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Serum neurofilament light chain 
levels in myasthenia gravis 
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symptoms
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This study aimed to investigate serum neurofilament light chain (sNFL) levels in 
patients with myasthenia gravis (MG) and explore its potential as a biomarker for 
disease stratification. A total of 60 MG patients and 29 normal controls (NCs) were 
enrolled, with no significant differences in age or gender between the two groups. 
MG patients were stratified by MGFA classification, QMG scores, antibody status, 
phenotypic subtypes, onset age, and gender. Results showed that MG patients had 
significantly higher sNFL levels (median: 12.7 pg./mL) compared to NCs (median: 
9.1 pg./mL; p = 0.0176). Subgroup analyses revealed that sNFL levels in MGFA-
II patients (median: 13.1 pg./mL) were significantly elevated compared to NCs 
(p = 0.0437), with no statistical difference in MGFA-I. Patients with QMG scores 
7–15 (median: 13.4 pg./mL) had higher sNFL levels than those with scores 0–6 
(p = 0.0207) and showed significant differences from NCs (p = 0.0023). Late-onset 
MG (LOMG) patients (median: 13.4 pg./mL) had higher sNFL levels than early-onset 
cases (p = 0.0368), and age was mildly correlated with sNFL in MG (p = 0.0477). 
ROC analysis showed moderate diagnostic performance of sNFL for distinguishing 
LOMG vs. NCs (>50 years) was 0.9464 (specificity 89.29%, sensitivity 90%), and for 
female MG vs. female NCs was 0.8091. In conclusion, sNFL levels are elevated in 
MG patients, particularly in severe and late-onset cases, suggesting its potential 
as a biomarker for disease stratification and severity assessment.
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1 Introduction

Myasthenia gravis (MG) is an autoimmune disease that affects the neuromuscular 
junction (NMJ) through specific autoantibodies (1),divided into ocular (OMG) and 
generalized forms (GMG) (2). “Myasthenia Gravis Foundation of America (MGFA) 
classifies MG into five grades to quantify severity: Grade I (ocular symptoms only); Grade 
IIa (mild generalized weakness, primarily affecting limbs); Grade IIb (moderate generalized 
weakness with bulbar involvement); Grade III (severe generalized weakness, potentially 
life-threatening); Grade IV (severe crisis requiring intubation); and Grade V (myasthenic 
crisis with respiratory failure) (3). The features discussed in this study (e.g., bulbar 
weakness, respiratory involvement) are most prominent in Grades IIb-V, with Grade V 
specifically characterized by respiratory failure due to neuromuscular junction dysfunction.” 
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80% of MG patients have anti-AChR antibodies, 50% of AChR-
seronegative patients have anti-MuSK antibodies, and 20–30% of 
AChR-positive patients have anti-Titin antibodies, which are key in 
MG’s development (4, 5). In 100 MG patients, the detection rate of 
Titin antibodies was 41% (6), they are also important roles involved 
in the pathogenesis of MG. MG patients were classified into early-
onset MG (EOMG, age at onset < 50 years) and late-onset MG 
(LOMG, age at onset ≥ 50 years). OMG is more common in patients 
with EOMG, while GMG is more common in patients with LOMG 
(7). The treatment effectiveness of patients with EOMG is 
significantly higher than that of patients with LOMG. The 
importance of timely diagnosis of myasthenia gravis is that early 
diagnosis allows for prompt initiation of treatment, slowing the 
progression of the disease and reducing the risk of myasthenia crisis 
(8). To sum up, EOMG and LOMG are different in many ways, and 
timely diagnosis is of great significance for the treatment and 
prognosis of patients.

Neurofilament proteins (NF) are important components of the 
neuronal cytoskeleton (9). Among neurofilament proteins, 
neurofilament light chain (NFL) has the smallest molecular weight 
(68 kDa), enabling it to more readily diffuse into cerebrospinal 
fluid and blood via tissue fluid during axonal injury or 
neurodegeneration. Neurofilaments comprise three subtypes: light 
(NFL), medium (NFM, 150 kDa), and heavy (NFH, 200 kDa) 
chains (10, 11). As the most abundant and soluble neurofilament 
subunit, NFL is significantly upregulated in release under 
pathological conditions, resulting in detectable blood 
concentrations. In contrast, NFM and NFH, with larger molecular 
weights and more complex structures, are less released into the 
blood and present at lower levels (12, 13). Normally, NFL is stably 
expressed and distributed in neurons (14), when neurons are 
damaged or diseased, their cell membranes lose integrity, causing 
NFL to leak from the neurons into the bloodstream via the blood–
brain barrier (15). Neurogenic changes were regularly found in the 
muscles of patients with myasthenia, even without muscular 
atrophy (16). In MG, serum neurofilament light chain (sNFL) may 
reflect the degree of neuromuscular junction damage and neuronal 
stress, particularly in subgroups where traditional biomarkers like 
anti-acetylcholine receptor (AChR) and anti-muscle-specific 
kinase (MuSK) antibodies may be  less informative (17). Basic 
research has shown that preserving neuromuscular junctions and 
modulating certain signaling pathways are crucial in age-related 
and other forms of muscle atrophy (18). Therefore, changes in 
sNFL levels are considered to be closely related to the degree of 
nervous system injury and are expected to become a potential 
biomarker reflecting the pathological process of nervous system 
diseases (19). In various nervous system diseases, such as 
Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple 
sclerosis (MS) (20). NFL is involved in immune regulation and 
various autoimmune diseases, but its role in MG is still unclear. 
SNFL level is a reliable marker of neuronal damage (21).

Against this backdrop, it is rational to hypothesize that NFL 
levels may be elevated in MG and that this measurement could 
be beneficial for disease monitoring. The primary aim of this study 
was to compare plasma NFL levels between age, gender, ocular and 
generalized forms, antibody types (AchR, Musk, Titin), MGFA 
classification (Type I, IIa, IIb), and QMG scores, and controls. This 

study aims to investigate the expression levels of sNFL in MG 
patients and evaluate its potential as a biomarker for disease 
monitoring and pathophysiological understanding.

2 Materials and methods

2.1 Study population

We recruited 34 patients diagnosed with myasthenia gravis from 
May 2021 to September 2023  in ZMB and collected their clinical 
information and serum. All patients were diagnosed based on clinical 
symptoms, electrophysiological studies (including single-fiber EMG 
in cases of diagnostic uncertainty), and response to acetylcholinesterase 
inhibitors refers to objective improvement in clinical symptoms 
(records were taken every 10 min after injection, with continuous 
recording for 60 min). The relative score, calculated using the formula 
based on the absolute score of the single most significantly improved 
item at the time of maximum improvement, was used as the judgment 
value for the test result. A relative score < 25% was considered 
negative, 25–60% as suspiciously positive, and >60% as positive (22), 
including symptom classification at onset as ocular and generalized, 
antibody types (AChR, MuSK), MGFA classification (Type I, IIa, IIb), 
and QMG scores, were recorded. MGFA I-IIb patients were prioritized 
due to their higher representation in our cohort; severe grades (III-V) 
were excluded due to small sample size (n = 4, <10% of total). The 
control group was expanded to include 29 healthy individuals matched 
for age and potential comorbidities such as diabetes. Exclusion criteria 
for both groups included other autoimmune diseases, nervous system 
infectious diseases, malignant tumors, severe liver and kidney 
insufficiency, and recent use of drugs that may affect nerve function 
(23). Excess serum samples were collected after routine diagnostic 
procedures and stored at −80 °C. Neurofilament protein light chain 
levels in all sera were tested.

2.2 sNfL measurement

Serum samples were collected from patients with MG and 
controls, serum samples were collected within 2 h of venous blood 
draw, clotted at room temperature (22–25 °C) for 30 min, then 
centrifuged at 3,000 × g for 10 min at 4 °C to separate serum. Aliquots 
(500 μL each) were immediately stored at −80 °C without delay, with 
no more than two freeze–thaw cycles before analysis. Freezer 
temperatures were monitored daily to ensure stability between −78 °C 
and −82 °C. SNfL concentrations were measured using the single-
molecule array (SiMoA) assay on the HD-1 analyzer (Quanterix, 
Lexington, MA, USA), following the manufacturer’s protocol with the 
two-step assay dilution 2.0 scheme of the NF-Light Advantage kit; 
monoclonal anti-NfL antibodies and calibrators were used by 
UmanDiagnostics (Umeå, Sweden).

2.3 Statistical analysis

Statistical analysis was conducted using SPSS 26.0 and GraphPad 
Prism 8. Statistical significance was set at two-tailed (p < 0.05), with 
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adjustments for multiple comparisons applied as appropriate. Serum 
neurofilament light chain (sNfL) values were expressed as medians 
with interquartile ranges (IQRs), confirmed by Shapiro–Wilk tests. 
For group comparisons: two-group analyses utilized the 
non-parametric Mann–Whitney U test, given the skewed distribution 
of sNfL data. Multiple-group comparisons were performed using the 
Kruskal-Wallis test, followed by Dunn’s post-hoc test with Bonferroni 
correction to reduce Type I error risk. Outliers were identified using 
the IQR method (values >1.5 × IQR above the 75th percentile or 
below the 25th percentile) and excluded only after sensitivity analyses 
confirmed their influence on model fit. Linear, quadratic, and 
exponential regression models were tested to explore association 
shapes, with the optimal model selected based on the highest 
coefficient of determination (R2) and lowest Akaike Information 
Criterion (AIC). Diagnostic performance of sNfL was evaluated using 
receiver operating characteristic (ROC) curves, with area under the 
curve (AUC) and 95% confidence intervals (CIs) calculated to 
quantify discriminative ability. Cutoff values were optimized via 
Youden’s index (sensitivity + specificity − 1) to balance accuracy. 
Decision curve analysis (DCA) was additionally performed to assess 
clinical utility by comparing net benefit across threshold probabilities.

3 Results

3.1 Demographics and clinical 
characteristics of MG patients and healthy 
controls

The baseline of MG patients and controls is summarized in 
Table 1. A total of 60 MG patients and 29 normal controls (NCs) 
patients were included. There were no significant differences in age 
and gender between the MG and control groups. There were 28 OMG 
and 32 GMG cases in the MG group. AChR-Ab positive in 33 cases 
and MuSK-Ab positive in 17 cases. QMG scores were 0–6 in 28 MG 
patients and 7–15 in 30 MG patients. Other MG patients were divided 
into early-onset MG (EOMG, onset age < 50 years) and late-onset MG 

(LOMG, onset age ≥ 50 years). According to MGFA classification, the 
distribution ratio of I, IIa and IIb types was 32:12:12.

3.2 Elevated serum neurofilament protein 
light chain levels in patients

In this study, the serum neurofilament protein light chain levels 
between myasthenia gravis (MG) patients and normal controls (NCs) 
were thoroughly investigated and verified. The results demonstrated 
that MG patients had significantly higher levels of serum 
neurofilament protein light chain, reaching median 12.7 
(IQR = 9.8;mean±SD: 16.0 ± 8.0) pg./ml, in contrast to the normal 
control group (IQR = 5.0; median 9.1, mean ± SD: 9.9 ± 3.5) pg./ml 
(p = 0.002) (Figure 1A).

Based on the Quantitative Myasthenia Gravis (QMG) scores, MG 
patients were divided into two groups with scores ranging from 0 to 6 
and 7–15. The serum neurofilament protein light chain levels for 
QMG scores of 0–6 and 7–15 were median 6.9 (IQR = 7.3; 
mean±SD:11.5 ± 5.5) pg./ml and median 13.4 (IQR = 11.1; 
mean±SD:15.4 ± 5.5) pg./ml, respectively, (Figure 1B). The group of 
QMG scores of 7–15 had significant differences from the normal 
control group (p = 0.0007). However, there was significant difference 
between the serum neurofilament protein light chain levels of patients 
with QMG scores of 0–6 and 7–15 (p = 0.03).

Subsequently, we  analyzed the MGFA subgroups of MG. The 
serum neurofilament protein light chain levels in MGFA-I was median 
10.8 (IQR = 10.6;mean±SD: 12.5 ± 5.7) pg./ml. And in MGFA-IIa and 
MGFA-IIb were median 13.2 (IQR = 9.9; mean ± SD: 12.7 ± 6.0) pg./
ml and median 13.4 (IQR = 10.6; mean±SD:15.5 ± 5.69) pg./ml, 
respectively. Although sNFL levels in both MGFA-I, MGFA-IIa and 
MGFA-IIb subgroups were higher than those in NCs, only the 
MGFA-IIb subgroup showed a statistically significant difference 
compared to NCs (p = 0.0101) (Figure 1C). And no difference was 
observed between MGFA − IIa and MGFA − IIb patients (p = 0.6184).

We also compared different antibody-positive subgroups of 
MG. The serum neurofilament protein light chain levels in 

TABLE 1  Baseline cohort characteristics of MG patients and NCs participants.

Variables MG patients (n = 60) NCs (n = 12) t/χ2 p-value

Sex, female, n (%) 30 (50%) 14 (48.3%) 0.1525 0.89

OMG: GMG, n 28:32 _/ _/ _/

MGFA at enrollment

  I: IIa: IIb, n 32:12:12 _/ _/ _/

  AChR-Abs(+), n (%) 33 (55%) _/ / /

  MuSK-Abs(+), n (%) 17 (28.3%) _/ _/ _/

  EOMG (<50)

  LOMG (>50)

30 (50%)

30 (50%)

_/ _/ _/

QMGs

  0–6, n (%) 28 (46.7%) _/ _/ _/

  7–15, n (%) 30 (50%) _/ _/ _/

The Chi-squared test was used to compare the difference of gender between two groups. The unpaired t-test was used to compare the difference of ages between two groups. n = number of 
patients; p < 0.05 was considered significant. AChR-Abs, anti-acetylcholine receptor antibodies; MuSK-Abs, muscle-specific receptor tyrosine kinase antibodies; Titin, titan protein; EOMG, 
early-onset myasthenia gravis; LOMG, late-onset myasthenia gravis; GMG, generalized myasthenia gravis; OMG, ocular myasthenia gravis; NCs, normal controls; MG, myasthenia gravis; 
MGFA, myasthenia gravis foundation of America; n, numbers; QMGs, quantitative myasthenia gravis scores; SD, standard deviation.
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AChR-Abs(+) and MuSK-Abs(+)were median 10.7 (IQR = 12.6; mean 
± SD:13.4 ± 7.8) pg./ml, and median 13.4 (IQR = 10.5; mean ± 
SD:15.0 ± 6.1) pg./ml respectively (Figure  1D). There were no 
significant differences among these two different antibody-positive 
subgroups (p = 0.6,998). But there was significant difference between 
AChR-Abs(+) in MG and NCs (p = 0.0490). While, there was 
significant difference between MuSK-Abs(+) in MG and NCs 
(p = 0.0164).

Furthermore, potential differences within different phenotypic 
subgroups of MG were further explored. When comparing ocular 
myasthenia gravis (OMG) and generalized myasthenia gravis 
(GMG) patients, we found that the serum neurofilament protein 
light chain levels in OMG were median 13.4 (IQR = 12.1;mean ± 
SD:15.5 ± 8.9) pg./ml and in GMG were median 11.2; 
(IQR = 12.1;mean ± SD:13.0 ± 4.7) pg./ml (Figure  1E). Both 
subgroups had levels higher than those of the NCs. Intriguingly, 
there was no significant difference (p = 0.2654)in the serum 
neurofilament protein light chain levels between OMG and GMG 
patients. But there was significant difference between GMG in MG 
and NCs (p = 0.0030).

When comparing male and female MG patients, as well as their 
corresponding normal groups. The serum neurofilament protein light 
chain levels in male and female MG patients were median 10.5 
(IQR = 7.6;mean±SD:11.7 ± 5.0) pg./ml and median 13.4 (IQR = 11.8; 
mean ± SD:16.7 ± 7.6) pg./ml respectively, with significant difference 
between them (p = 0.0311) (Figure 1F). In the normal control groups, 
the serum neurofilament protein light chain levels in male and female 
NCs were median 10.1 (IQR = 8.8;mean±SD = 11.5 ± 6.6) pg./ml and 
median 9 (IQR = 3.6;mean±SD: 9.1 ± 2.6) pg./ml respectively, with no 
significant difference between them (p = 0.5721). Nevertheless, it was 
notable that the serum neurofilament protein light chain levels in 
female MG patients had significance in normal female controls 
(p = 0.0032), and the sNFL chain levels in male MG patients also were 
no significantly higher than those in normal male controls 
(p = 0.7044).

Lastly, we compared early-onset myasthenia gravis (EOMG) and 
late-onset myasthenia gravis (LOMG). In MG patients, the correlation 
analysis between age and sNFL levels showed an R2 of 0.08608 
(p = 0.0268) (Figure 2A), while in NCs, the analysis revealed an R2 of 
0.01919 (p = 0.4821) (Figure 2B) We noted that the sNFL chain levels in 

FIGURE 1

(A) Studies on the levels of sNFL in MG patients (n = 60 patients) and NCs (n = 29 patients). sNFL, serum neurofilament light chain; MG, myasthenia 
gravis; LOMG, NCs, normal controls. (B) Studies on the levels of sNFL in MG patients with different types of QMG scores (NCs: n = 26 patients; 0–6: 
n = 28 patients; 7–15: n = 30 patients). QMGs, quantitative myasthenia gravis scores. (C) Studies on the levels of sNFL in MG patients with different 
types of MGFA (NCs: n = 29 patients; MGFA-I: n = 32 patients; MGFA-IIa: n = 12 patients; MGFA-IIb: n = 12 patients). MGFA, myasthenia gravis 
foundation of America. (D) Studies on the levels of neurofilament light chain in MG patients with different types of antibodies (NCs: n = 29 patients; 
Anti-AChR-positive patients: n = 33 patients; Anti-MuSK-positive patients: n = 17 patients). AChR(+), acetylcholine receptor antibody positive MG-
patients, MuSK(+), muscle specific positive MG patients. (E) Studies on the levels of neurofilament light chain in GMG (n = 32patients) and OMG (n = 28 
patients). GMG, generalized myasthenia gravis; OMG, ocular myasthenia gravis. (F) Studies on the levels of neurofilament light chain in female (n = 30 
patients) and male (n = 30 patients) MG patients. sNFL levels in female of NCs (n = 14) and male of NCs (n = 15). *p < 0.05, **p < 0.01, ***p < 0.001.
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EOMG were median 9.44 (IQR = 7.3;mean±SD:11.3 ± 4.9) pg./ml and 
in LOMG were median 15.5 (IQR = 11.9;mean±SD:17.2 ± 7.9) pg./ml 
(Figure 2C). Although EOMG showed no significant difference from the 
normal control group, a significant difference was identified between 
EOMG and LOMG (p = 0.0368). While, the sNFL chain levels in NCs 
(<50 years) were median 9.2 (IQR = 7.1;mean±SD: 10.2 ± 4.5) pg./ml 
and in NCs (≥50 years) were median 8.3 (IQR = 2.7;mean±SD: 8.3 ± 2.1) 
pg./ml (Figure 2C). Further subgroup analysis stratified by QMG scores 
(a measure of disease severity)showed: in the QMG score range of 0–6, 
patients aged ≥50 years had a median sNFL level of 15.9 pg./mL 
(interquartile range (IQR = 6.2) pg./ml) with a mean ± standard 
deviation of (15.6 ± 4.6) pg./ml, which was significantly higher than that 
in patients aged <50 years (median 8.9 pg./mL, interquartile range 
(IQR = 5.0) pg./ml, mean ± standard deviation (9.1 ± 2.9) pg./ml) 
((p = 0.0007)) (Figure 2D). In the QMG score range of 7–15, patients 
aged ≥50 years had a median sNFL level of 9.98 pg./mL (interquartile 
range (IQR = 7.7) pg./ml) with a mean ± standard deviation of 
(11.7 ± 5.5) pg./ml. Although this was higher than that in patients aged 
<50 years (median 13.4 pg./mL, interquartile range (IQR = 10.6) pg./ml, 
mean ± standard deviation (14.8 ± 6.1) pg./ml), the difference did not 
reach statistical significance ((p = 0.0781)) (Figure 2E). These results 
suggest that age itself may be an independent factor contributing to 
elevated sNFL levels, even when MG severity is consistent.

3.3 ROC curves of serum neurofilament 
light chain protein in different MG 
groupings and NCs for differential 
diagnosis

3.3.1 ROC curve of serum neurofilament light 
chain protein in MG and NCs for differential 
diagnosis

The ROC curve and values for neurofilament light chain and its 
combinations are shown in Figure  3A. The area under the curve 
(AUC) for MG and NCs was 0.6911, with a specificity of 50.88% and 
a sensitivity of 82.14%.

3.3.2 ROC curve of serum neurofilament light 
chain protein in different MGFA subtypes and 
NCs for differential diagnosis

In the validation phase, we  performed receiver operating 
characteristic (ROC) curve analysis to evaluate the diagnostic 
performance of serum neurofilament light chain (sNFL) and its 
combined indicators in differentiating myasthenia gravis (MG) 
patients classified as MGFA-I, MGFA-IIa, and MGFA-IIb. The ROC 
curves and corresponding performance metrics for sNFL and its 
combinations are presented in Figure 3B.

FIGURE 2

(A) Correlation of age with sNFL levels in MG patients (n = 60). (B) Correlation of age with sNFL levels in NCs (n = 29). (C) sNFL levels in EOMG (n = 30), 
LOMG (n = 30), and NCs (n = 29). EOMG, early-onset myasthenia gravis; LOMG, late-onset myasthenia gravis. (D) sNFL levels between MG patients 
aged < 50 years and those aged > 50 years in the quantitative myasthenia gravis (QMG) score range of 0–6; (E) sNFL levels between MG patients aged 
< 50 years and those aged > 50 years in the QMG score range of 7–15. *p < 0.05, **p < 0.001, **p < 0.0001.
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Specifically, when distinguishing MGFA-I from MGFA-IIa, 
MGFA-IIb, and normal controls (NCs), the areas under the curve 
(AUC) were 0.5425, 0.6804, and 0.6342, respectively. For these 
comparisons, the specificities were 55.88, 64.52, and 64.52%, with 
corresponding sensitivities of 82.14, 72.73, and 60.71% (Figure 3B).

In the differentiation of MGFA-IIa from MGFA-IIb, the AUC was 
0.6405, with a specificity of 45.45% and a sensitivity of 72.73%.

Additionally, when distinguishing NCs from MGFA-IIa and 
MGFA-IIb, the AUC values were 0.7045 and 0.8344, respectively. For 
NCs vs. MGFA-IIa, the specificity was 81.82% and sensitivity was 
39.29%; for NCs vs. MGFA-IIb, the specificity was 72.73% and 
sensitivity was 82.14% (Figure 3C).

3.3.3 ROC curve of serum neurofilament light 
chain protein in different antibody subtypes and 
NCs for differential diagnosis

The ROC curve and values for neurofilament light chain and its 
combinations about different antibody-positive subgroups of MG are 
shown in Figure 3D. The AUC for AChR-Ab and MuSK-Ab with NCs 
were 0.6382 and 0.7994, respectively, with specificities of 22.58 and 

64.71%, and sensitivities of 100 and 82.14%. The AUC for AChR-Ab 
vs. MuSK-Ab was 0.6271, with a specificity of 64.52% and a sensitivity 
of 70.59%.

3.3.4 ROC curve of serum neurofilament light 
chain protein in male and female MG patients 
and NCs for differential diagnosis

The ROC curves and corresponding performance metrics for 
neurofilament light chain (sNFL) and its combined indicators are 
presented in Figure 3E. For the differentiation of male myasthenia 
gravis (MG) patients from female MG patients, the area under the 
curve (AUC) was 0.6860, with a specificity of 71.43% and a sensitivity 
of 65.52%. In the comparison of male normal controls (NCs) vs. 
female NCs, the AUC was 0.5612, accompanied by a specificity of 
42.86% and a sensitivity of 85.71%. When distinguishing male MG 
patients from normal male controls, the AUC was 0.5344, with a 
specificity of 78.57% and a sensitivity of 42.86%. Notably, for the 
differentiation of female MG patients from normal female controls, 
the AUC reached 0.8300, with a specificity of 65.52% and a sensitivity 
of 92.86%.

FIGURE 3

(A) ROC curve of neurofilament light chain distinguishing MG (n = 60 patients) from controls (n = 29 participants). p < 0.05, statistically significant. (B,C) 
Neurofilament light chain distinguishing MGFA-I (n = 32patients), MGFA-IIa (n = 12 patients), MGFA-IIb (n = 12 patients) and from controls (n = 29 
participants) ROC curve; MGFA-I (n = 32 patients) vs. MGFA-IIa (n = 12 patients) ROC curve. MGFA-I (n = 32 patients) vs. MGFA-IIb (n = 12 patients) 
ROC curve; MGFA-IIa (n = 12 patients) vs. MGFA-IIb (n = 12 patients) ROC curve. MGFA-I (n = 32 patients) vs. MGFA-IIb (n = 12 patients) ROC curve. 
(D) sNFL distinguishing AChR-Ab (n = 33 patients), MuSK-Ab (n = 17 patients), from controls NCs (n = 29 participants) ROC curve; neurofilament light 
chain distinguishing AChR-Ab (n = 33 patients), MuSK-Ab (n = 17 patients) ROC curve. (E) Neurofilament light chain distinguishing female (n = 30 
patients) and male (n = 30patients) MG patients ROC curve; female of NCs (n = 14) and female of MG patients (n = 30) ROC curve; male (n = 15 
patients) and male of MG patients (n = 30) ROC curve. (F) Neurofilament light chain distinguishing OMG (n = 28 patients), GMG (n = 32patients) from 
controls (n = 29participants) ROC curve; OMG (n = 28patients) vs. GMG (n = 32 patients) ROC curve, statistically significant. (G) Neurofilament light 
chain distinguishing QMG scores of 0–6 (n = 28 patients), QMG scores of 7–15 (n = 30 patients) from controls (n = 29 participants) ROC curve; QMG 
scores of 0–6 (n = 28 patients), QMG scores of 7–15 (n = 30 patients) ROC curve, statistically significant. (H) Neurofilament light chain distinguishing 
LOMG (n = 30patients), EOMG (n = 30 patients) from controls (n = 18 participants) ROC curve; LOMG (n = 30 patients), EOMG (n = 11 patients) ROC 
curve. AUC, area under the curve; CI, confidence interval.
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3.3.5 ROC curve of serum neurofilament light 
chain protein in phenotypic subtypes and NCs for 
differential diagnosis

The ROC curve and values for neurofilament light chain and its 
combinations different antibody-positive subgroups of MG are 
shown in Figure  3F. The AUC for OMG, GMG with NCs were 
0.7024 and 0.6912, respectively, with specificities of 96.3 and 
54.84%, and sensitivities of 39.29 and 82.14%. The AUC for OMG 
vs. GMG was 0.5568, with a specificity of 77.78% and a sensitivity 
of 41.94%.

3.3.6 ROC curve of serum neurofilament light 
chain protein in different QMG scores and NCs 
for differential diagnosis

ROC curve analysis further revealed that the diagnostic 
performance of QMG scores in distinguishing between the 0–6 and 
7–15 severity levels was relatively low (Figure 3G).

Specifically, when differentiating QMG scores of 0–6 from normal 
controls (NCs), the area under the curve (AUC) was 0.5813, with a 
specificity of 44.44% and a sensitivity of 75%. For QMG scores of 7–15 
vs. NCs, the AUC was 0.7897, accompanied by a higher specificity of 
92.59% and a sensitivity of 53.57%. In the direct comparison between 
QMG scores of 0–6 and 7–15, the AUC was 0.6941, with a specificity 
of 92.59% and a sensitivity of 48.15%.

3.3.7 ROC curve of serum neurofilament light 
chain protein in LOMG and EOMG and NCs for 
differential diagnosis

The ROC curves and corresponding performance metrics for 
neurofilament light chain (sNFL) and its combined indicators in 
differentiating early-onset myasthenia gravis (EOMG) from late-onset 
myasthenia gravis (LOMG) are presented in Figure  3H. For the 
differentiation of LOMG from EOMG, the area under the curve 
(AUC) was 0.8091, with a specificity of 75% and a sensitivity of 
79.31%. In the comparison of normal controls (NCs) aged < 50 years 
vs. NCs aged ≥ 50 years, the AUC was 0.6324, accompanied by a 
specificity of 41.18% and a sensitivity of 100%. Notably, when 
distinguishing LOMG from NCs aged > 50 years, the AUC reached 
0.9464, with a high specificity of 89.29% and a sensitivity of 90%. In 
contrast, for the differentiation of EOMG from NCs aged < 50 years, 
the AUC was 0.5081, with a specificity of 82.76% and a sensitivity 
of 35.29%.

4 Discussion

Myasthenia gravis (MG) is a heterogeneous autoimmune disorder 
characterized by neuromuscular junction dysfunction, with clinical 
variability across subtypes, ages, and severity levels. Neurofilament 
light chain (NfL), a sensitive marker of neuronal injury, has emerged 
as a potential biomarker in various neurodegenerative and 
neuroinflammatory conditions, such as Alzheimer’s disease (AD) (24), 
Parkinson’s disease (PD) (25), multiple sclerosis (MS) (26). In severe 
viral infections like COVID-19 and herpes zoster, without signs of 
CNS involvement, sNfL levels may rise due to neuroinflammatory or 
direct neuronal injury (27, 28). NFL is involved in immune regulation, 
various autoimmune diseases and viral infections, but its role in MG 

is still unclear. This study investigated serum NfL (sNfL) levels in MG 
patients and healthy controls, aiming to clarify its association with 
disease subtypes, severity, and clinical characteristics.

Our primary finding is that sNFL levels are significantly elevated 
in MG patients compared to normal controls (NCs), with a median of 
12.7 pg./mL in MG vs. 9.1 pg./mL in NCs (p = 0.002). This aligns with 
the hypothesis that neuromuscular junction damage and neuronal 
stress in MG may trigger NFL release into the bloodstream. 
Neurofilaments, particularly NfL, are released upon axonal injury or 
cytoskeletal disruption, and their detection in serum reflects ongoing 
pathological processes in the nervous system (10). In MG, where 
autoantibodies disrupt neuromuscular transmission and may induce 
secondary neuronal stress, elevated sNFL could serve as a proxy for 
the extent of tissue damage beyond clinical symptoms alone.

In the study by Hviid CVB (29), the non-parametric reference 
intervals for sNFL were determined as 2.8–9.7 ng/L for ages 18–40, 
4.6–21.4 ng/L for 41–65 years, and 7.5–53.8 ng/L for over 65 years. 
Simrén J’s study established age-partitioned reference limits based 
on a strong relationship between age and plasma neurofilament light 
(30), with upper 95th percentile values of 7 pg./mL for 5–17 years, 
10 pg./mL for 18–50 years, 15 pg./mL for 51–60 years, 20 pg./mL for 
61–70 years, and 35 pg./mL for 70 + years. Subgroup analyses 
revealed critical insights into the relationship between sNFL and 
MG phenotypes. Late-onset MG (LOMG) patients had significantly 
higher sNFL levels (median 15.5 pg./mL) than early-onset MG 
(EOMG) patients (median 9.44 pg./mL, p = 0.0368), while no such 
age-related difference was observed in NCs. This aligns with our 
correlation analysis showing a weak but significant association 
between age and sNFL in MG (R2 = 0.08608, p = 0.0268) but not in 
controls (R2 = 0.01919, p = 0.4821). Furthermore, stratified analysis 
by QMG scores (a measure of severity) demonstrated that even 
among patients with matched disease severity, older MG patients 
(≥50 years) had higher sNFL levels, particularly in the mild 
subgroup (QMG 0–6, p = 0.0007). These results suggest that age 
itself may be  an independent driver of sNfL elevation in MG, 
potentially due to age-related vulnerability of neurons to 
autoimmune-mediated stress or cumulative damage over time (18). 
The significant difference in sNFL levels between EOMG and LOMG 
patients may suggest that the age of onset affects the degree of nerve 
injury and sNFL release. This is in accordance that EOMG and 
LOMG are different in many ways, including treatment response 
and disease progression (7).

In MG, sNFL may reflect the degree of neuromuscular junction 
damage, as suggested by the high AUC values in certain subgroups. In 
comparison, NFL’s role in other autoimmune diseases like systemic 
lupus erythematosus may involve direct interactions with immune 
cells (31). The research value of NFL in MG lies in its role as a bridge 
between neural damage and immune dysregulation, providing critical 
insights into the disease’s complex pathology, optimizing clinical 
monitoring, and exploring neuroprotective therapeutic strategies.

Gender-specific differences were also notable: female MG patients 
had significantly higher sNFL levels than female NCs (p = 0.0032), 
with a high AUC of 0.8300 for distinguishing female MG from 
controls, whereas male MG patients showed no such difference. This 
gender disparity may reflect underlying differences in disease 
pathophysiology, as female MG patients often exhibit distinct 
autoantibody profiles and disease courses (7). The strong diagnostic 
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performance of sNFL in female patients highlights its potential as a 
gender-specific biomarker, though further research is needed to 
explore the biological basis of this difference.

In terms of disease severity, sNfL levels correlated with QMG 
scores, with the moderate subgroup (QMG 7–15) showing higher 
levels than the mild subgroup (p = 0.03) and significant elevation 
compared to NCs (p = 0.0007). This suggests sNfL may track with 
disease activity, though the lack of significance in MGFA IIa vs. IIb 
subgroups (p = 0.6184) could be attributed to small sample sizes 
(IIa = 12, IIb = 12). Similarly, while MGFA IIb patients had 
numerically higher sNFL than MGFA I patients, only MGFA IIb 
showed significant elevation compared to NCs (p = 0.0101), 
indicating sNFL may better distinguish severe from mild or 
non-MG states rather than subtle severity gradations. Notably, the 
mechanism behind sNFL elevation in MG requires careful 
consideration: MG primarily impairs NMJ function through 
autoantibody-mediated disruption of acetylcholine signaling, 
rather than directly inducing Wallerian degeneration, which 
primarily affects the axonal trunk of central or peripheral nerves. 
Following injury, the distal segment of the axon undergoes 
degenerative changes such as disintegration and fragmentation, 
leading to massive release of neurofilaments (including NFL) into 
bodily fluids. In this process, this results in significantly elevated 
NFL levels, making it a classical biomarker of substantial axonal 
damage (13, 32). NMJ functional abnormalities mainly disrupt 
neural signal transmission, while the axonal trunk remains 
structurally intact. Thus, isolated NMJ impairment rarely increases 
NFL release. However, chronic NMJ dysfunction may trigger 
secondary neuronal stress, such as impaired axonal transport or 
cytoskeletal remodeling, leading to sustained NFL release (33, 34).

Diagnostic performance analyses reinforced sNFL’s utility in 
specific contexts. The highest AUC was observed for 
distinguishing LOMG from age-matched NCs (≥50 years, 
AUC = 0.9464), with high specificity (89.29%) and sensitivity 
(90%), highlighting its potential to aid in diagnosing older 
patients where clinical presentation may overlap with other 
age-related neuromuscular disorders. Additionally, sNFL 
performed well in differentiating MGFA IIb from NCs 
(AUC = 0.8344) and female MG from female controls 
(AUC = 0.8300), supporting its role as a complementary tool to 
traditional biomarkers like AChR or MuSK antibodies.

Notably, sNFL did not differ between AChR-positive and 
MuSK-positive subgroups, suggesting it reflects a common 
pathway of neuronal stress rather than antibody-specific 
mechanisms. And in another study sNFl levels were also higher in 
patients with MG compared to controls, but sNFl levels were 
highest in anti-AChR-Abs positive patients, followed by anti-
MuSK-Abs positive, antiLRP4-Abs positive, and seronegative 
patients (35). This may be related to ethnic, regional, and individual 
differences in the included patients. However, the significant 
elevation of sNfL in both antibody subgroups compared to NCs 
(AChR: p = 0.0490; MuSK: p = 0.0164) indicates its potential to 
monitor disease activity regardless of antibody type.

This study has several limitations that should be acknowledged. 
First, the single-center design and small sample size may introduce 
selection bias, particularly in subgroup analyses (e.g., MGFA IIa/
IIb with n = 12 and 12, respectively). The exclusion of severe MG 

grades (III–V) further limits the generalizability of our findings to 
the full spectrum of MG severity. Larger, multi-center studies are 
needed to validate these results. Second, the cross-sectional design 
precludes conclusions about sNFL’s utility in tracking disease 
progression or treatment response; longitudinal studies with larger 
cohorts are required to explore its prognostic value. Additionally, 
we  only assessed serum sNFL levels, without corresponding 
cerebrospinal fluid measurements, which might more directly 
reflect central nervous system involvement (36). Third, the study 
lacked comparisons with other neuroimmune diseases, leaving 
unanswered whether sNFL acts as a broad-spectrum marker of 
neuroimmune pathology or a MG-specific indicator. Finally, the 
specific source and mechanisms of sNFL elevation in MG remain 
unclear. Future longitudinal studies with larger cohorts are needed 
to validate sNFL as a prognostic marker and explore its response 
to treatment.

In conclusion, sNFL levels are elevated in MG patients, 
suggesting its potential as a biomarker for disease stratification and 
severity assessment, with particular utility in LOMG, female 
patients, and moderate-severity disease. Its association with age, 
gender, and severity highlights its potential to enhance phenotypic 
characterization and monitor underlying pathological processes. As 
a readily measurable serum marker, sNFL could complement 
existing clinical and serological tools, the improving diagnosis and 
management of MG.
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