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Serum neurofilament light chain
levels in myasthenia gravis
patients with and without
symptoms

Jie Lv@®', Ruichen Liu', Zhan Sun', Jing Zhang, Yingna Zhang,
Xue Zhao, Jing Liu, Xinyue Zhou, Mengdi Zhang, Qian Liu and
Feng Gao®*

Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences,
Zhengzhou University, Zhengzhou, China

This study aimed to investigate serum neurofilament light chain (sNFL) levels in
patients with myasthenia gravis (MG) and explore its potential as a biomarker for
disease stratification. A total of 60 MG patients and 29 normal controls (NCs) were
enrolled, with no significant differences in age or gender between the two groups.
MG patients were stratified by MGFA classification, QMG scores, antibody status,
phenotypic subtypes, onset age, and gender. Results showed that MG patients had
significantly higher sNFL levels (median: 12.7 pg./mL) compared to NCs (median:
9.1 pg./mL; p = 0.0176). Subgroup analyses revealed that sSNFL levels in MGFA-
Il patients (median: 13.1 pg./mL) were significantly elevated compared to NCs
(p = 0.0437), with no statistical difference in MGFA-I. Patients with QMG scores
7-15 (median: 13.4 pg./mL) had higher sNFL levels than those with scores 0-6
(p = 0.0207) and showed significant differences from NCs (p = 0.0023). Late-onset
MG (LOMG) patients (median: 13.4 pg./mL) had higher sNFL levels than early-onset
cases (p = 0.0368), and age was mildly correlated with sNFL in MG (p = 0.0477).
ROC analysis showed moderate diagnostic performance of sNFL for distinguishing
LOMG vs. NCs (>50 years) was 0.9464 (specificity 89.29%, sensitivity 90%), and for
female MG vs. female NCs was 0.8091. In conclusion, sNFL levels are elevated in
MG patients, particularly in severe and late-onset cases, suggesting its potential
as a biomarker for disease stratification and severity assessment.
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myasthenia gravis, neurofilament light chain (NFL), biomarker, SiMoA assay, late-onset
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1 Introduction

Myasthenia gravis (MG) is an autoimmune disease that affects the neuromuscular
junction (NMJ) through specific autoantibodies (1),divided into ocular (OMG) and
generalized forms (GMG) (2). “Myasthenia Gravis Foundation of America (MGFA)
classifies MG into five grades to quantify severity: Grade I (ocular symptoms only); Grade
Ia (mild generalized weakness, primarily affecting limbs); Grade IIb (moderate generalized
weakness with bulbar involvement); Grade III (severe generalized weakness, potentially
life-threatening); Grade IV (severe crisis requiring intubation); and Grade V (myasthenic
crisis with respiratory failure) (3). The features discussed in this study (e.g., bulbar
weakness, respiratory involvement) are most prominent in Grades IIb-V, with Grade V
specifically characterized by respiratory failure due to neuromuscular junction dysfunction”
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80% of MG patients have anti-AChR antibodies, 50% of AChR-
seronegative patients have anti-MuSK antibodies, and 20-30% of
AChR-positive patients have anti-Titin antibodies, which are key in
MG’s development (4, 5). In 100 MG patients, the detection rate of
Titin antibodies was 41% (6), they are also important roles involved
in the pathogenesis of MG. MG patients were classified into early-
onset MG (EOMG, age at onset < 50 years) and late-onset MG
(LOMG, age at onset > 50 years). OMG is more common in patients
with EOMG, while GMG is more common in patients with LOMG
(7). The treatment effectiveness of patients with EOMG is
significantly higher than that of patients with LOMG. The
importance of timely diagnosis of myasthenia gravis is that early
diagnosis allows for prompt initiation of treatment, slowing the
progression of the disease and reducing the risk of myasthenia crisis
(8). To sum up, EOMG and LOMG are different in many ways, and
timely diagnosis is of great significance for the treatment and
prognosis of patients.

Neurofilament proteins (NF) are important components of the
neuronal cytoskeleton (9). Among neurofilament proteins,
neurofilament light chain (NFL) has the smallest molecular weight
(68 kDa), enabling it to more readily diffuse into cerebrospinal
fluid and blood via tissue fluid during axonal injury or
neurodegeneration. Neurofilaments comprise three subtypes: light
(NFL), medium (NFM, 150 kDa), and heavy (NFH, 200 kDa)
chains (10, 11). As the most abundant and soluble neurofilament
subunit, NFL is significantly upregulated in release under
detectable blood
concentrations. In contrast, NFM and NFH, with larger molecular

pathological conditions, resulting in
weights and more complex structures, are less released into the
blood and present at lower levels (12, 13). Normally, NFL is stably
expressed and distributed in neurons (14), when neurons are
damaged or diseased, their cell membranes lose integrity, causing
NFL to leak from the neurons into the bloodstream via the blood-
brain barrier (15). Neurogenic changes were regularly found in the
muscles of patients with myasthenia, even without muscular
atrophy (16). In MG, serum neurofilament light chain (sNFL) may
reflect the degree of neuromuscular junction damage and neuronal
stress, particularly in subgroups where traditional biomarkers like
anti-acetylcholine receptor (AChR) and anti-muscle-specific
kinase (MuSK) antibodies may be less informative (17). Basic
research has shown that preserving neuromuscular junctions and
modulating certain signaling pathways are crucial in age-related
and other forms of muscle atrophy (18). Therefore, changes in
sNFL levels are considered to be closely related to the degree of
nervous system injury and are expected to become a potential
biomarker reflecting the pathological process of nervous system
diseases (19). In various nervous system diseases, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple
sclerosis (MS) (20). NFL is involved in immune regulation and
various autoimmune diseases, but its role in MG is still unclear.
SNFL level is a reliable marker of neuronal damage (21).

Against this backdrop, it is rational to hypothesize that NFL
levels may be elevated in MG and that this measurement could
be beneficial for disease monitoring. The primary aim of this study
was to compare plasma NFL levels between age, gender, ocular and
generalized forms, antibody types (AchR, Musk, Titin), MGFA
classification (Type I, I1a, IIb), and QMG scores, and controls. This
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study aims to investigate the expression levels of sNFL in MG
patients and evaluate its potential as a biomarker for disease
monitoring and pathophysiological understanding.

2 Materials and methods
2.1 Study population

We recruited 34 patients diagnosed with myasthenia gravis from
May 2021 to September 2023 in ZMB and collected their clinical
information and serum. All patients were diagnosed based on clinical
symptoms, electrophysiological studies (including single-fiber EMG
in cases of diagnostic uncertainty), and response to acetylcholinesterase
inhibitors refers to objective improvement in clinical symptoms
(records were taken every 10 min after injection, with continuous
recording for 60 min). The relative score, calculated using the formula
based on the absolute score of the single most significantly improved
item at the time of maximum improvement, was used as the judgment
value for the test result. A relative score < 25% was considered
negative, 25-60% as suspiciously positive, and >60% as positive (22),
including symptom classification at onset as ocular and generalized,
antibody types (AChR, MuSK), MGFA classification (Type I, IIa, IIb),
and QMG scores, were recorded. MGFA I-IIb patients were prioritized
due to their higher representation in our cohort; severe grades (I1I-V)
were excluded due to small sample size (n = 4, <10% of total). The
control group was expanded to include 29 healthy individuals matched
for age and potential comorbidities such as diabetes. Exclusion criteria
for both groups included other autoimmune diseases, nervous system
infectious diseases, malignant tumors, severe liver and kidney
insufficiency, and recent use of drugs that may affect nerve function
(23). Excess serum samples were collected after routine diagnostic
procedures and stored at —80 °C. Neurofilament protein light chain
levels in all sera were tested.

2.2 sNfL measurement

Serum samples were collected from patients with MG and
controls, serum samples were collected within 2 h of venous blood
draw, clotted at room temperature (22-25 °C) for 30 min, then
centrifuged at 3,000 x g for 10 min at 4 °C to separate serum. Aliquots
(500 pL each) were immediately stored at —80 °C without delay, with
no more than two freeze-thaw cycles before analysis. Freezer
temperatures were monitored daily to ensure stability between —78 °C
and —82 °C. SNfL concentrations were measured using the single-
molecule array (SiMoA) assay on the HD-1 analyzer (Quanterix,
Lexington, MA, USA), following the manufacturer’s protocol with the
two-step assay dilution 2.0 scheme of the NF-Light Advantage kit;
monoclonal anti-NfL antibodies and calibrators were used by
UmanDiagnostics (Umea, Sweden).

2.3 Statistical analysis

Statistical analysis was conducted using SPSS 26.0 and GraphPad
Prism 8. Statistical significance was set at two-tailed (p < 0.05), with
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adjustments for multiple comparisons applied as appropriate. Serum
neurofilament light chain (sNfL) values were expressed as medians
with interquartile ranges (IQRs), confirmed by Shapiro-Wilk tests.
For group comparisons: two-group analyses utilized the
non-parametric Mann-Whitney U test, given the skewed distribution
of sNfL data. Multiple-group comparisons were performed using the
Kruskal-Wallis test, followed by Dunn’s post-hoc test with Bonferroni
correction to reduce Type I error risk. Outliers were identified using
the IQR method (values >1.5 x IQR above the 75th percentile or
below the 25th percentile) and excluded only after sensitivity analyses
confirmed their influence on model fit. Linear, quadratic, and
exponential regression models were tested to explore association
shapes, with the optimal model selected based on the highest
coefficient of determination (R?) and lowest Akaike Information
Criterion (AIC). Diagnostic performance of sNfL was evaluated using
receiver operating characteristic (ROC) curves, with area under the
curve (AUC) and 95% confidence intervals (CIs) calculated to
quantify discriminative ability. Cutoff values were optimized via
Youden’s index (sensitivity + specificity — 1) to balance accuracy.
Decision curve analysis (DCA) was additionally performed to assess
clinical utility by comparing net benefit across threshold probabilities.

3 Results

3.1 Demographics and clinical
characteristics of MG patients and healthy
controls

The baseline of MG patients and controls is summarized in
Table 1. A total of 60 MG patients and 29 normal controls (NCs)
patients were included. There were no significant differences in age
and gender between the MG and control groups. There were 28 OMG
and 32 GMG cases in the MG group. AChR-Ab positive in 33 cases
and MuSK-Ab positive in 17 cases. QMG scores were 0-6 in 28 MG
patients and 7-15 in 30 MG patients. Other MG patients were divided
into early-onset MG (EOMG, onset age < 50 years) and late-onset MG

10.3389/fmed.2025.1652698

(LOMG, onset age > 50 years). According to MGFA classification, the
distribution ratio of I, ITa and IIb types was 32:12:12.

3.2 Elevated serum neurofilament protein
light chain levels in patients

In this study, the serum neurofilament protein light chain levels
between myasthenia gravis (MG) patients and normal controls (NCs)
were thoroughly investigated and verified. The results demonstrated
that MG patients had significantly higher levels of serum
neurofilament protein light chain, reaching median 12.7
(IQR = 9.8;mean+SD: 16.0 + 8.0) pg./ml, in contrast to the normal
control group (IQR = 5.0; median 9.1, mean + SD: 9.9 + 3.5) pg./ml
(p =0.002) (Figure 1A).

Based on the Quantitative Myasthenia Gravis (QMG) scores, MG
patients were divided into two groups with scores ranging from 0 to 6
and 7-15. The serum neurofilament protein light chain levels for
QMG scores of 0-6 and 7-15 were median 6.9 (IQR=7.3;
mean+SD:11.5+5.5) pg/ml and median 134 (IQR=11.1;
mean+SD:15.4 + 5.5) pg./ml, respectively, (Figure 1B). The group of
QMG scores of 7-15 had significant differences from the normal
control group (p = 0.0007). However, there was significant difference
between the serum neurofilament protein light chain levels of patients
with QMG scores of 0-6 and 7-15 (p = 0.03).

Subsequently, we analyzed the MGFA subgroups of MG. The
serum neurofilament protein light chain levels in MGFA-I was median
10.8 (IQR = 10.6;mean+SD: 12.5 + 5.7) pg./ml. And in MGFA-IIa and
MGFA-IIb were median 13.2 (IQR = 9.9; mean + SD: 12.7 + 6.0) pg./
ml and median 13.4 (IQR =10.6; mean+SD:15.5 + 5.69) pg./ml,
respectively. Although sNFL levels in both MGFA-I, MGFA-IIa and
MGFA-IIb subgroups were higher than those in NCs, only the
MGFA-IIb subgroup showed a statistically significant difference
compared to NCs (p = 0.0101) (Figure 1C). And no difference was
observed between MGFA — Ila and MGFA — IIb patients (p = 0.6184).

We also compared different antibody-positive subgroups of
MG. The serum neurofilament protein light chain levels in

TABLE 1 Baseline cohort characteristics of MG patients and NCs participants.

Variables MG patients (n = 60) NCs (n = 12)

Sex, female, 1 (%) 30 (50%) 14 (48.3%) 0.1525 0.89

OMG: GMG, n 28:32 _/ _/ _/

MGFA at enrollment
L: [a: ITb, n 32:12:12 _/ _/ _/
AChR-Abs(+), n (%) 33 (55%) _/ / /
MuSK-Abs(+), n (%) 17 (28.3%) _/ _/ _/
EOMG (<50) 30 (50%) _/ _/ _/
LOMG (>50) 30 (50%)

QMGs
0-6, n (%) 28 (46.7%) _/ _/ _/
7-15,n (%) 30 (50%) _/ _/ _/

The Chi-squared test was used to compare the difference of gender between two groups. The unpaired t-test was used to compare the difference of ages between two groups. #n = number of

patients; p < 0.05 was considered significant. AChR-Abs, anti-acetylcholine receptor antibodies; MuSK-Abs, muscle-specific receptor tyrosine kinase antibodies; Titin, titan protein; EOMG,

early-onset myasthenia gravis; LOMG, late-onset myasthenia gravis; GMG, generalized myasthenia gravis; OMG, ocular myasthenia gravis; NCs, normal controls; MG, myasthenia gravis;

MGFA, myasthenia gravis foundation of America; #, numbers; QMGs, quantitative myasthenia gravis scores; SD, standard deviation.
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FIGURE 1
(A) Studies on the levels of SNFL in MG patients (n = 60 patients) and NCs (n = 29 patients). sNFL, serum neurofilament light chain; MG, myasthenia
gravis; LOMG, NCs, normal controls. (B) Studies on the levels of sSNFL in MG patients with different types of QMG scores (NCs: n = 26 patients; 0—6:
n = 28 patients; 7-15: n = 30 patients). QMGs, quantitative myasthenia gravis scores. (C) Studies on the levels of sNFL in MG patients with different
types of MGFA (NCs: n = 29 patients; MGFA-I: n = 32 patients; MGFA-lla: n = 12 patients; MGFA-IIb: n = 12 patients). MGFA, myasthenia gravis
foundation of America. (D) Studies on the levels of neurofilament light chain in MG patients with different types of antibodies (NCs: n = 29 patients;
Anti-AChR-positive patients: n = 33 patients; Anti-MuSK-positive patients: n = 17 patients). AChR(+), acetylcholine receptor antibody positive MG-
patients, MuSK(+), muscle specific positive MG patients. (E) Studies on the levels of neurofilament light chain in GMG (n = 32patients) and OMG (n = 28
patients). GMG, generalized myasthenia gravis; OMG, ocular myasthenia gravis. (F) Studies on the levels of neurofilament light chain in female (n = 30
patients) and male (n = 30 patients) MG patients. sNFL levels in female of NCs (n = 14) and male of NCs (n = 15). *p < 0.05, **p < 0.01, ***p < 0.001.

AChR-Abs(+) and MuSK-Abs(+)were median 10.7 (IQR = 12.6; mean
+ SD:13.4 +7.8) pg./ml, and median 13.4 (IQR =10.5; mean *
SD:15.0 £ 6.1) pg./ml respectively (Figure 1D). There were no
significant differences among these two different antibody-positive
subgroups (p = 0.6,998). But there was significant difference between
AChR-Abs(+) in MG and NCs (p =0.0490). While, there was
significant difference between MuSK-Abs(+) in MG and NCs
(p =0.0164).

Furthermore, potential differences within different phenotypic
subgroups of MG were further explored. When comparing ocular
myasthenia gravis (OMG) and generalized myasthenia gravis
(GMG) patients, we found that the serum neurofilament protein
light chain levels in OMG were median 13.4 (IQR = 12.1;mean +
SD:15.5+8.9) pg./ml and in GMG were median 11.2;
(IQR =12.1;mean + SD:13.0 +4.7) pg./ml (Figure 1E). Both
subgroups had levels higher than those of the NCs. Intriguingly,
there was no significant difference (p = 0.2654)in the serum
neurofilament protein light chain levels between OMG and GMG
patients. But there was significant difference between GMG in MG
and NCs (p = 0.0030).
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When comparing male and female MG patients, as well as their
corresponding normal groups. The serum neurofilament protein light
chain levels in male and female MG patients were median 10.5
(IQR = 7.6;mean+SD:11.7 + 5.0) pg./ml and median 13.4 (IQR = 11.8;
mean * SD:16.7 + 7.6) pg./ml respectively, with significant difference
between them (p = 0.0311) (Figure 1F). In the normal control groups,
the serum neurofilament protein light chain levels in male and female
NCs were median 10.1 (IQR = 8.8;mean+SD = 11.5 + 6.6) pg./ml and
median 9 (IQR = 3.6;mean+SD: 9.1 + 2.6) pg./ml respectively, with no
significant difference between them (p = 0.5721). Nevertheless, it was
notable that the serum neurofilament protein light chain levels in
female MG patients had significance in normal female controls
(p = 0.0032), and the sNFL chain levels in male MG patients also were
no significantly higher than those in normal male controls
(p = 0.7044).

Lastly, we compared early-onset myasthenia gravis (EOMG) and
late-onset myasthenia gravis (LOMG). In MG patients, the correlation
analysis between age and sNFL levels showed an R* of 0.08608
(p =0.0268) (Figure 2A), while in NCs, the analysis revealed an R* of
0.01919 (p = 0.4821) (Figure 2B) We noted that the sSNFL chain levels in
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FIGURE 2
(A) Correlation of age with sNFL levels in MG patients (n = 60). (B) Correlation of age with sNFL levels in NCs (n = 29). (C) sNFL levels in EOMG (n = 30),
LOMG (n = 30), and NCs (n = 29). EOMG, early-onset myasthenia gravis; LOMG, late-onset myasthenia gravis. (D) sSNFL levels between MG patients
aged < 50 years and those aged > 50 years in the quantitative myasthenia gravis (QMG) score range of 0-6; (E) sNFL levels between MG patients aged
< 50 years and those aged > 50 years in the QMG score range of 7-15. *p < 0.05, **p < 0.001, **p < 0.0001.

EOMG were median 9.44 (IQR = 7.3;mean+SD:11.3 + 4.9) pg./ml and
in LOMG were median 15.5 (IQR = 11.9;mean+SD:17.2 + 7.9) pg./ml
(Figure 2C). Although EOMG showed no significant difference from the
normal control group, a significant difference was identified between
EOMG and LOMG (p = 0.0368). While, the sNFL chain levels in NCs
(<50 years) were median 9.2 (IQR = 7.1;mean+SD: 10.2 + 4.5) pg./ml
and in NCs (>50 years) were median 8.3 (IQR = 2.7;mean+SD: 8.3 + 2.1)
pg./ml (Figure 2C). Further subgroup analysis stratified by QMG scores
(a measure of disease severity)showed: in the QMG score range of 0-6,
patients aged >50 years had a median sNFL level of 15.9 pg./mL
(interquartile range (IQR=6.2) pg./ml) with a mean + standard
deviation of (15.6 * 4.6) pg./ml, which was significantly higher than that
in patients aged <50 years (median 8.9 pg./mL, interquartile range
(IQR =5.0) pg./ml, mean * standard deviation (9.1 £2.9) pg./ml)
((p =0.0007)) (Figure 2D). In the QMG score range of 7-15, patients
aged >50 years had a median sNFL level of 9.98 pg./mL (interquartile
range (IQR=7.7) pg./ml) with a mean * standard deviation of
(11.7 £ 5.5) pg./ml. Although this was higher than that in patients aged
<50 years (median 13.4 pg./mL, interquartile range (IQR = 10.6) pg./ml,
mean + standard deviation (14.8 + 6.1) pg./ml), the difference did not
reach statistical significance ((p = 0.0781)) (Figure 2E). These results
suggest that age itself may be an independent factor contributing to
elevated sNFL levels, even when MG severity is consistent.
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3.3 ROC curves of serum neurofilament
light chain protein in different MG
groupings and NCs for differential
diagnosis

3.3.1 ROC curve of serum neurofilament light
chain protein in MG and NCs for differential
diagnosis

The ROC curve and values for neurofilament light chain and its
combinations are shown in Figure 3A. The area under the curve
(AUC) for MG and NCs was 0.6911, with a specificity of 50.88% and
a sensitivity of 82.14%.

3.3.2 ROC curve of serum neurofilament light
chain protein in different MGFA subtypes and
NCs for differential diagnosis

In the validation phase, we performed receiver operating
characteristic (ROC) curve analysis to evaluate the diagnostic
performance of serum neurofilament light chain (sNFL) and its
combined indicators in differentiating myasthenia gravis (MG)
patients classified as MGFA-I, MGFA-IIa, and MGFA-IIb. The ROC
curves and corresponding performance metrics for sNFL and its
combinations are presented in Figure 3B.
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(A) ROC curve of neurofilament light chain distinguishing MG (n = 60 patients) from controls (n = 29 participants). p < 0.05, statistically significant. (B,C)
Neurofilament light chain distinguishing MGFA-I (n = 32patients), MGFA-lla (n = 12 patients), MGFA-IIb (n = 12 patients) and from controls (n = 29
participants) ROC curve; MGFA-I (n = 32 patients) vs. MGFA-lla (n = 12 patients) ROC curve. MGFA-I (n = 32 patients) vs. MGFA-Ilb (n = 12 patients)
ROC curve; MGFA-lla (n = 12 patients) vs. MGFA-IIb (n = 12 patients) ROC curve. MGFA-I (n = 32 patients) vs. MGFA-Ilb (n = 12 patients) ROC curve.
(D) sNFL distinguishing AChR-Ab (n = 33 patients), MuSK-Ab (n = 17 patients), from controls NCs (n = 29 participants) ROC curve; neurofilament light
chain distinguishing AChR-Ab (n = 33 patients), MuSK-Ab (n = 17 patients) ROC curve. (E) Neurofilament light chain distinguishing female (n = 30
patients) and male (n = 30patients) MG patients ROC curve; female of NCs (n = 14) and female of MG patients (n = 30) ROC curve; male (n = 15
patients) and male of MG patients (n = 30) ROC curve. (F) Neurofilament light chain distinguishing OMG (n = 28 patients), GMG (n = 32patients) from
controls (n = 29participants) ROC curve; OMG (n = 28patients) vs. GMG (n = 32 patients) ROC curve, statistically significant. (G) Neurofilament light
chain distinguishing QMG scores of 0-6 (n = 28 patients), QMG scores of 7-15 (n = 30 patients) from controls (n = 29 participants) ROC curve; QMG
scores of 0-6 (n = 28 patients), QMG scores of 7-15 (n = 30 patients) ROC curve, statistically significant. (H) Neurofilament light chain distinguishing
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curve. AUC, area under the curve; Cl, confidence interval.

LOMG (n = 30patients), EOMG (n = 30 patients) from controls (n = 18 participants) ROC curve; LOMG (n = 30 patients), EOMG (n = 11 patients) ROC

Specifically, when distinguishing MGFA-I from MGFA-IIa,
MGFA-IIb, and normal controls (NCs), the areas under the curve
(AUC) were 0.5425, 0.6804, and 0.6342, respectively. For these
comparisons, the specificities were 55.88, 64.52, and 64.52%, with
corresponding sensitivities of 82.14, 72.73, and 60.71% (Figure 3B).

In the differentiation of MGFA-IIa from MGFA-IIb, the AUC was
0.6405, with a specificity of 45.45% and a sensitivity of 72.73%.

Additionally, when distinguishing NCs from MGFA-IIa and
MGFA-IIb, the AUC values were 0.7045 and 0.8344, respectively. For
NCs vs. MGFA-IIa, the specificity was 81.82% and sensitivity was
39.29%; for NCs vs. MGFA-IIb, the specificity was 72.73% and
sensitivity was 82.14% (Figure 3C).

3.3.3 ROC curve of serum neurofilament light
chain protein in different antibody subtypes and
NCs for differential diagnosis

The ROC curve and values for neurofilament light chain and its
combinations about different antibody-positive subgroups of MG are
shown in Figure 3D. The AUC for AChR-Ab and MuSK-Ab with NCs
were 0.6382 and 0.7994, respectively, with specificities of 22.58 and
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64.71%, and sensitivities of 100 and 82.14%. The AUC for AChR-Ab
vs. MuSK-Ab was 0.6271, with a specificity of 64.52% and a sensitivity
0f 70.59%.

3.3.4 ROC curve of serum neurofilament light
chain protein in male and female MG patients
and NCs for differential diagnosis

The ROC curves and corresponding performance metrics for
neurofilament light chain (sNFL) and its combined indicators are
presented in Figure 3E. For the differentiation of male myasthenia
gravis (MG) patients from female MG patients, the area under the
curve (AUC) was 0.6860, with a specificity of 71.43% and a sensitivity
of 65.52%. In the comparison of male normal controls (NCs) vs.
female NCs, the AUC was 0.5612, accompanied by a specificity of
42.86% and a sensitivity of 85.71%. When distinguishing male MG
patients from normal male controls, the AUC was 0.5344, with a
specificity of 78.57% and a sensitivity of 42.86%. Notably, for the
differentiation of female MG patients from normal female controls,
the AUC reached 0.8300, with a specificity of 65.52% and a sensitivity
of 92.86%.
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3.3.5 ROC curve of serum neurofilament light
chain protein in phenotypic subtypes and NCs for
differential diagnosis

The ROC curve and values for neurofilament light chain and its
combinations different antibody-positive subgroups of MG are
shown in Figure 3F. The AUC for OMG, GMG with NCs were
0.7024 and 0.6912, respectively, with specificities of 96.3 and
54.84%, and sensitivities of 39.29 and 82.14%. The AUC for OMG
vs. GMG was 0.5568, with a specificity of 77.78% and a sensitivity
of 41.94%.

3.3.6 ROC curve of serum neurofilament light
chain protein in different QMG scores and NCs
for differential diagnosis

ROC curve analysis further revealed that the diagnostic
performance of QMG scores in distinguishing between the 0-6 and
7-15 severity levels was relatively low (Figure 3G).

Specifically, when differentiating QMG scores of 0-6 from normal
controls (NCs), the area under the curve (AUC) was 0.5813, with a
specificity of 44.44% and a sensitivity of 75%. For QMG scores of 7-15
vs. NCs, the AUC was 0.7897, accompanied by a higher specificity of
92.59% and a sensitivity of 53.57%. In the direct comparison between
QMG scores of 0-6 and 7-15, the AUC was 0.6941, with a specificity
of 92.59% and a sensitivity of 48.15%.

3.3.7 ROC curve of serum neurofilament light
chain protein in LOMG and EOMG and NCs for
differential diagnosis

The ROC curves and corresponding performance metrics for
neurofilament light chain (sNFL) and its combined indicators in
differentiating early-onset myasthenia gravis (EOMG) from late-onset
myasthenia gravis (LOMG) are presented in Figure 3H. For the
differentiation of LOMG from EOMG, the area under the curve
(AUC) was 0.8091, with a specificity of 75% and a sensitivity of
79.31%. In the comparison of normal controls (NCs) aged < 50 years
vs. NCs aged > 50 years, the AUC was 0.6324, accompanied by a
specificity of 41.18% and a sensitivity of 100%. Notably, when
distinguishing LOMG from NCs aged > 50 years, the AUC reached
0.9464, with a high specificity of 89.29% and a sensitivity of 90%. In
contrast, for the differentiation of EOMG from NCs aged < 50 years,
the AUC was 0.5081, with a specificity of 82.76% and a sensitivity
of 35.29%.

4 Discussion

Myasthenia gravis (MG) is a heterogeneous autoimmune disorder
characterized by neuromuscular junction dysfunction, with clinical
variability across subtypes, ages, and severity levels. Neurofilament
light chain (NfL), a sensitive marker of neuronal injury, has emerged
as a potential biomarker in various neurodegenerative and
neuroinflammatory conditions, such as Alzheimer’s disease (AD) (24),
Parkinson’s disease (PD) (25), multiple sclerosis (MS) (26). In severe
viral infections like COVID-19 and herpes zoster, without signs of
CNS involvement, sNfL levels may rise due to neuroinflammatory or
direct neuronal injury (27, 28). NFL is involved in immune regulation,
various autoimmune diseases and viral infections, but its role in MG
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is still unclear. This study investigated serum NfL (sNfL) levels in MG
patients and healthy controls, aiming to clarify its association with
disease subtypes, severity, and clinical characteristics.

Our primary finding is that sSNFL levels are significantly elevated
in MG patients compared to normal controls (NCs), with a median of
12.7 pg./mL in MG vs. 9.1 pg./mL in NCs (p = 0.002). This aligns with
the hypothesis that neuromuscular junction damage and neuronal
stress in MG may trigger NFL release into the bloodstream.
Neurofilaments, particularly NfL, are released upon axonal injury or
cytoskeletal disruption, and their detection in serum reflects ongoing
pathological processes in the nervous system (10). In MG, where
autoantibodies disrupt neuromuscular transmission and may induce
secondary neuronal stress, elevated sNFL could serve as a proxy for
the extent of tissue damage beyond clinical symptoms alone.

In the study by Hviid CVB (29), the non-parametric reference
intervals for sSNFL were determined as 2.8-9.7 ng/L for ages 18-40,
4.6-21.4 ng/L for 41-65 years, and 7.5-53.8 ng/L for over 65 years.
Simrén J’s study established age-partitioned reference limits based
on a strong relationship between age and plasma neurofilament light
(30), with upper 95th percentile values of 7 pg./mL for 5-17 years,
10 pg./mL for 18-50 years, 15 pg./mL for 51-60 years, 20 pg./mL for
61-70 years, and 35 pg./mL for 70 + years. Subgroup analyses
revealed critical insights into the relationship between sNFL and
MG phenotypes. Late-onset MG (LOMG) patients had significantly
higher sNFL levels (median 15.5 pg./mL) than early-onset MG
(EOMG) patients (median 9.44 pg./mL, p = 0.0368), while no such
age-related difference was observed in NCs. This aligns with our
correlation analysis showing a weak but significant association
between age and sNFL in MG (R? = 0.08608, p = 0.0268) but not in
controls (R* = 0.01919, p = 0.4821). Furthermore, stratified analysis
by QMG scores (a measure of severity) demonstrated that even
among patients with matched disease severity, older MG patients
(=50 years) had higher sNFL levels, particularly in the mild
subgroup (QMG 0-6, p = 0.0007). These results suggest that age
itself may be an independent driver of sNfL elevation in MG,
potentially due to age-related vulnerability of neurons to
autoimmune-mediated stress or cumulative damage over time (18).
The significant difference in sNFL levels between EOMG and LOMG
patients may suggest that the age of onset affects the degree of nerve
injury and sNFL release. This is in accordance that EOMG and
LOMG are different in many ways, including treatment response
and disease progression (7).

In MG, sNFL may reflect the degree of neuromuscular junction
damage, as suggested by the high AUC values in certain subgroups. In
comparison, NFLs role in other autoimmune diseases like systemic
lupus erythematosus may involve direct interactions with immune
cells (31). The research value of NFL in MG lies in its role as a bridge
between neural damage and immune dysregulation, providing critical
insights into the disease’s complex pathology, optimizing clinical
monitoring, and exploring neuroprotective therapeutic strategies.

Gender-specific differences were also notable: female MG patients
had significantly higher sNFL levels than female NCs (p = 0.0032),
with a high AUC of 0.8300 for distinguishing female MG from
controls, whereas male MG patients showed no such difference. This
gender disparity may reflect underlying differences in disease
pathophysiology, as female MG patients often exhibit distinct
autoantibody profiles and disease courses (7). The strong diagnostic
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performance of sSNFL in female patients highlights its potential as a
gender-specific biomarker, though further research is needed to
explore the biological basis of this difference.

In terms of disease severity, sNfL levels correlated with QMG
scores, with the moderate subgroup (QMG 7-15) showing higher
levels than the mild subgroup (p = 0.03) and significant elevation
compared to NCs (p = 0.0007). This suggests sNfL may track with
disease activity, though the lack of significance in MGFA IIa vs. ITb
subgroups (p = 0.6184) could be attributed to small sample sizes
(ITa =12, IIb =12). Similarly, while MGFA IIb patients had
numerically higher sNFL than MGFA I patients, only MGFA IIb
showed significant elevation compared to NCs (p =0.0101),
indicating sNFL may better distinguish severe from mild or
non-MG states rather than subtle severity gradations. Notably, the
mechanism behind sNFL elevation in MG requires careful
consideration: MG primarily impairs NMJ function through
autoantibody-mediated disruption of acetylcholine signaling,
rather than directly inducing Wallerian degeneration, which
primarily affects the axonal trunk of central or peripheral nerves.
Following injury, the distal segment of the axon undergoes
degenerative changes such as disintegration and fragmentation,
leading to massive release of neurofilaments (including NFL) into
bodily fluids. In this process, this results in significantly elevated
NFL levels, making it a classical biomarker of substantial axonal
damage (13, 32). NM]J functional abnormalities mainly disrupt
neural signal transmission, while the axonal trunk remains
structurally intact. Thus, isolated NMJ impairment rarely increases
NFL release. However, chronic NMJ dysfunction may trigger
secondary neuronal stress, such as impaired axonal transport or
cytoskeletal remodeling, leading to sustained NFL release (33, 34).

Diagnostic performance analyses reinforced sNFLs utility in
specific contexts. The highest AUC was observed for
distinguishing LOMG from age-matched NCs (>50 years,
AUC = 0.9464), with high specificity (89.29%) and sensitivity
(90%), highlighting its potential to aid in diagnosing older
patients where clinical presentation may overlap with other
age-related neuromuscular disorders. Additionally, sNFL
performed well in differentiating MGFA IIb from NCs
(AUC = 0.8344) MG from female
(AUC = 0.8300), supporting its role as a complementary tool to
traditional biomarkers like AChR or MuSK antibodies.

Notably, sNFL did not differ between AChR-positive and
MuSK-positive subgroups, suggesting it reflects a common

and female controls

pathway of neuronal stress rather than antibody-specific
mechanisms. And in another study sNFl levels were also higher in
patients with MG compared to controls, but sNFI levels were
highest in anti-AChR-Abs positive patients, followed by anti-
MuSK-Abs positive, antiLRP4-Abs positive, and seronegative
patients (35). This may be related to ethnic, regional, and individual
differences in the included patients. However, the significant
elevation of sNfL in both antibody subgroups compared to NCs
(AChR: p = 0.0490; MuSK: p = 0.0164) indicates its potential to
monitor disease activity regardless of antibody type.

This study has several limitations that should be acknowledged.
First, the single-center design and small sample size may introduce
selection bias, particularly in subgroup analyses (e.g., MGFA Ila/
IIb with n = 12 and 12, respectively). The exclusion of severe MG
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grades (III-V) further limits the generalizability of our findings to
the full spectrum of MG severity. Larger, multi-center studies are
needed to validate these results. Second, the cross-sectional design
precludes conclusions about sNFLs utility in tracking disease
progression or treatment response; longitudinal studies with larger
cohorts are required to explore its prognostic value. Additionally,
we only assessed serum sNFL levels, without corresponding
cerebrospinal fluid measurements, which might more directly
reflect central nervous system involvement (36). Third, the study
lacked comparisons with other neuroimmune diseases, leaving
unanswered whether sNFL acts as a broad-spectrum marker of
neuroimmune pathology or a MG-specific indicator. Finally, the
specific source and mechanisms of SNFL elevation in MG remain
unclear. Future longitudinal studies with larger cohorts are needed
to validate sNFL as a prognostic marker and explore its response
to treatment.

In conclusion, sNFL levels are elevated in MG patients,
suggesting its potential as a biomarker for disease stratification and
severity assessment, with particular utility in LOMG, female
patients, and moderate-severity disease. Its association with age,
gender, and severity highlights its potential to enhance phenotypic
characterization and monitor underlying pathological processes. As
a readily measurable serum marker, sSNFL could complement
existing clinical and serological tools, the improving diagnosis and
management of MG.
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