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Osteoarthritis (OA) is the most common chronic joint disease, characterized 
by whole-joint degenerative disease with cartilage degeneration as the primary 
pathogenesis. It is also a major cause of disability and increased social costs, 
particularly among the elderly. With the aging population and increasing obesity 
rates, the incidence of OA increases annually. The main symptoms include joint 
pain and loss of joint function, which severely impact the quality of life and daily 
activities of patients. Despite numerous treatments attempted over the past few 
decades, the long-term treatments have been disappointing. The main challenge 
lies in the very low bioavailability of drugs within the joint cavity, Therefore, the 
development of a therapeutic approach with cartilage targeting and efficient 
bioavailability is the key point to address OA. This paper summarizes the latest 
research on the use of PLGA in drug delivery for the treatment of OA, which 
provides an important foundation and a more comprehensive perspective for 
the subsequent drug treatment of joint diseases. We hope this will lead to more 
accurate and effective treatment plans for arthritis patients and promote the 
continuous advancement of the medical field.
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1 Introduction

OA, mainly characterized by degeneration of articular cartilage and osteophyte formation 
(Figure 1A), accompanied by degeneration of cartilage tissue, subchondral bone and synovium 
(Figure 1B), is a common chronic joint disease (1, 2). In addition to age, gender, and genetics, 
the causes of OA include abnormal increases in joint loading caused by factors such as obesity 
and occupation (3–5), disruption of mechanical balance due to fractures, meniscal injuries, 
and ligament tears (3) (Figure 1C), as well as damage to the infrapatellar fat pad (6, 7). With 
the aggravation of population aging and degeneration of the cartilage and meniscus, the 
incidence rate is increasing year by year, which not only brings great pain to patients themselves 
(Figure 1E), but also causes great social and economic burden (8). Patients often present with 
joint pain, swelling, and stiffness, eventually leading to chronic pain and physical disability (9, 
10). However, the treatment of OA mainly focuses on relieving symptoms, divided into 
conservative treatment and surgical treatment. Conservative treatment mainly through 
physical therapy and drugs to alleviate the pain symptoms of OA, and surgical treatment in 
addition to joint replacement, other treatment is still difficult to prevent cartilage destruction 
(11, 12).

In the face of the huge medical demand, more and more research tries new treatment 
methods, including new drug development, intra-articular injection and the exploration of 
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gene signal pathways (10) (Figure 1D). These studies mainly hope to 
prolong the effect of drugs, more accurate drug targeting and less 
treatment side effects (13). With the rapid development of 
biomaterials, we have focused on the great potential of nanoparticles 
(NPs) in the treatment of joint inflammation (14, 15). NPs refer to 
solid colloidal particles made of natural or synthetic polymer materials 
in the order of nanometer size (0.1–100 nm). The controllable size 
gives the feasibility of direct intra-articular injection (16–18). NPs are 
a promising cargo delivery system, which can bind drugs on the 
surface or substrate to protect drugs from enzymatic degradation, 
improve their permeability in cartilage matrix, and regulate the 
pharmacokinetics of drugs. And the NPs composed of biocompatible 
and biodegradable materials can achieve controlled and continuous 
drug release (19–21). This paper reviews the wide application of PLGA 
NPs in the treatment of OA in the past year, and explores the progress 
and challenges of PLGA in inflammatory arthritis based on 
cartilage degradation.

2 Overview of PLGA material

Poly(D,L-lactic-co-glycolic acid) (PLGA) is a biodegradable 
functional polymer organic compound composed of random 

polymerization of two monomers poly(lactic acid) (PLA) and poly 
(glycolic acid) (PGA) (22, 23). PLA degradation rate is slow, and PGA 
degradation rate is fast, so adjust the proportion of the two can 
regulate the mechanical properties and degradation time of polymer. 
We summarize the key data of recent studies cited in this review in 
Table 1, where the lactic acid/glycolic acid (LA/GA) ratio is shown to 
exert a significant regulatory effect on the degradation and drug 
release processes. At the same time, the polymer exhibits good 
biocompatibility, biodegradability, good encapsulation and film 
forming properties, and has been authorized by the food and drug 
administration for drug delivery system (24). At present, there are 
many preparation methods of PLGA particles, including: emulsion 
solvent volatilization method, microfluidic technology, spray drying 
technology, nanoprecipitation and phase separation, etc. (22, 25–27).

The study demonstrates that varying LA/GA ratios in PLGA 
significantly influence particle degradation and drug release. When 
the LA/GA ratio was adjusted from 50:50 to 75:25, the degradation 
duration extended to 34 days with a 24-h burst release rate below 3%, 
which correlates with the increased LA content that slows particle 
degradation (28). In early-stage osteoarthritis (OA), where cartilage 
matrix integrity remains relatively high, the 75:25 LA/GA ratio enables 
sustained drug release through gradual penetration of the cartilage 
surface. However, in advanced OA characterized by cartilage matrix 

FIGURE 1

(A) Deformation of OA in the distal and proximal interphalangeal joints, plain radiograph of an osteoarthritic hip joint and MRI of an osteoarthritic knee. 
Reproduced from Bijlsma et al. (117). (B) Schematic representation of healthy knee joint structure and pathological changes of knee OA. Reproduced 
from Mao et al. (13). (C) Changes and interactions of different tissue structures in OA disease. Reproduced from Bijlsma et al. (117). (D) Signaling 
pathways and structural changes in the development of OA. Reproduced from Glyn-Jones et al. (89). (E) The cause of pain in OA within a 
biopsychosocial model. Reproduced from Hunter et al. (10).
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breakdown, the 50:50 PLGA formulation demonstrates accelerated 
degradation and rapid drug delivery through the compromised 
cartilage matrix.

3 The use of PLGA in OA

For the special anatomical structure of the knee joint, oral drugs 
are difficult to reach and form an effective local drug concentration, 
while the drugs injected in the arthrosis are quickly removed from the 
synovial fluid through the relevant lymphatic vessels and vasculature. 
To overcome these limitations, many NP-based drug delivery systems 
have been developed, such as PLGA-NPs delivering small-molecule 
drugs or endogenous growth factors (29, 30). The latest research have 
tried to explore the injectable in situ molding implants build intra-
articular drug library. Sustainable release disease-modifying OA drug 
can improve OA. The sealing PLGA in original molding implant can 
stabilize for weeks and releasing drug can inhibit collagenase. 
However, such implants after formation exist certain cytotoxicity. 
Researchers may need to further modify to solve the problem of drug 
toxicity, but the method of implant treatment OA may be an innovative 
idea (31).

3.1 PLGA NPs delivering small-molecule 
drugs

Curcumin (CUR), as a natural polyphenolic compound, has 
potent assimilative, antioxidant, anti-inflammatory and anti-rheumatic 
properties. But the therapeutic efficiency of CUR is greatly limited due 
to its low water solubility and limited oral bioavailability (32, 33). One 
study on the preparation of PLGA NPs (CURNPs) containing 
curcumin for knee OA in rats, showed CURNPs inhibited the 
upregulation of several inflammatory factors, including interleukin-1β 
(IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), 
and significantly retained type II collagen in articular cartilage. This is 
mainly achieved by inhibiting NF-κB pathway. Meanwhile, the 
radiographic and histological lesions of OA were significantly reduced 
(34). Sun et al. (35) prepared meloxicam-loaded PLGA microspheres 
(MLX-MS) by the emulsification-solvent evaporation method. An 
orthogonal test design was employed to optimize the formulation. 
Dynamic light scattering was used to measure the average particle size, 
which was controlled between 100 and 110 μm with a span of 0.5–0.6. 

The Fourier Transform Infrared Spectroscopy and X-ray Powder 
Diffraction were simultaneously utilized to confirm that there were no 
alterations in the drug during the encapsulation process. In the OA 
model of rats, various inflammatory factors including IL-1β, IL-6, and 
TNF-α were successfully inhibited, and the meloxicam exhibited a 
long-term sustained-release pattern. Meanwhile, compared to oral 
administration, local injection of MLX-MS significantly increased the 
elimination half-life and time to peak concentration in the plasma. 
Intra-articular injection of MLX-MS significantly reduced drug 
distribution in the gastrointestinal tract and allowed the drug for 
better penetration of the drug into the inflamed area. Zhu et al. (36) 
found that the small molecule drug salicin (SA) is important for the 
progression of OA, clarifying mechanisms by RNA sequencing, 
molecular docking and drug affinity-response target stability analysis 
in  vitro. SA directly binds to IRE1α and occupies the IRE1α 
phosphorylation site, preventing IRE1α phosphorylation, and 
regulates IRE1α-mediated ER stress via IRE 1α-IκBα-p65. Injection of 
PLGA particles containing SA in the OA rats significantly improved 
OA progression. A large number of studies have shown that resveratrol 
(RSV) showed protective effects on articular cartilage through various 
mechanisms, including anti-inflammatory and anti-apoptosis, or 
regulation of signaling pathways or active factors. But resveratrol has 
the problems of poor chemical stability, poor water solubility and low 
bioavailability. Wei et  al. (37) prepared RSV-PLGA NPs via the 
incorporation of RSV into PLGA. Using the good biocompatibility and 
stable drug release performance of PLGA, PLGA NPs significantly 
inhibited cartilage cell apoptosis and promoted glycosaminoglycan 
(GAG) synthesis and maintained continuous drug release for 35 days 
after a single injection in, supporting the superiority of 
intra-injection.

Previous studies have found that HDACi prevents the disruption 
of the extracellular matrix, and this destruction is induced by 
inflammatory factors (38–40). And, HDACi suppresses cartilage 
destruction and articular cartilage degeneration. So, Ye et  al. (41) 
proposed that PLGA microcapsule delivered Chidamide to treat 
OA. Phenotype-associated genes of ECM were retained and increased 
in HDACi treated OA chondrocytes, and decreased expression of 
catabolism-related genes. The rat OA model later confirmed that 
Chidamide significantly reduced osteophyte formation on the medial 
side of the tibial plateau and effectively prevented the remodeling of 
the inferior tibial bone.

Rapamycin is also a well-known immunomodulator and antibiotic 
that has been used in a variety of clinical treatments and can delay the 

TABLE 1  PLGA degradation kinetics and drug release profiles of different LA/GA ratios.

Polymer Composition Degradation kinetics Drug release profile Reference

PLGA LA:GA (50:50) + LA:GA (75:25) 1 month: moderate rupture Burst release: 18–22% (24 h);

Cumulative release: 78% (28d)

Sun et al. (35)

PLGA LA:GA (50:50) (MW: 30–60 kDa) 28d: complete degradation Burst release: 31.64% (24 h);

Cumulative release: 95.45% (28d)

Wei et al. (37)

PLGA-F127 PLGA (50:50) (MW:100 kDa) + Pluronic 

F127

120d: complete degradation Release onset: 60d;

total duration: 4 months

Seon et al. (79)

PLGA LA:GA (50:50) 28d: pore expansion Burst release: 28.3% (24 h);

Cumulative release: 85% (28d)

Zhu et al. (86)

PLGA LA:GA (75:25) (MW: 20 kDa) >34d: in cartilage Burst release: <3%;

Cartilage retention: >34d

Deng et al. (28)
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progression of OA in mouse models (42). Rapamycin induces cellular 
autophagy by inhibiting ribosomal protein S6 phosphorylation and 
affecting the mTOR signaling pathway, while reducing cellular 
senescence by increasing the levels of Nrf2 (42–44). Dhanabalan et al. 
(45) loaded rapamycin in PLGA particles, Rapamycin-loaded PLGA 
microparticles (RMPs) induce cellular autophagy in primary articular 
chondrocytes of OA patients, preventing senescence and continuous 
production of sulfated glycosaminoglycans. At the same time, the 
RMPs was retained in the mouse for up to 35 days, and PLGA particles 
with higher molecular weight can show longer residence time in the 
joint, significantly reducing the frequency of injection, which is 
beneficial to improve patient compliance in clinical practice.

Post-traumatic OA (PTOA) often begins with joint injuries 
including anterior cruciate ligament rupture, meniscus injury, and 
joint dislocation, along with progressive deterioration of the articular 
cartilage and subchondral bone (46). The particularity of the disease 
is that the inflammation is initiated at the molecular and cellular levels 
immediately after joint injury. Proinflammatory factors, including: 
IL-1β, IL-6, and TNFα, are rapidly induced (47). Subsequently the 
matrix-degrading enzymes such as matrix metalloproteinases, 
collagenase, and cathepsin are further induced (48). These factors 
cause irreversible damage to the surrounding tissues, eventually 
leading to OA (49).

The CDK 9 inhibitor Flavpiridol is a potent drug that prevents the 
acute inflammatory response and activation of catabolic pathways in 
cartilage, it has been shown that Flavpiridol suppressed the expression 
of inducible nitric oxide synthase and inflammatory mediator genes 
under proinflammatory stimuli. So, Sangsuwan et al. (50) prepared 
PLGA microspheres loaded with Flavpiridol to prevent PTOA by early 
reducing inflammation in rat knee joints, and found that the drug has 
less accumulation in the liver and kidney and is a potential PTOA 
candidate (Figure  2). Meanwhile, some studies applied PLGA 
microsphere loaded with Flavpiridol in the OA models of rabbit and 
horse. It more truly reflected the actual effect of the drug-loaded 
microsphere in large mammals, which also showed good slow-release 
lubrication, anti-inflammatory analgesia and articular cartilage 
protection (51, 52). Kim et al. (53) prepared NPs of two different 
materials for the delivery of rebamipide, demonstrating significant 
therapeutic effects both in vivo and in vitro. This study further showed 
the therapeutic potential of NP drug delivery systems within the 
unique anatomical structure of the joint cavity.

However, the hydrophobicity of drugs and molecular size 
significantly influence encapsulation efficiency in PLGA. As a 
hydrophobic polymer, PLGA demonstrates enhanced compatibility 
with hydrophobic drugs, thereby improving encapsulation efficiency. 
Additionally, drug molecular size plays a crucial role in PLGA loading 
and release kinetics: smaller molecular weight drugs diffuse more 
easily into PLGA but risk premature release during initial stages, while 
larger molecular weight drugs exhibit lower encapsulation rates due 
to steric hindrance effects, though they deliver slower release rates. 
These factors may warrant further investigation in future research.

3.2 PLGA NPs delivering the endogenous 
components

Melatonin is an endogenous hormone secreted by the pineal 
gland, performing circadian regulation simultaneously with a potent 

antioxidant capacity. This hormone has great potential in 
osteoporosis, atherosclerosis, and diabetes, and has been reported for 
the treatment of OA (54–58). It is well known that ROS and TLR 
mediated cascade of inflammatory response OA has a critical role. 
Inhibition of the innate immune response and generation of reactive 
oxygen species are potential targets for treating OA. Liang et al. (59) 
packaged melatonin in PLGA by oil-in-water method and grafted 
type II collagenase in the surface. A nano-delivery system loaded 
with melatonin was prepared. Researchers evaluated the behavior of 
this system in cartilage and the therapeutic efficacy in mouse OA 
models, confirming that melatonin can protect chondrocytes by 
clearing ROS and inhibiting the TLR2/4-MyD88-NFκB pathway, and 
prevent degeneration of knee cartilage and remodeling of 
subchondral bone in early OA (Figure 3). The small molecule drugs 
and endogenous components delivered by PLGA and experimental 
studies on animal OA are outlined in Table 2.

Nanofat (NF) is an injectable sticky extract rich in lipids, growth 
factors and stem cells, and NF has been successfully used in scar 
repair, vascular regeneration and cartilage defect repair (60–62). 
However, it is difficult to apply to precise transplantation due to the 
low mobility and low biological activity of NF (63). To overcome 
these limitations, Han et al. (64) prepared three-dimensional PLGA 
porous microspheres using microfluidic techniques. Combining NF 
into PLGA porous microspheres (PMs) through Schiff base 
condensation and noncovalent binding (PMs@NF). The construct 
loaded a large amount of biologically active NF, increased the local 
cytokine concentration secreted by stem cells. At the same time, it has 
targeted adhesion to the surface of cartilage, which can achieve 
accurate delivery. The structure not only strengthened the surface 
lubrication of articular cartilage, but also increased the expression of 
cartilage synthetic substances (Figure 4). PMs@NF downregulated 
the expression of genes involved in cartilage catabolic enzymes, 
inflammation and pain, significantly reducing osteophyte formation 
in arthritic rats. NF also activates the intracellular PI3K/Akt signaling 
pathway, promotes the proliferation and matrix synthesis of 
chondrocytes, and ultimately improves the progression of 
OA. Cellular senescence is an important factor in the pathogenesis of 
OA. Chondrocytes produce a senescence-related secretory phenotype 
(SASP), including inflammatory cytokines and matrix remodeling 
regulating metalloproteinases, causing chronic inflammation and 
ultimately leading to OA (65, 66). The cell cycle inhibitor P16INK4A 
protein has an important role in cellular senescence. Chondrocytes 
positive for the cell cycle inhibitor P16INK4A protein will secrete 
large amounts of inflammatory cytokines. These inflammatory 
factors often accumulate in the tissues and promote tissue 
degeneration through persistent chronic inflammation and 
extracellular matrix remodeling (67). However, the role of cell cycle 
inhibitor P16INK4A protein in OA and its inhibitory effect have not 
been defined, Park et al. (68) found that a marked increase in the cell 
cycle inhibitor P16INK4A protein in synovial and articular 
chondrocytes from OA patients. They used PLGA NPs to deliver the 
cell cycle inhibitor P16INK4A protein-siRNA. This NPs can 
significantly reduce the levels of TNF-α, IL-1β, and IL-6. In the 
mouse model of OA, NPs mainly focused on the synovial membrane, 
preferentially reducing the cell cycle inhibitor P16INK4A protein in 
synovial cells, reducing synovial inflammation and relieving joint 
pain. The authors were combined with previous studies (69, 70), 
speculating that fibroblasts in the synovial membrane may be new 
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FIGURE 2

(A) The illustration on preparation and application of PLGA particle. (B) Preparation and characterization of flavopiridol-loaded PLGA particles. 
(C) Biodistribution of Flavopiridol-loaded microparticles (FPs) following intra-articular injection in rats. (D) NF-κB activity of FPs. (E) Release kinetic of 
FPs. Reproduced from Sangsuwan et al. (50).
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and exciting targets for OA therapy, promise as a potential drug to 
slow the progression of OA.

3.3 PLGA-based hybrid systems for 
combinatorial therapy

Ketorolac, as a non-steroidal anti-inflammatory drug for OA, is 
injected into the joint to inhibit the synthesis of prostaglandins and 
exerts antipyretic, analgesic and anti-inflammatory effects (71, 72). 
However, the drug has a short half-life in vivo and requires frequent 
injection, causing poor patient compliance. So, the researchers 
prepared a variety of ketorolac particles by different types of polymer 
materials to increase the slow-release properties of the drug, including: 
polymethacrylate, ethyl cellulose, chitosan, polycaprolactone, PLGA 
and the blend of two polymers, such as chitosan/gelatin (71, 73). 

Through modulation of two polymers, polymer blends can have 
customized drug release and improved physicochemical properties. 
In the study conducted by Wongrakpanich et  al. (74), using two 
emulsification techniques, probe ultrasonication (PS) and high-speed 
agitation (HSS), prepared PLGA and PLA mixed polymer particles by 
water-in-oil-in-water (w/o/w) double emulsion solvent evaporation. 
Two emulsification techniques prepared drug-loaded microspheres 
with different particle size ranges. These microspheres delivered 
ketorolac with hyaluronic acid to treat OA. Found that the PS particles 
exhibited higher drug release within 24 h, whereas the HSS particles 
exhibited sustained release for more than 35 days. The combination of 
the two preparations as an alternative to OA treatment required only 
a monthly use.

Currently for OA in chronic inflammatory diseases and 
rheumatoid arthritis in autoimmune diseases, injecting corticosteroids 
into the joint is still an effective way to control pain and reduce 

FIGURE 3

(A) The mechanism of melatonin-loaded nano-delivery system (MT@PLGA-COLBP) with cartilage-targeting effect for OA therapy. (B) Synthesis and 
characterization of MT@PLGA-COLBP NPs. (C) MT@PLGA-COLBP NPs target chondrocytes. (D) MT@PLGA-COLBP improves the protein expression of 
immune response and cartilage matrix in vivo. (E) Therapeutic effect of intra-articular injection of MT@PLGA-COLBP NPs on early OA mice. (F) Intra-
articular injection of melatonin delays the development of OA in mice. Reproduced from Liang et al. (59).
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TABLE 2  PLGA NPs delivering small-molecule drugs and endogenous components.

Carriers Drugs/components Damage Induction Animal References

PLGA NPs Curcumin KOA MIA injection Rats Curcumin NPs (34)

PLGA microspheres Meloxicam KOA MIA injection Rats PLGA microspheres loaded 

with meloxicam (35)

PLGA Salicin KOA ACLT Rats SA-loaded PLGA (36)

PLGA NPs Resveratrol KOA DMM Rats PLGA resveratrol sustained-

release NPs (37)

PLGA microcapsules Chidamide KOA ACLT Rats Intra-articular Histone 

Deacetylase Inhibitor 

Microcarrier (41)

PLGA microparticles Rapamycin KOA DMM Mice Intra-articular injection of 

rapamycin microparticles 

(45)

PLGA microspheres Flavpiridol KOA ACLT Rats Intra-articular Injection of 

Flavopiridol-loaded 

Microparticles (50)

PLGA NPs Melatonin KOA ACLT Mice Preparation of Melatonin-

Loaded NPs (59)

PLGA microspheres Nanofat KOA DMM Rats Nanofat functionalized 

injectable super-lubricating 

microfluidic microspheres 

(64)

PLGA NPs P16INK4A-siRNA KOA PMMx Mice p16INK4a-siRNA NPs (68)

PLGA, Poly(D,L-lactic-co-glycolic acid); NPs, Nanoparticles; KOA, Knee Osteoarthritis; MIA, Monosodium Iodoacetate; ACLT, Anterior Cruciate Ligament Transection; DMM, 
Destabilization of Medial Meniscus; PMMx, Partial Medial Meniscectomy.

FIGURE 4

(A) The illustration preparation of NF, PMs and PMs@NF and the clinical application of multifunctional microfluidic PMs@NF. (B) Intra articular injection, 
in vitro degradation analysis and Calcein AM/DAPI staining of PMs@NF. (C) Characterization of NF functionalized injectable super-lubricating 
microfluidic PMs. (D) The performance of super-lubricating PMs@NF treat OA model in vivo. (E) Footprints collection of rats 8 weeks postoperatively. 
(F) Super-lubricating PMs@NF protects cartilage from invariance. Reproduced from Han et al. (64).
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inflammatory responses (75, 76). Triamcinolone sustained-release 
injections based on PLGA microsphere have been developed, however 
this injection has a stronger toxic effect on cells than dexamethasone 
at high doses (77, 78). Thus, Seon et al. (79) prepared self-assembled 
microspheres for microprecipitation reactions, loaded with 
dexamethasone, using PLGA and Pluronic®F-127 (F127). The in-situ 
implant within the joint cavity is formed by utilizing the characteristic 
of F127 solution to transition from sol to gel when it is above the lower 
critical solution temperature. By comparing the drug release between 
PLGA-F127 microspheres and PLGA-only microspheres, it was found 
that the in-situ implant did not exhibit initial burst release, but started 
releasing the drug after being retained for 60 days. The entire drug 
release time can reach up to 4 months. Compared to other drug 
delivery systems, PLGA-F127-MS demonstrates potential as a novel 
sustained-release drug delivery system.

In OA studies, abnormal subchondral bone remodeling is the 
main phenotypic feature of early stage of OA. Osteoclast activation, 
and locally elevated transforming growth factor (TGF)-β1 exacerbates 
early subchondral bone loss. They induce vascularization and 
hypomineralization in osteoblasts, leading to sclerosis during OA 
progression (80–82). TGF-β may be a potential therapeutic target for 
treating OA. Pirfenidone (PFD) is a pyridine-like small-molecule 
TGFβ1-3 inhibitor, which can specifically inhibit the TGFβ signaling 
pathway to exert anti-fibrotic and anti-inflammatory effects. This drug 
has been used clinically for treating various pathological fibrosis 
including pulmonary fibrosis and liver fibrosis (83). Some studies have 
demonstrated the effectiveness of oral PFD for OA, but long-term, 
high-dose oral PFD caused a wide range of side effects (84, 85). Zhu 
et al. (86) controlled the local concentration of PFD by preparing 
PLGA microsphere loaded with PFD. This microsphere combined 
with hyaluronic acid solution allowed sustained release PFD in the 
joint cavity, preventing subchondral bone loss in early OA and 
subchondral bone sclerosis in late OA. Meanwhile, this combination 
alleviated synovial inflammation and pain-related behavioral changes 
and achieved the disease-modifying effect of early OA.

Between the formation and resorption of bone and cartilage, there 
are a variety of cells that can influence OA progression, including 
mesenchymal stem cells (MSCs), chondrocytes, and osteoclasts (87, 88). 
Magnesium, as a skeletal system element, has an important role in the 
maintenance of skeletal and cartilage health processes. It has been 
shown to effectively stabilize nucleic acids and enzymes to exert 
therapeutic effects on a variety of cells in OA progression (89). The latest 
research utilized magnesium treatment to chondrocytes in the simulate 
environment of OA. It was found that AKT phosphorylation was 
activated, and the apoptotic markers cleaved calpain I and BAX/BCL2 
were significantly reduced at the protein level, resulting in a significant 
decrease in the rate of cell apoptosis. Meanwhile, the phosphorylation 
level of AKT in osteoclasts was significantly decreased, and 
transcriptome sequencing analysis revealed significant changes in the 
PI3K/Akt pathway. Researchers have prepared stearic acid (SA) 
modified PLGA microspheres loaded with nano-magnesium oxide—
MgO&SA@PLGA (90). This microsphere provided a suitable 
concentration of Mg2, which not only promoted MSC proliferation and 
chondrogenic differentiation but also effectively inhibited osteogenic 
differentiation. The treatment demonstrated significant relief effects in 
the rat. This study provided further support for the use of magnesium 
in the treatment of OA-related issues in cartilage and subchondral bone 
by activating the AKT signaling pathway.

Kartogenin (KGN) is a hydrophobic small molecule drug that can 
significantly promote chondrogenic differentiation of bone marrow 
mesenchymal stem cells and can induce cartilage regeneration in OA 
(91–94). However, KGN, as a small molecule, has poor water solubility, 
and its therapeutic effect is not efficient when used alone. Therefore, 
the use of nanocarriers may be  beneficial for drug therapy and 
intracellular drug delivery. In the early stage of OA, irregular partial 
defects occur in articular cartilage, causing progressive destruction of 
OA. Zhang et al. (95) prepared PLGA microspheres uniformly loaded 
with KGN using microfluidic technology (KGN@PLGA NP). 
Subsequently, the PLGA microspheres were modified with dopamine 
to form a dopamine coating KGN@PLGA NP. Finally, the E7 
recruiting peptide was non-covalently bound to the KGN@PLGA NP 
to prepare an injectable multifunctional PLGA microsphere for 
repairing partial defects in cartilage. The PDA coating could enhance 
the adhesion ability of PLGA microspheres, while the E7 peptide 
could recruit endogenous stem cells. After being injected into the joint 
cavity, the multifunctional microspheres could adhere to the damaged 
cartilage matrix and release the E7 peptide to recruit stem cells to the 
lesion area. With the degradation of PLGA, the release of KGN 
induced osteogenic differentiation of stem cells. Ultimately, the 
cartilage surface in the treatment group became smooth and the GAG 
content returned to normal, indicating the microspheres could 
promote the repair of cartilage injuries. New research has shown that 
the use of phenol-rich PDA can effectively scavenge ROS, reduce acute 
inflammatory responses, and inhibit the enhancement of osteoclasts 
(Figure 5). PLGA/polydopamine-based core/shell NPs loaded with 
KGN can significantly induce cartilage synthesis in  vitro, and 
simultaneously effectively protect cartilage and subchondral bone in 
OA models of rats (96). Bai et  al. (97) utilized nanomaterials as 
carriers for stem cell expansion, attempting to treat OA through stem 
cell tissue engineering. Firstly, PLGA porous microspheres loaded 
with KGN were prepared by an emulsification method. These 
microspheres were then anchored with chitosan (CS) using an 
amidation reaction to prepare PLGA-CS@KGN porous microspheres, 
which were subsequently cocultured with mesenchymal stem cells. It 
was found that the system has the ability to carry high cell densities of 
1 × 104 mm−3 and can protect MSCs by controlling their release, 
migration, and proliferation in an inflammatory microenvironment. 
This system also provided prospects for the treatment of OA through 
stem cell tissue engineering.

Besides delivering drugs, the use of NPs to deliver endogenous 
components for regulating the progression of OA is also a promising 
therapeutic approach. MSCs play a leading role in tissue engineering 
and regeneration. They primarily regulate the local microenvironment 
by secreting bioactive molecules and possess multidirectional 
differentiation capabilities, enabling them to renew and differentiate 
into various lineage cells such as fat, bone, cartilage, tendons, and skin 
(98). MSCs have been widely used in preclinical research. However, 
the application of conditioned media during cell culture in vitro still 
requires extensive cell isolation and maintenance, and there are risks 
of spontaneous behavior and property changes, including cell 
contamination, infection transmission, and malignant tumors (98–
100). Meanwhile, the main executors of therapeutic effects are 
paracrine factors secreted by stem cells in tissue engineering 
regeneration. Therefore, Shah et al. (101) selected growth factors of 
great significance to chondrogenesis, including insulin-like growth 
factor, TGF-β1, fibroblast growth factor-18, and human growth 
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hormone. They encapsulated the recombinant proteins of these 
growth factors in PLGA to construct a synthetic artificial stem cell 
system. The system constructed exhibited significant anti-
inflammatory and chondroprotective effects in vitro, and alleviated 
cartilage degeneration and improved the biomechanical properties of 
articular cartilage in vivo, verifying the possibility of a new therapeutic 
strategy for OA.

MicroRNA (miRNA) is a class of non-coding single-stranded 
RNA molecules, approximately 22 nucleotides in length, encoded by 
endogenous genes and involved in post-transcriptional gene 
expression regulation in both plants and animals (102, 103). Several 
important microRNAs have been identified to play crucial roles in the 
progression of OA, including as regulators of pro-inflammatory and 
matrix-degrading mediators (102). Among them, miR-140 is 

FIGURE 5

(A) The illustration on preparation and application of multifunctional cartilage repair microspheres. (B) Morphological and characterization of 
microspheres. (C) Microspheres promote chondrogenic differentiation. (D) Microspheres treatment and morphological assessment. Reproduced from 
Zhang et al. (95).
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specifically expressed in human articular chondrocytes, and 
dysregulation of miR-140 can promote chondrocyte inflammation and 
lead to degenerative lesions. Especially, downregulation of miR-140 
can cause excessive activation of ADAMTS-5 signaling, leading to the 
loss of proteoglycan and type II collagen in chondrocytes (104, 105). 
Zhao et al. (106) aimed to slow the progression of OA by delivering 
recombinant miR-140. Firstly, a cartilage-targeting peptide (CAP)-
modified poly(vinyl amine) (PVAm)-PLGA copolymer was prepared. 
And then it was formed into spherical NPs with r-miR-140 (CPPNPs). 
The introduction of PLGA significantly improved the mechanical 
properties and stability of CPPNPs. Meanwhile, CAP endowed the 
NPs with cartilage targeting ability, enabling CPPNPs to exhibit 
significant permeability and accumulation in cartilage and 
subchondral bone, thereby overcoming the two major biological 
barriers of cartilage: avascularity and high ECM density. In the mouse 
model, CPPNPs treatment significantly reduced cartilage degeneration 
and synovial inflammation, providing a new foundation for delivering 
RNA to treat OA by overcoming cartilage barriers.

However, with the progression of OA, the increase in cartilage 
damage leads to the gradual loss of cartilage components, weakening 
the abilities of passive targeting and active targeting of single ligands. 
Therefore, compared to targeting a single component of cartilage, a 
delivery system with multiple affinity peptide ligands is more capable 
of overcoming the difficulties of the extracellular matrix barrier of 
chondrocytes and cartilage targeting (107–109). Deng et  al. (28) 
inspired by chondrocyte-matrix interactions, utilized naturally 
derived chondrocyte membranes (CMs) as a mean of enhancing the 
specificity and binding capacity of drug delivery. Firstly, PLGA 
particles loaded with the Wnt pathway inhibitor adavivint were 
prepared, and then naturally derived chondrocyte membranes were 
coated on the surface of the PLGA particles for modification. It was 
found that NPs coated with chondrocyte membranes could 
be preferentially taken up by chondrocytes, mainly through membrane 
protein-targeted recognition and clathrin-mediated endocytosis, as 
well as micropinocytosis. Meanwhile, these CM-NPs could overcome 
the extracellular matrix barrier of chondrocytes, penetrate into the 
cartilage matrix, and remain there for over 34 days, effectively 
protecting articular cartilage and alleviating the progression of 
OA. The combination of natural cell membranes with synthetic NPs 
could disguise the NPs as endogenous cells, effectively avoiding 
clearance by immune cells and extending the duration of treatment. 
The cell membrane on the surface can also exert corresponding 
biological effects, making it an OA treatment strategy with almost no 
side effects (110). Previous studies have shown that MSCs can promote 
cartilage proliferation and may restart the chondrocyte cycle. Human 
synovial CD90-positive MSCs may be involved in cartilage repair in 
OA (111, 112). Li et  al. (113) utilized cytochalasin B to stimulate 
CD90 + MSCs to secrete microvesicles (CD90@MV) and prepared 
PLGA NPs encapsulated with triamcinolone acetonide (TA) within 
these microvesicles (T-CD90@NP). It was found that the membrane 
proteins of CD90@MV were similar to those of CD90 + MSCs, and 
their bioactivity was comparable to that of CD90 + MSCs in inducing 
cartilage proliferation. T-CD90@NP demonstrated significant 
cartilage repair and anti-inflammatory capabilities in OA models of 
rats and rabbits, capable of inducing cartilage to restart the cell cycle 
and reducing chondrocyte apoptosis. Bioinformatics analysis and 
mRNA sequencing confirmed that T-CD90@NP mainly reduced cell 
apoptosis through the FOXO pathway and regulated inflammation by 

affecting M2 macrophage polarization through IL-10. The study of 
PLGA with other materials co-delivering drugs for OA model 
treatment is outlined in Table 3.

4 Challenges and prospects

Due to its excellent biocompatibility and biodegradability, PLGA 
has proven to be an excellent carrier for controlled drug, peptide, and 
protein delivery (21, 114). Many studies utilizing PLGA particles for 
OA treatment have achieved significant results in  vivo or in  vitro 
experiments (115, 116). PLGA particles show great potential in 
preclinical models of OA. However, the systems and methods used for 
evaluation are mainly based on lower mammalian models such as 
mice and rabbits (29).

There are still many shortcomings in the research of PLGA 
delivery system. Rodent knee joints feature smaller volumes and 
simpler anatomical structures, enabling rapid and uniform drug 
distribution within the cavity. In contrast, human knee joint cavities 
are more complex and contain larger volumes, resulting in significant 
variations in drug delivery patterns. Additionally, the significantly 
thicker articular cartilage in humans imposes higher penetration 
requirements for drug particles, potentially necessitating adjustments 
to the LA/GA ratio or the introduction of targeted delivery strategies. 
Furthermore, rodents exhibit denser vascular and lymphatic networks 
in synovial tissues, coupled with faster clearance rates within the joint 
cavity, presenting new challenges for particle metabolism and product 
accumulation in human joints. To address these challenges, 
experimental validation using large animal models serves as a crucial 
translational bridge.

Given the repeated drug injections in osteoarthritis patients, the 
degradation of PLGA into lactic acid and glycolic acid within joints 
may alter the microenvironment. Therefore, we propose regulating the 
degradation rate of PLGA to ensure the production and rate of 
metabolites remain within the metabolic tolerance threshold of the 
joint microenvironment. Additionally, repeated injections should not 
activate immune cells. Future studies could further mitigate potential 
effects by introducing neutralizing components or extending the 
degradation cycle.

The rapid release of drugs from PLGA carriers primarily results 
from free drug dissolution. Surface modification strategies are 
employed to regulate drug distribution through physical or chemical 
modifications. These include PDA surface coatings that reduce direct 
drug exposure and bind to drugs via π–π bonds, as well as 
chondrokinin peptide modifications that form a hydration layer on 
the carrier surface to slow drug diffusion into synovial fluid. Another 
method involves multi-layer coating techniques: HA coatings create 
gel-like barriers while chitosan/sodium alginate coatings generate 
electrostatic attraction. By modifying the composition and main chain 
structure of PLGA copolymers, drug release kinetics can be optimized 
at the source. For instance, blending PLGA with Pluronic F127/PCL 
block copolymers enables sustained drug delivery.

Conventional single-target PLGA delivery systems struggle to 
address the complex pathological process of OA involving cartilage 
degradation, synovial inflammation, and subchondral bone 
remodeling. Multi-target synergistic delivery, leveraging the controlled 
release properties of PLGA carriers, enables precise regulation of 
active components targeting OA tissue lesions. The next-generation 
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PLGA delivery systems could integrate anti-inflammatory drugs with 
RNA or growth factors to achieve coordinated modulation of synovial 
cartilage or subchondral bone. Long-term validation in large animal 
models would better align with the clinical manifestations of OA.

Therefore, we need to establish a drug prioritization framework 
centered on disease-modifying effects, emphasizing therapeutic 
interventions that go beyond symptom relief. This approach will prove 
valuable for OA treatment. The strategy comprises three key 
components: (1) PLGA composite systems targeting cartilage repair 
and multi-pathological mechanisms (including inflammation 
suppression, matrix degradation inhibition, and subchondral bone 
protection), focusing on disease-modifying effects; (2) PLGA gene 
delivery systems targeting core signaling pathways of cellular 
senescence and apoptosis; (3) PLGA small-molecule delivery systems 
providing long-term anti-inflammatory action and mild cartilage 
protection, primarily aimed at symptom management.

Critical barriers remain to further advance the clinical translation 
of this material, with two core bottlenecks: large-scale Good 
Manufacturing Practice (GMP) production of the drug delivery 
system and long-term safety and efficacy assessment.

First, there is a significant gap between small-scale laboratory 
preparation and large-scale GMP production. Current research 
mainly relies on small-batch fabrication techniques, such as 
microfluidics or emulsification-solvent evaporation. These methods 
exhibit excellent performance in particle size control and drug loading 
efficiency. However, during GMP scale-up production, insufficient 
homogenization pressure or improper surfactant concentration can 
compromise the size stability of particles. Meanwhile, subtle variations 
in monomer purity and polymerization conditions across production 
batches may alter the in vivo drug release cycle of the system, thereby 
impairing therapeutic efficacy. Second, the innovative composite 
systems developed in many studies require multi-step modification 
and detection, which can be  precisely controlled in small-scale 
laboratory research. In contrast, during large-scale GMP production, 

each modification step demands strict quality control and aseptic 
processing—including verification of particle targeting and 
functionality, as well as aseptic handling and storage of particles. This 
significantly increases production costs and process complexity.

At present, the hybrid system has key value in application 
prospect. For instance, the core of GMP compliance for PLGA/PDA 
hybrid systems lies in the controllable and stable PDA coating process. 
Selecting microfluidic technology to control the coefficient of 
variation in PDA coating thickness may ensure batch stability. In 
collagen-mixed systems, standardization of collagen raw materials and 
compatibility of composite processes require consideration. 
Commercially available recombinant collagen could be adopted to 
avoid batch variations from animal sources, while developing 
sterilization processes that preserve collagen activity. For cartilage cell 
membrane hybrid systems, limitations mainly stem from cell 
membrane sourcing and standardized extraction/quality control 
systems. Future efforts might involve establishing standardized cell 
banks, using flow cytometry for membrane protein quality control, 
and developing long-term storage solutions for cartilage membranes 
under GMP conditions. The GMP transformation of hybrid systems 
should focus on three core aspects: raw materials, processes, and 
quality control. By controlling batch variations in raw materials and 
reducing manual operations, clinical applications can 
be progressively achieved.

Meanwhile, conducting stability testing and long-term storage 
studies on PLGA delivery systems prior to clinical application holds 
translational value. The testing focuses on the physical, chemical, and 
biological stability of the delivery system to ensure structural integrity 
of the PLGA carrier and stable drug release kinetics. It also verifies 
that the drug degradation and its resulting PLGA decomposition 
products will not affect the microenvironment of the joint cavity. 
Ultimately, validation must confirm that the PLGA delivery system 
maintains activity in vivo and remains stable even after prolonged 
storage, thereby meeting clinical requirements.

TABLE 3  PLGA with other materials.

Carriers Components Preparation References

PLGA and PLA Ketorolac The w/o/w double emulsification 

solvent evaporation

Ketorolac-Loaded PLGA-/PLA-Based Microparticles (74)

PLGA and Pluronic®F-127 Dexamethasone Microemulsion Self-Assembled PLGA-Pluronic F127 Microsphere (79)

PLGA microparticles and HA 

solution

PFD The o/w emulsification solvent 

evaporation

Intra-articular sustained-release of PFD (86)

SA modified PLGA microspheres MgO N/a Engineered MgO NPs (90)

PLGA/PDA-PEG-E7 KGN Microfluidic technology Intra-Articular Injection of PLGA/Polydopamine Core−Shell 

NP (96)

PLGA-CS KGN/BMSCs Emulsification solvent evaporation Stem cells expansion vector via bio-adhesive porous 

microspheres (97)

PLGA IGF1, TGF-β1, FGF-18, and 

HGH

The w/o/w double emulsification 

solvent evaporation

The synthetic artificial stem cell system (101)

CAP-PVAm-PLGA R-miR-140 N/a Co-polymer carrier with dual advantages of cartilage-

penetrating and targeting (106)

CM-NPs Adavivint Extrusion Chondrocyte membrane–coated NPs (28)

CD90@NP Triamcinolone acetonide Water bath ultrasound Triamcinolone acetonide-loaded NPs (113)

PLGA, Poly(D,L-lactic-co-glycolic acid); PFD, Pirfenidone; KGN, Kartogenin.
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Finally, research on the long-term in vivo safety and efficacy 
of this drug delivery system remains inadequate. Current animal 
studies have short evaluation periods and primarily use young 
individuals, whereas clinical OA patients are mainly elderly, and 
OA treatment may last for several years. Consequently, clinical 
OA treatment may require repeated intra-articular injections. 
Long-term injection and degradation of PLGA may lead to 
changes in the pH of synovial fluid, and long-term accumulation 
of particles in articular cartilage or subchondral bone may 
exacerbate metabolic changes in osteocytes. Additionally, elderly 
individuals often have impaired renal and hepatic function, 
resulting in reduced clearance rates of degradation products and 
a subsequent increase in the risk of systemic toxicity. Although 
PLGA-based composite systems with other materials may offer 
advantages in targeting and functionality for OA treatment, the 
immunogenic risks associated with long-term in vivo exposure to 
these components also warrant attention.

The elderly and metabolically impaired populations constitute the 
primary group affected by OA. The joint microenvironment in these 
groups shows significant differences compared to young, healthy 
animals. Therefore, evaluating the repair efficacy and safety of OA 
animal models is essential, while assessing the inflammatory 
regulation and microenvironment compatibility of PLGA 
formulations in metabolically impaired models holds practical value. 
We advocate establishing comparative evaluation systems between 
aged/metabolically impaired animals and their younger counterparts 
in future research. This approach is crucial for advancing the clinical 
translation of such systems.

Although there are still many problems to be  solved in the 
treatment of human OA using NPs, we have seen that NPs exhibit 
good effects in drug delivery, tissue engineering, and gene therapy, 
providing new ideas for disease treatment. The PLGA particles 
discussed in this review also demonstrate great potential in OA 
treatment. Their unique properties make them powerful tools for new 
therapeutic methods and treatments, including loading small 
molecule drugs, recombinant proteins, and gene delivery, as well as 
hybrid modifications with different materials or endogenous biological 
components. Future research should align with the development of 
PLGA systems, including the development of GMP compliant 
manufacturing technologies, the establishment of unified quality 
testing standards for finished products, and the conduct of long-term 
safety and efficacy studies in aged animal models.

The combination of NPs with gene therapy may be a new direction 
for OA therapy. Such as the binding of exosomes to PLGA NPs, which 

can carry an siRNA targeting key genes of OA. Exosomes also have 
good biocompatibility and targeting properties. Targeted treatment of 
cell membrane camouflage is also of concern, which can not only 
deceive immune cells but also target cell and tissue repair. NPs 
combined with immune regulation also have great potential, inhibiting 
the inflammatory response to provide a favorable microenvironment 
for cartilage repair. In the future, multi-dimensional integration of 
these mechanisms may be needed to further prevent the development 
of OA. Therefore, we present a perspective on the clinical translation 
of this drug delivery system (Figure 6).

Beyond these aspects, combined therapies demonstrate high 
efficacy in OA clinical practice. Non-pharmacological interventions 
enhance joint function and modulate the local microenvironment, 
thereby supporting the therapeutic effects of PLGA delivery systems. 
Physical therapy regulates blood flow, tissue permeability, and cellular 
activity in the joint area through physical energy modulation, which 
enhances the efficacy of PLGA-delivered medications. In conservative 
OA treatment, strength training improves joint stability and cartilage 
nutrition supply, while PLGA’s sustained delivery provides continuous 
protection for cartilage during physical activity. Mechanical 
decompression devices reduce joint load, helping minimize 
inflammation and cartilage damage caused by excessive wear, creating 
a critical window for cartilage repair. Therefore, future research should 
build upon the PLGA studies outlined in this review and further 
validate the long-term effectiveness of combined therapies in large 
animal models.

We should establish a comprehensive evaluation system for 
standardized preclinical protocols, including dose adjustments 
tailored to PLGA’s inherent properties and animal models across 
small animals, large animals, and humans. The trial duration 
should be  structured into distinct disease progression phases: 
acute phase, chronic phase, and long-term follow-up. 
Simultaneously, multiple biomarkers within the body must 
undergo safety and efficacy testing, encompassing both safety 
biomarkers and therapeutic biomarkers, along with imaging and 
functional metrics. These established standards may provide new 
insights for future research.

We believe that with the advancements in material engineering 
and drug delivery technology, the PLGA NP delivery system will 
receive more attention and exploration in scientific research, further 
promoting clinical studies on PLGA NPs in OA treatment. Therefore, 
the summary of this review is beneficial for readers to understand the 
latest research findings and corresponding challenges of PLGA NPs 
used in OA treatment.

FIGURE 6

Proposed clinical research roadmap of PLGA delivery systems for OA therapy.
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