the random number table 
method. Based on the guidelines “Guidelines for the prevention 
and treatment of metabolic dysfunction-associated (non-alcoholic) 
fatty liver disease (version 2024)” (13), patients were stratified into 
a non-advanced hepatic fibrosis group [liver stiness measurement 
(LSM) ≤ 12.0 kPa] and an advanced hepatic fibrosis group 
(LSM > 12.0 kPa). The protocols employed in this study were 
approved by the Medical Ethics Committee of the First Aÿliated 
Hospital of Anhui University of Chinese Medicine (Approval No. 
2024AH-49), with strict adherence to all ethical standards. 

2.2 Inclusion criteria 

Patients diagnosed with WD based on the “Guidelines for 
the diagnosis and treatment of hepatolenticular degeneration 
(2022 edition)” (14), with naïve treatment, non-advanced hepatic 
fibrosis, age-unrestricted, and complete medical records; and 
patients undergoing long-term standardized copper-chelating 
therapy following confirmed diagnosis. 

2.3 Exclusion criteria 

Patient newly diagnosed with WD; presence of fulminant liver 
failure (with or without hemolytic anemia) and decompensated 
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cirrhosis; patients exhibiting cognitive dysfunction (Mini-Mental 
State Scale score of ≤22 or Montreal Cognitive Assessment Scale 
score of <26); patients with severe neurological impairment, 
such as torsion spasms; patients with concurrent mental illness; 
patients exhibiting moderate to severe or complete dependence 
in performing daily life activities (Barthel index rating scale ≤ 70 
points); patients presenting with serious diseases (opportunistic 
infections, tumors, and blood system diseases); pregnant or 
lactating patients; patients with incomplete medical records. 

2.4 Clinical data collection and testing 
methods 

We collected baseline data of treatment-naïve patients and their 
most recent hospitalization data in the traceable initial encounter, 
and the details are as follows: general data collected included 
gender, age, marital status, allergies, disease course, clinical 
classification, history of splenectomy, and treatment duration. 
Laboratory analyses were conducted on the following: white blood 
cell (WBC), red blood cell (RBC), hemoglobin (HGB), platelet 
(PLT), reticulocyte (Ret), alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), gamma-glutamyl transferase (GGT), total 
bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin 
(IBIL), blood urea nitrogen (BUN), serum creatinine (Scr), total 
cholesterol (TC), triglycerides (TG), high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-
C), apolipoprotein A1 (Apo-A1), apolipoprotein B (Apo-B), 
lipoprotein(a) (Lpa), cystatin C (CysC), type IV collagen (CIV), 
hyaluronic acid (HA), laminin (LN), procollagen III N-terminal 
peptide (PIIINP), urinary immunoglobulin G (IgGU), urinary 
transferrin (TRU), urinary microalbumin (MA), urinary α1-
microglobulin (α1MG), urinary β2-microglobulin (β2MG), 24-h 
urinary copper excretion, 24-h urinary zinc excretion, 24-h 
urinary calcium excretion, 24-h urinary magnesium excretion, 
serum copper, serum zinc, serum calcium, serum magnesium, 
ceruloplasmin (CER), and non-ceruloplasmin-bound copper 
(NCBC). The LSM level from the FibroScan were recorded in their 
most recent hospitalization data. 

Blood samples were collected from fasting patients via 
morning venipuncture on the day following hospital admission 
using sodium citrate vacuum anticoagulant tubes. Subsequent 
biochemical analyses were performed by certified laboratory 
technicians at the hospital’s central laboratory using standardized 
automated analyzers. For 24-h urinary quantification of copper, 
zinc, calcium, and magnesium, patients were instructed to void 
and discard the initial urine sample at 7:00 a.m., followed by 
continuous collection of all subsequent urine over the next 24 h 
into prerinsed containers, which were evenly divided into three 
aliquots; total urine volume was recorded after the collection 
period (7:00 a.m. the following day), and 5 ml aliquots were 
extracted and submitted for biochemical analysis. The urinary five-
protein panel (IgGU, TRU, MA, α1MG, and β2MG) necessitated 
a 24-h urine collection with precise volume measurement. 
Samples of 8 ml were preserved at −40◦C and subsequently 
analyzed by designated personnel. A Hitachi ARIETTA 850 
ultrasound system equipped with a C252 convex array probe (3– 
6 MHz) in abdominal mode was used to conduct LSM. After 

fasting for ≥8 h, patients were positioned supine with quiet 
breathing. Experienced sonographers (with ≥50 valid elastography 
examinations within the past 6 months) performed measurements 
in the right hepatic lobe (preferably segment S5), 1–2 cm beneath 
the Glisson’s capsule, ensuring avoidance of vascular structures. 
During the measurement process, patients were instructed to hold 
their breath for 3–4 s after normal expiration, with the probe 
maintained perpendicular to the liver surface. The system software 
automatically calculated shear wave speed (SWM, m/s) and LSM 
(kPa). Quality control required valid vibration metrics (valid 
scan number and valid number ≥50%). Five valid measurements 
were obtained per patient, with the median value adopted as 
the final result. 

2.5 Statistical analysis 

Statistical analyses were performed using SPSS (version 26.0) 
and R programming language (version 4.0.3). Continuous variables 
were expressed as median (interquartile range, IQR), with analysis 
conducted using the Mann–Whitney U test. Categorical variables 
were presented as frequency (%), with analysis performed using 
the Chi-square test. A P-value of <0.05 was considered to be 
statistically significant. Univariate Least Absolute Shrinkage and 
Selection Operator (LASSO) regression and Cox proportional 
hazards models were used to reduce the dimensionality of the 
clinical feature dimensions and identify predictors with non-zero 
coeÿcients associated with advanced hepatic fibrosis in patients 
with WD undergoing maintenance therapy. Multivariate Cox 
regression was used to further screen the independent risk factors, 
which was then followed by the construction of a clinical prediction 
model for individualized risk estimation. The performance of these 
models was evaluated using the receiver operating characteristic 
(ROC) curve analysis (area under the curve, AUC), calibration 
curves, and decision curve analysis (DCA). These evaluation 
techniques collectively assessed discriminative power, calibration 
accuracy, and clinical utility in both internal and external 
validation. 

3 Results 

3.1 Patient characteristics 

A total of 221 WD patients receiving long-term maintenance 
therapy were enrolled in this study, with 155 cases in the training 
cohort and 66 cases in the validation cohort. Notably, no significant 
dierences were observed in baseline characteristics for both 
groups involving clinical parameters such as demographic data, 
laboratory profiles, and imaging metrics (P > 0.05). Detailed 
patient characteristics are presented in Table 1. 

3.2 Univariate regression analysis 

Univariate LASSO regression and Cox proportional hazards 
analyses were performed on clinical characteristics for the training 
cohort to identify factors associated with the development of 
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TABLE 1 Clinical characteristics comparison between training and validation cohorts. 

Characteristics Validation 
cohort 
N = 66 

Training 
cohort 
N = 155 

P Characteris-
tics 

Validation 
cohort 
N = 66

Training 
cohort 
N = 155 

P 

Sex 1.000 HDL-C 

(mmol/L) 
1.21 [1.02, 1.46] 1.24 [1.08, 1.51] 0.637 

Male 42 (63.6%) 100 (64.5%) LDL-C 

(mmol/L) 
2.23 [1.86, 2.66] 2.20 [1.81, 2.78] 0.850 

Female 24 (36.4%) 55 (35.5%) Apo-A1 (g/L) 1.23 [1.05, 1.42] 1.32 [1.16, 1.45] 0.063 

Age (year) 21.0 [16.0, 31.5] 25.0 [17.0, 
33.0] 

0.415 Apo-B (g/L) 0.71 [0.59, 0.87] 0.70 [0.55, 0.86] 0.380 

Disease course (months) 96.0 [71.2, 132] 108 [72.0, 
168] 

0.265 Lpa (mg/L) 63.3 [25.2, 130] 42.8 [19.8, 98.3] 0.099 

Clinical classification 0.845 CysC (mg/L) 0.95 [0.84, 1.10] 0.94 [0.83, 1.10] 0.922 

Hepatic injury 31 (47.0%) 67 (43.2%) CIV (ng/ml) 55.6 [34.1, 90.8] 54.2 [33.4, 87.9] 0.993 

Neurological 
symptomatology 

25 (37.9%) 65 (41.9%) HA (ng/ml) 72.6 [48.2, 186] 85.4 [50.6, 147] 0.945 

Mixed 

hepatic-neurologic type 

10 (15.2%) 23 (14.8%) LN (ng/ml) 96.0 [40.1, 164] 84.5 [39.0, 137] 0.259 

Marital status 0.898 PIIINP (ng/ml) 17.4 [11.9, 23.2] 13.8 [9.39, 22.1] 0.064 

Unmarried/divorce 46 (69.7%) 105 (67.7%) IgGU (mg/L) 5.66 [3.88, 10.1] 5.66 [3.65, 8.54] 0.489 

Married/cohabitation 20 (30.3%) 50 (32.3%) TRU (mg/L) 2.12 [0.54, 2.24] 2.13 [1.06, 2.24] 0.122 

Allergies 0.542 MA (mg/L) 11.0 [8.57, 12.5] 11.0 [10.3, 12.2] 0.482 

Yes 9 (13.6%) 28 (18.1%) α1MG (mg/L) 11.1 [5.58, 21.8] 11.1 [5.78, 18.5] 0.790 

No 57 (86.4%) 127 (81.9%) β2MG (mg/L) 0.52 [0.20, 1.03] 0.59 [0.20, 1.82] 0.691 

Splenectomy 0.529 24-h urinary 

copper excretion 

(µg/24 h) 

900 [501, 1363] 863 [616, 1211] 0.788 

Yes 9 (13.6%) 15 (9.68%) 24-h urinary 

zinc excretion 

(µg/24 h) 

3,860 [2,061, 
5,967] 

3,304 [1,808, 
5,028] 

0.383 

No 57 (86.4%) 140 (90.3%) 24-h urinary 

calcium 

excretion 

(µg/24 h) 

179 [110, 254] 177 [104, 270] 0.907 

Treatment duration (months) 62.5 [35.0, 86.8] 59.0 [36.0, 
92.0] 

0.653 24-h urinary 

magnesium 

excretion 

(µg/24 h) 

71.7 [52.8, 101] 72.0 [52.5, 90.0] 0.453 

WBC (×109/L) 5.16 [3.68, 6.98] 4.70 [3.56, 
5.82] 

0.198 Serum copper 

(µmol/L) 
2.81 [1.90, 5.90] 3.45 [1.84, 5.90] 0.408 

RBC (×1012/L) 4.47 [4.21, 4.75] 4.44 [4.19, 
4.83] 

0.692 serum zinc 

(µmol/L) 
19.3 [14.3, 21.6] 17.7 [13.2, 21.6] 0.317 

HGB (g/L) 126 [121, 135] 127 [119, 
136] 

0.984 Serum calcium 

(µmol/L) 
2.12 [2.12, 2.18] 2.12 [2.10, 2.15] 0.055 

PLT (×109/L) 180 [113, 281] 162 [102, 
250] 

0.392 Serum 

magnesium 

(µmol/L) 

0.82 [0.77, 0.82] 0.82 [0.76, 0.82] 0.544 

Ret (×1012/L) 0.05 [0.05, 0.07] 0.05 [0.04, 
0.07] 

0.758 CER (g/L) 0.07 [0.03, 0.08] 0.07 [0.03, 0.08] 0.766 

ALT (U/L) 30.5 [20.2, 63.5] 28.0 [18.0, 
55.0] 

0.164 NCBC (mg/L) 0.06 [-0.10, 0.12] 0.05 [−0.07, 
0.13] 

0.614 

AST (U/L) 31.0 [22.2, 40.3] 27.0 [20.0, 
36.1] 

0.084 Sheth 0.88 [0.61, 1.19] 0.93 [0.67, 1.25] 0.255 

(Continued) 
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TABLE 1 (Continued) 

Characteristics Validation 
cohort 
N = 66

Training 
cohort 
N = 155 

P Characteris-
tics 

Validation 
cohort 
N = 66 

Training 
cohort 
N = 155 

P 

GGT (U/L) 34.0 [23.0, 49.8] 30.0 [18.5, 
50.0] 

0.336 FIB-4 0.67 [0.34, 1.38] 0.84 [0.39, 1.43] 0.358 

TBIL (µmol/L) 13.0 [8.76, 17.6] 11.6 [8.10, 
16.4] 

0.381 APRI 0.42 [0.31, 0.70] 0.44 [0.28, 0.72] 0.599 

DBIL (µmol/L) 3.46 [2.50, 5.39] 3.30 [2.20, 
5.68] 

0.584 GPR 0.32 [0.20, 0.52] 0.30 [0.18, 0.64] 0.750 

IBIL (µmol/L) 9.38 [5.42, 12.2] 8.20 [5.79, 
11.2] 

0.370 Copper to zinc 

ratio in 24-h 

urinary 

excretion 

0.22 [0.12, 0.47] 0.27 [0.13, 0.52] 0.346 

BUN (mmol/L) 4.27 [3.55, 5.29] 4.59 [3.71, 
5.60] 

0.236 Copper to zinc 

ratio in serum 

0.16 [0.10, 0.27] 0.26 [0.11, 0.27] 0.051 

Scr (µmol/L) 50.2 [37.9, 67.9] 54.2 [40.0, 
71.9] 

0.254 Fibrosis 0.799 

TC (mmol/L) 3.84 [3.50, 4.79] 3.99 [3.40, 
4.67] 

0.684 Advanced 

hepatic fibrosis 
14 (21.2%) 37 (23.9%) 

TG (mmol/L) 0.98 [0.73, 1.45] 1.01 [0.72, 
1.38] 

0.995 Non-
advanced 

hepatic fibrosis 

52 (78.8%) 118 (76.1%) 

WBC, white blood cell; RBC, red blood cell; HGB, hemoglobin; PLT, platelet; Ret, reticulocyte; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl 
transferase; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; BUN, blood urea nitrogen; Scr, serum creatinine; TC, total cholesterol; TG, triglycerides; HDL-C, high-
density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Apo-A1, apolipoprotein A1; Apo-B, apolipoprotein B; Lpa, lipoprotein(a); CysC, cystatin C; CIV, type IV collagen; 
HA, hyaluronic acid; LN, laminin; PIIINP, procollagen III N-terminal peptide; IgGU, urinary immunoglobulin G; TRU, urinary transferrin; MA, urinary microalbumin; α1MG, urinary α1-
microglobulin; β2MG, urinary β2-microglobulin; CER, ceruloplasmin; FIB-4, fibrosis 4 score; APRI, aspartate aminotransferase to platelet ratio index; GPR, gamma-glutamyl transpeptidase 
to platelet ratio. 

advanced hepatic fibrosis for WD patients undergoing long-term 
maintenance therapy. Following the elimination of redundant 
dimensions, the significant predictors identified included CER, 24-
h urinary calcium excretion, LN, HDL-C, TG, PLT, Sex, Ret, IBIL, 
Apo-A1, and α1MG (P < 0.1). The variable selection process using 
the LASSO regression analysis is detailed in Figure 1. 

3.3 Multivariate regression analysis 

Clinical variables identified using the univariate LASSO 
regression and Cox proportional hazards analyses were 
incorporated into the multivariate Cox analyses. The results 
indicated that CER, LN, HDL-C, TG, PLT, Sex, and Apo-A1 were 
independent risk factors for advanced hepatic fibrosis in WD 
patients undergoing long-term maintenance therapy (P < 0.05). 
Detailed results of the multivariate Cox proportional hazard 
analyses are presented in Table 2 and Figure 2. 

3.4 Establishment and visualization of the 
nomogram model 

The seven identified independent risk factors were successfully 
incorporated to develop a nomogram predictive model for the 
development of advanced hepatic fibrosis in WD patients receiving 
long-term maintenance therapy. A visual representation of the 
nomogram is presented in Figure 3. Using the scoring scale located 

along the top axis of the model, clinicians can assign individual 
scores corresponding to each of the seven risk factors. The sum 
of these scores yields a total point value, which corresponds 
to the predicted probability of advanced hepatic fibrosis, as 
indicated on the model’s bottom probability axis. This allows for 
an intuitive, point-based estimation of fibrosis risk in individual 
patients. 

3.5 Nomogram performance evaluation 
and validation 

3.5.1 Concordance index 
The discriminative power of the model was assessed using the 

concordance index (C-index). Specifically, this metric dierentiates 
between outcomes. Notably, a C-index of 0.50–0.70 indicates low 
discriminative power; 0.71–0.90 indicates moderate discriminative 
power; and values >0.90 demonstrate high discriminative power. 
The nomogram developed in this study demonstrated superior 
discriminative performance, with an AUC of 0.918 at 36 months, 
0.914 at 60 months, and 0.935 at 84 months in the training cohort, 
while the validation cohort exhibited an AUC of 0.906, 0.917, and 
0.888, respectively. Considering potential overfitting and optimism 
bias, we further performed a bootstrap validation (500 repetitions) 
on the entire dataset, showing that the C-index remains stable 
between 0.80 and 0.90 with 95% confidence intervals (0.812–0.902). 
Detailed C-index measurements are presented in Figure 4 and 
Supplementary Figure 1. 
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FIGURE 1 

Diagram of univariate LASSO regression analysis. (A) Log_lambda and path coefficient diagram from LASSO regression analysis. (B) Diagram of 
CV_LASSO. CER, 24-h urinary calcium excretion, LN, HDL-C, TG, PLT, Sex, Ret, IBIL, Apo-A1, and α1MG were related factors for advanced hepatic 
fibrosis. 

TABLE 2 Multivariate Cox proportional hazards analysis of independent risk factors. 

Characteristics B SE HR CI Z P 

CER (g/L) −38.194 7.723 <0.001 <0.001 to <0.001 −4.946 <0.001 

24-h urinary calcium excretion 

(µg/24 h) 
0.003 0.002 1.003 0.999–1.006 1.588 0.112 

LN (µg/24 h) 0.01 0.002 1.010 1.005–1.015 4.206 <0.001 

HDL-C (mmol/L) −3.204 0.904 0.041 0.007–0.239 −3.544 <0.001 

TG (mmol/L) −0.904 0.44 0.405 0.171–0.959 −2.056 0.040 

PLT (×109/L) −0.007 0.003 0.993 0.987–0.998 −2.621 0.009 

Sex −1.163 0.473 0.313 0.124–0.79 −2.459 0.014 

Ret (×1012/L) 13.046 7.101 463,470.92 0.418– 

513,767,381,830.178 

1.837 0.066 

IBIL (µmol/L) −0.073 0.037 0.930 0.864–1 −1.956 0.050 

Apo-A1 (g/L) 3.586 1.125 36.079 3.976–327.388 3.187 0.001 

α1MG (mg/L) −0.015 0.009 0.985 0.967–1.003 −1.633 0.102 

CER, ceruloplasmin; LN, laminin; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; PLT, platelet; Ret, reticulocyte; IBIL, indirect bilirubin; Apo-A1, apolipoprotein A1; α1MG, 
urinary α1-microglobulin. 

3.5.2 Calibration curves 
The accuracy of the nomogram model was evaluated using 

the calibration curve. Notably, in this study, the calibration curve 
was closely aligned with the reference line, indicating excellent 
consistency and calibration. Details of calibration analyses are 
presented in Figure 5. 

3.5.3 Decision curve analysis 
The DCA was employed to evaluate the clinical utility of the 

nomogram model by quantifying the net benefit analysis across 
various probability thresholds. The model demonstrated clinically 
actionable prediction ranges for advanced hepatic fibrosis risk: 

0.093–0.410 at 36 months, 0.217–0.349 at 60 months, and 0.455– 
0.630 at 84 months, indicating significant clinical benefit within 
these probability intervals. Detailed DCA trajectories are presented 
in Figure 6. 

3.5.4 Kaplan–Meier analysis for risk stratification 
Risk stratification of the nomogram prediction model stratified 

participants into high- and low-risk groups. Notably, statistically 
significant dierences in disease progression-free probability were 
observed between the cohorts (log-rank P < 0.001). The results 
revealed a statistically significant disparity between the two 
groups, with the high-risk group demonstrating a significantly 
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FIGURE 2 

Forest plot of independent risk factors in multivariate Cox proportional hazards analysis. CER, LN, HDL-C, TG, PLT, Sex, and Apo-A1 were 
independent risk factors for advanced hepatic fibrosis. 

FIGURE 3 

Visualization of the nomogram model. Variables are displayed on the left side, whereas scores are on the right. The total score is calculated by 
summing the values of each variable. The probability of the occurrence of advanced hepatic fibrosis can be predicted using the linear predictor line. 
In validation cohort, patient (ID: 46) with CER 0.033 g/L, LN 143.54 ng/ml, HDL-C 1.51 mmol/L, TG 0.86 mmol/L, PLT 88 × 109 /L, Sex man, and 
Apo-A1 0.9 g/L, the scores of each variable is 41.25, 28.75, 48.75, 0.8, 6.25, 0, and 8 based on the top points line, with total scores is 133.8. The 
probability of the occurrence of advanced hepatic fibrosis is 85% in 36-month treatment intervals using the linear predictor line and the total points 
line. 
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FIGURE 4 

Multi-temporal ROC analysis of the nomogram model. The x-axis representing 1-specificity and the y-axis sensitivity. The red, green, and blue 
curves correspond to 36-month, 60-month, and 84-month treatment intervals, respectively. The AUC values demonstrated robust discriminative 
performance: 0.918 (36 months), 0.914 (60 months), and 0.935 (84 months) in the training cohort (A), and 0.906, 0.917, and 0.888 in the validation 
cohort (B), respectively. The model’s high discriminative capacity was further confirmed by its C-index. 

FIGURE 5 

Multi-temporal calibration curves of the nomogram model. The x-axis representing predicted probabilities and the y-axis indicating observed 
frequencies of advanced hepatic fibrosis. The black dashed line represents ideal prediction accuracy, while blue, green, and red curves correspond 
to 36-month, 60-month, and 84-month treatment intervals, respectively. Excellent model performance is indicated by close alignment of these 
curves to the reference line. In both training (A) and validation (B) cohorts, the calibration curves exhibited strong concordance with the ideal 
prediction line, demonstrating excellent consistency and calibration accuracy across all timepoints. 

higher likelihood of disease progression compared to the low-risk 
group. Detailed methodological and outcome specifications of this 
validation assessment are illustrated in Figure 7. 

4 Discussion 

In this study, we identified CER, Apo-A1, LN, PLT, HDL-C, 
TG, and Sex as independent risk factors. Subsequently, these factors 

were employed to construct a predictive model for assessing the risk 
of advanced hepatic fibrosis in WD patients undergoing long-term 
maintenance therapy. 

Copper is a trace element involved in various biological 
processes, such as the regulation of lipid metabolism, which helps 
in maintaining cellular homeostasis. Research has indicated that 
pathological accumulation of copper in the liver in WD patients 
inhibits nuclear receptor function, leading to lipid metabolism 
disorders and dysfunction of mitochondrial energy synthesis, 
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FIGURE 6 

Decision curve analysis for the nomogram model. The x-axis representing threshold probabilities and the y-axis indicating net benefit. The blue line 
reflects net benefit when all patients develop advanced hepatic fibrosis, the green line represents net benefit assuming no fibrosis progression, and 
the red line denotes model-derived net benefit. Clinically beneficial threshold probability ranges were identified as 0.093–0.410 at 36 months (A), 
0.217–0.349 at 60 months (B), and 0.455–0.630 at 84 months (C), where the red line consistently surpassed the “treat-all” and “treat-none” 
strategies. 

FIGURE 7 

Kaplan–Meier analysis for risk stratification. Green lines and shaded areas represent the probability of disease progression with 95% confidence 
intervals (CIs) for the low-risk group. The red lines and shaded areas indicate the corresponding values for the high-risk group. The high-risk group 
demonstrated a significantly higher likelihood of disease progression compared to the low-risk group. 
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thereby inducing hepatocyte injury (15). Notably, imbalances 
in free fatty acids caused by lipid metabolism abnormalities 
exacerbate pathological progression of excessive free fatty acids, 
which directly contribute to abnormal lipid droplet deposition in 
hepatocytes through lipotoxic eects, thereby promoting hepatic 
steatosis (16, 17). The 2020 Asia-Pacific guidelines for Metabolically 
Associated Fatty Liver Disease (MAFLD) explicitly classified WD-
related liver disease as secondary fatty liver disease (18), indicating 
that WD exhibited comparable molecular mechanisms such as 
lipid peroxidation and endoplasmic reticulum stress. Given the 
current absence of established non-invasive diagnostic thresholds 
specifically tailored to advanced hepatic fibrosis in WD, reduction 
of the eective “event” based on combined threshold, and LSM has 
been validated as a mature and relatively stable indicator, this study 
established a single LSM threshold for advanced hepatic fibrosis 
applicable to WD patients (13). 

This study identified CER, a diagnostic criterion for WD, 
as an independent risk factor for advanced hepatic fibrosis 
progression in WD. The biosynthesis of CER—a hepatogenic 
α2-glycoprotein—is regulated by inflammatory cytokine-
mediated transcriptional control. Notably, serum CER levels 
transiently increase through stress compensation mechanisms 
during acute inflammation or tissue injury (19). Conversely, 
these levels exhibit progressive decline with deteriorating 
hepatic synthetic function as fibrosis advances to cirrhosis 
(from compensated to decompensated stages) (19, 20). 
This bidirectional dynamic fluctuation, closely associated 
with hepatic reserve capacity, positions a CER as a pivotal 
biomarker for evaluating transitional phases in the progression of 
hepatic fibrosis. 

Notably, the metabolic characteristics of Apo-A1, another 
key predictor, provide complementary assessment dimensions 
to CER. This lipoprotein is synthesized through the hepatic-
intestinal axis, and research first documented its association 
with chronic liver disease in 1986 (21). Clinically, Apo-A1 is 
routinely combined with alpha-2-macroglobulin (A2M) and 
haptoglobin (HP) to facilitate monitoring of the progression 
of the liver disease (22). During the decompensated phase of 
cirrhosis, pathological alterations including hepatocyte swelling, 
necrosis, and steatosis reduce Apo-A1 synthesis eÿciency 
by >70%. Furthermore, the expression of this lipoprotein is 
significantly reduced before clinical manifestations of hepatic 
decompensation. Mechanistically, this phenomenon is linked 
to the “molecular trap” eect caused by collagen deposition in 
hepatic sinusoidal endothelial cells during advanced fibrosis 
stages, resulting in increased entrapment or consumption of 
Apo-A1 (23). This sensitive, preclinical decline—occurring 
before conventional liver function abnormalities—underscores 
apolipoprotein A1 (Apo-A1)’s distinct utility as an early 
warning biomarker for hepatic fibrosis and its potential role 
in disease stratification. 

The dynamic monitoring of these two biomarkers 
demonstrates significant clinical synergy: CER indicates the 
homeostatic equilibrium of hepatic compensatory reserve through 
its bidirectional fluctuations, while Apo-A1 reveals early structural 
alterations in the hepatic sinusoid microenvironment via its 
preemptive signaling properties. This multidimensional laboratory 
evidence framework enables precise quantification of hepatocyte 
injury severity, as well as oering an integrated biomarker 

approach, evaluation of therapeutic eÿcacy, and prognostic 
assessment in WD-associated hepatic fibrosis. 

Extracellular matrix contains LN, which is an important non-
collagenous structural glycoprotein. It is primarily synthesized 
by hepatic stellate cells (HSCs), endothelial cells, and biliary 
epithelial cells. Notably, LN comprises the core components 
of the basement membrane and mediates cellular adhesion, 
migration, and signal transduction (24, 25). Under physiological 
conditions, the expression level of LN in liver tissue is relatively 
low (24). However, upon damage to liver cells, activation of 
HSC abnormally promotes the thickening of the basement 
membrane and the formation of fibrous septa through LN 
secretion. This process can trigger the “capillarization” of 
hepatic sinusoids and portal hypertension. Concurrently, it can 
lead to a significant increase in the serum LN levels (24, 
26). Notably, upregulation of LN is pathologically harmful 
and contributes to the progression of hepatic fibrosis, as it 
contributes to the remodeling of the extracellular matrix. The 
upregulation of biomarkers such as serum LN and HA is 
a direct indicator of the imbalance in extracellular matrix 
metabolism (26–28). This study not only confirms that increase 
in the serum LN level is related to the progression of hepatic 
fibrosis in patients with WD, but also demonstrate the dynamic 
development characteristics of hepatic fibrosis from “point to 
surface,” further highlighting the potential value of LN as a 
noninvasive biomarker in the early identification of hepatic fibrosis 
in the advanced stage of WD and the monitoring of progression 
of this condition. 

Imbalance of PLT in WD-associated hepatic fibrosis manifests 
dual pathological eects. On one hand, disruption of hepatic 
sinusoid architecture—such as capillarization mediated by 
LN-induces hypersplenism and reduced thrombopoietin 
(TPO) synthesis, resulting in the reduction of PLT (29, 
30). Conversely, copper accumulation-related oxidative 
stress and inflammatory cytokine release (such as TNF-
α and IL-1β) impair PLT functionality and suppress their 
antifibrotic roles, including hepatic regeneration mediated 
by HGF/VEGF and inhibition of HSC activation (31–34). 
Critically, PLT depletion and dysfunction exacerbate LN-
mediated extracellular matrix deposition, contributing to 
fibrogenesis. Portal hypertension intensifies hypersplenism, 
perpetuating a pathological feedback loop, while reduced 
secretion of PLT-derived reparative factors further impairs 
hepatic regenerative capacity (35), accelerating the transition 
to irreversible fibrosis. This LN–PLT interaction network not 
only provides a dual-dimensional biomarker system (“structural 
remodeling-functional compensation”) for predicting advanced 
hepatic fibrosis in WD but also establishes a theoretical foundation 
for combinatorial targeting of extracellular metabolism and 
modulation of PLT function (such as TPO agonists or antifibrotic 
factor delivery). 

In this study, HDL-C and TG were identified and established 
as indispensable factors for the construction of the predictive 
model. Specifically, these factors drive insulin resistance and 
inflammatory cascades through “copper-lipid co-toxicity,” which 
constitutes the core metabolic axis for fibrosis progression. 
In WD patients, the liver—a key insulin-responsive organ— 
develops mitochondrial dysfunction and oxidative stress due 
to copper homeostasis imbalance, thereby inducing systemic 
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glucose-lipid metabolic dysregulation (36). Specifically, hepatic 
insulin resistance attenuates the inhibitory eect of insulin on 
gluconeogenesis, while copper accumulation abnormally activates 
lipid synthesis pathways such as sterol regulatory element-
binding protein 1c (SREBP-1c), leading to hepatocyte lipid 
deposition (15, 37). This copper-lipid co-toxic milieu directly 
damages hepatocytes and accelerates fibrosis through multiple 
mechanisms: (1) mitochondrial reactive oxygen species (ROS) 
overproduction: copper overload induces excessive mitochondrial 
ROS, activating the NF-κB signaling pathway, thereby triggering 
the release of inflammatory cytokines (such as TNF-α and 
IL-6). This suppresses triglyceride hydrolysis in chylomicrons 
and LDL while downregulating Apo-A1 expression, impairing 
reverse cholesterol transport (11, 38); (2) HSC activation: copper-
dependent oxidative stress synergizes with lipotoxicity to activate 
HSCs, thereby promoting TGF-β1-mediated excessive deposition 
in the extracellular matrix (39–41); (3) endoplasmic reticulum 
stress and mitophagy dysfunction: these mechanisms amplify the 
vicious cycle of “metabolic dysregulation-inflammation-fibrosis” 
(42). Thus, dynamic monitoring of HDL-C and TG levels not 
only provides early risk stratification for hepatic fibrosis in 
WD patients but also suggests potential therapeutic targets for 
combined copper chelation (such as D-penicillamine) and lipid 
metabolism modulation. 

Gender disparity was identified as another critical predictive 
factor. Specifically, it modulates the pathological progression of 
“copper-lipid co-toxicity” through sex hormone-inflammatory 
signaling interplay. This study demonstrates that male WD 
patients, lacking estrogen-mediated protection, are more 
susceptible to HDL-C/TG metabolic dysregulation and 
accelerated fibrosis progression. Clinical studies support 
these findings, demonstrating significantly higher incidences 
of end-stage hepatic fibrosis, cirrhosis, and HCC in males 
compared to females (43). This sex-based divergence may 
stem from estrogen-regulated antifibrotic pathways: estrogen 
suppresses IL-6 autocrine signaling via estrogen receptor alpha 
(ERα) activation, thereby blocking the IL-6/signal transducer 
and activator of transcription 3 (STAT3) inflammatory axis 
(44). Mechanistically, IL-6 binds to its receptor (IL-6R) and 
activates the JAK kinases, inducing STAT3 phosphorylation 
(45). Phosphorylated STAT3 forms dimers that translocate to 
the nucleus, driving profibrogenic gene expression (such as 
TGF-β1 and Collagen I) and acute-phase protein synthesis 
(46). In WD, copper accumulation enhances activation of the 
IL-6/STAT3 signaling pathway, promoting inflammatory and 
fibrogenic responses. Concurrently, the ERα complex exerts 
a counter-regulatory eect by competitively inhibiting IL-6 
promoter activity, thereby suppressing Kuper cell–derived 
IL-6 secretion and mitigating pathological STAT3 signaling 
(47, 48), establishing a “metabolic-sex hormone” counteractive 
equilibrium. Consequently, estrogen’s suppression of IL-6/STAT3 
in females mitigates copper-lipid co-toxicity-driven inflammatory 
amplification. Conversely, in males—devoid of this protective 
mechanism—exhibit accelerated transition from metabolic 
dysregulation to ECM deposition. This interaction network 
provides a rationale for sex-specific therapies, such as STAT3 
inhibitors or selective estrogen receptor modulators. 

Despite the promising and valuable findings, this study 
has several limitations that must be acknowledged. First, the 

absence of WD-specific reference thresholds for advanced 
hepatic fibrosis based on FibroScan necessitated the adoption 
of thresholds from the MAFLD, which shares overlapping 
pathological mechanisms. However, these thresholds lack 
standardized criteria and histological validation via liver biopsy, 
potentially influencing observational accuracy. Second, despite 
comprehensive data collection, incomplete records from some 
patients due to early-stage initial visits may have introduced 
bias. And then, although we performed a bootstrap validation 
on the entire dataset in order to strengthen the validation, 
there are overfitting and optimism bias as result of multiple 
variables, data noise and stochastic variations in our predictive 
models. Finally, the single center design and absence of external 
validation limit the generalizability of the finding, necessitating 
confirmation through multicenter, large-scale studies to ensure 
broader clinical applicability. 

5 Conclusion 

In conclusion, CER, Apo-A1, LN, PLT, HDL-C, TG, and 
Sex were identified as independent risk factors for advanced 
hepatic fibrosis in WD patients undergoing long-term maintenance 
therapy. The predictive model established based on these factors 
demonstrated exceptional discriminative ability, high calibration 
accuracy, clinical utility, and biological plausibility (rationality 
analysis). These findings provide clinicians with a quantitative and 
intuitive tool for assessing the risk of advanced hepatic fibrosis. 
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